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Zn Vacancy Formation Energy and 
Diffusion Coefficient of CVT ZnO 
Crystals in the Sub-Surface Micron 
Region
Narendra S. Parmar   1, Lynn A. Boatner2, Kelvin G. Lynn   3,4 & Ji-Won Choi1,5

By using positron annihilation spectroscopy methods, we have experimentally demonstrated the 
creation of isolated zinc vacancy concentrations >1020 cm−3 in chemical vapor transport (CVT)-grown 
ZnO bulk single crystals. X-ray diffraction ω-rocking curve (XRC) shows the good quality of ZnO single 
crystal with (110) orientation. The depth analysis of Auger electron spectroscopy indicates the atomic 
concentrations of Zn and O are almost stoichiometric and constant throughout the measurement. 
Boltzmann statistics are applied to calculate the zinc vacancy formation energies (Ef) of ~1.3–1.52 eV 
in the sub-surface micron region. We have also applied Fick’s 2nd law to calculate the zinc diffusion 
coefficient to be ~1.07 × 10−14 cm2/s at 1100 °C. The zinc vacancies began annealing out at 300 °C and, 
by heating in the air, were completely annealed out at 700 °C.

Zinc oxide has been under intensive and long-term investigation in both the academic and industrial commu-
nities because of its varied actual and potential applications in electronic and optoelectronic-based devices. 
Point-defect engineering in this material has become of significant importance since theoretical and experimental 
results suggest that a zinc vacancy acts as a shallow acceptor and would, therefore, be of importance in forming 
a p-n junction for blue/UV LEDs. Accordingly, achieving an understanding of the thermodynamics and kinet-
ics of intrinsic point defects in ZnO is of both fundamental and technological significance. Zinc migration has 
previously been considered, in particular, with respect to the degradation of varistor devices1 whose function is 
believed to proceed through the migration of intrinsic defects - most likely zinc interstitials. Gaining an under-
standing of zinc defect diffusivities is also of importance in order to control the formation of unwanted and com-
pensating defects that are likely to contribute to the well-known difficulties in synthesizing p-type zinc oxide2,3. 
Until recently, the most prevalent way of creating zinc vacancies has been either by electron or laser irradiation4,5, 
i.e., by non-equilibrium thermodynamic processes that lead to the simultaneous creation of compensating defects 
such as zinc interstitials, oxygen interstitials, and oxygen vacancies. The creation of such defects is relatively hard 
to avoid and control. Recently, Parmar et al.6, reported the formation of high concentrations of isolated zinc 
vacancies (>1020 cm−3) in thermodynamic equilibrium – findings that can prove to be of importance in obtain-
ing p-type ZnO by controlling the formation of zinc vacancies6, as zinc vacancies are shallow acceptors in ZnO 
crystal.

Zinc vacancies created by electron irradiation7–9 and laser radiation10, have been the subject of a number of 
previously conducted studies designed to measure the self-diffusion of zinc in ZnO11. The prior experimental 
data, however, exhibit a considerable spread that renders their interpretation difficult. In view of this situation, a 
theoretical approach can provide valuable insights into the various atomistic migration processes and, thereby, 
can help to quantify their respective contributions.

In this letter, we present results on the formation energy and diffusivity of zinc vacancies in ZnO, where a large 
number of zinc vacancies (1017 < VZn ~ 1020) are created in thermodynamic equilibrium by oxygen annealing. 
Having such a concentration of zinc vacancies in thermodynamic equilibrium provides the basis for carrying out 
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a study of the formation energy and diffusion coefficient that is more reliable relative to an approach where zinc 
vacancies are created by a non-thermodynamic-equilibrium process such as, an electron irradiation or bombard-
ment using a laser exposure.

Experimental Methods
Chemical vapor-transport-grown ZnO crystals were placed in Heraeus high-purity quartz ampoules that were 
evacuated using roughing and turbo molecular pumps and that were then baked at ~150 °C overnight to remove 
residual water vapor. The vacuum pressure was ~10−7 Torr prior to back filling with ultra-high-purity oxygen to 
~300 Torr. The ampoules were then sealed using an oxy-hydrogen torch and placed in a tube furnace. The anneal-
ing process was carried out at 1100 °C or 1200 °C for 24 hours, and the ampoule remained in the furnace during 
cooling.

Quenching experiments were also carried out by dipping the hot ampoule (1200 °C) in water at room tem-
perature (RT). This quenching process reduced the ZnO temperature from 1200 °C to RT in a few seconds. 
Annealing (i.e., annihilation) out of the zinc vacancies was performed by heating the crystals in air for one hour 
at either 300 °C, 500 °C or 700 °C.

Positron annihilation spectroscopy (PAS)12 is a well-known tool to characterize negatively charged defects, 
such as zinc vacancies (VZn) in ZnO crystals13. Positrons are positively charged and become trapped in negatively 
charged native defects, which reduces their Doppler momentum. The trapped positrons eventually annihilate the 
surrounding electrons, emitting two photons of 511 keV energy14. Emitted photons with Doppler broadening are 
the signature of the annihilation site. Though, PAS is not very useful for investigating positively charged defects, 
it has been quite helpful in investigating neutral defects15. The signal-to-noise ratio can be increased by a signifi-
cant amount by performing two-detector coincidence measurements16. However, the coincidence-mode process 
takes a much longer time to collect data. In this letter, depth-resolved positron annihilation spectroscopy (PAS) 
Doppler broadening measurements were performed at the Washington State University (WSU). The 511 keV 
annihilation peak was recorded using a liquid-nitrogen-cooled HPGe detector. The S parameter is sensitive to the 
annihilation fraction with low-momentum valence electrons and is proportional to the concentration of trapping 
centers17. The W parameter comprises the wings of the peak where higher momentum Doppler shifts dominate, 
and it relates chemical species to the annihilation site. Together, the S and W parameters were used to characterize 
positron-trapping centers in the ZnO crystals. Further positron experimental details and analysis are discussed 
elsewhere6,18.

X-ray diffraction (XRD) measurement was carried out using a high-resolution ATX-G, Rigaku, triple-axis 
diffractometer system, using Cu Kα radiation, with a scintillation counter (0-D detector).

The elemental composition along the depth direction was measured by Auger electron spectroscopy (AES). 
The crystal surfaces were measured with an AES, PHI 700 (ULVAC-PHI, INC) system, and the accelerating volt-
age of the first exciting electron beam was 5 kV.

Data Analysis
X-ray diffraction (XRD).  Figure 1 shows the X-ray diffraction ω-rocking curve (XRC) of the as-grown CVT 
ZnO single crystal. An omega scan was performed for the reflection from the (110) crystal surface. The full-width 
at half-maximum (FWHM) was measured to be 0.018°, indicating the good crystallinity of the CVT-grown ZnO 
single crystal. Electron back scattering diffraction (EBSD) measurement, also suggested a good quality of ZnO 
crystal, with a (110) plane orientation (not shown).

Auger electron spectroscopy (AES).  AES depth analysis was done by etching a ZnO crystal with an 
Ar-ion gun, and the variation of O(KLL) and Zn (LMM) intensity along the depth direction of the crystals 
was measured. In all the depth profiles, the main elements present in ZnO, i.e. zinc (Zn) and oxygen (O) were 
detected. As shown in Fig. 2 the atomic concentrations of Zn and O were found to be almost stoichiometric 

Figure 1.  X-ray rocking curve (XRC) of the ZnO single crystal.
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(Zn0.505O0.495) and constant throughout the measurement, which clearly indicates a chemically uniform and sto-
ichiometric ZnO crystal.

Defect concentration.  The concentration of a point defect depends on its formation energy. In thermo-
dynamic equilibrium and in the dilute regime (i.e., neglecting defect-defect interactions), the concentration of a 
point defect is given by

=
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where, Ef is the formation energy, Nsites is the number of sites the defect can be incorporated on, kB the Boltzmann 
constant, and T is the temperature. Equation (1) shows that defects with high formation energies will occur in 
low concentrations.

Annealing CVT-grown ZnO crystals at 1200 °C created ~5 × 1020 cm−3 defects in the top (100–150 nm) and 
~1 × 1018 cm−3 in the mid (200–700 nm) crystal region. The bulk crystal region (>3 µm) remains with the min-
imal zinc vacancy concentration (~1015 cm−3),thereby matching the pristine state (i.e., as-grown) of the ZnO 
crystals6 [Fig. 3]. Details of the calculation of the zinc vacancy (VZn) concentration are described elsewhere6.

Zinc vacancy formation energy.  The zinc vacancy formation energies were calculated using the Boltzmann 
Equation – Eq. 1. A CVT sample annealed at 1200 °C yields E f  ~ 0.64 eV in the top region and ~1.39 in the mid 
region. The discrepency in these formation energies can be understood since Eq. 1 is only valid in the dilute limit. 
Positron measurements showed that, in the top region, the SW data deviated from a straight line - suggesting a 
saturation of positrons with excess (Vzn) > 1020 cm−3 for the 1200 °C oxygen-annealed sample. The zinc vacancy 
formation energy (Ef) is 1.38 eV (top) and 1.52 eV (mid) region for the 1100 °C annealed CVT sample.  
The deviation of ~0.14 eV for this sample in two regions is quite reasonable, and Eq. 1 can be assumed to be  

Figure 2.  Auger electron spectroscopy (AES) depth profile spectra of an as-grown CVT ZnO crystal.

Figure 3.  Schematic for the zinc vacancy concentration profile after oxygen annealing the CVT crystal at 
1100 °C (broken lines) and 1200 °C (solid lines) (not to scale)6.
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valid for the calculation of zinc vacancy formation energies, since (Vzn) is <1018 cm−3. The zinc vacancy formation 
energies are summarized in the Table 1.

Diffusion coefficients.  The zinc diffusion coefficient at 1100 °C was calculated by using Fick’s 2nd law:

−
−

= − =
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where, C is the zinc vacancy concentration [Fig. 4], erf(z) is the Gaussian error function, x is the diffusion dis-
tance, z is the approximated value of the Gaussian error function, D is the diffusion coefficient or diffusivity, and 
t is the diffusion time. The diffusion coefficients are summarized in the Table 2.

Quenching.  Positron depth-resolved data were fit (from 4 keV onwards) using the VEPFIT19 computer code. 
The S-parameter is ~3% higher with respect to the bulk in the top layer [Fig. 5(a)]. The positron diffusion length is 
20 nm in the top layer. The S-W data [Fig. 5(b)] lie on a straight line suggesting the presence of one type of defect 
related to (Vzn).

Figure 4.  Demonstration of the Gaussian error function for the estimation of the diffusion coefficient.

Figure 5.  (a) Normalized S-vs-energy/depth (b) normalized S-W plot, in an as-grown (virgin) and oxygen 
annealed then quenched CVT ZnO crystal.

T (K)
Ca (cm−3)  
(100–150 nm, top region)

Cb (cm−3)  
(200–700 nm, mid region)

Ea
f  

(eV)
Eb

f  
(eV)

1473 5.3 × 1020 1.5 × 1018 0.64 1.39

1373 7.2 × 1017 2.1 × 1017 1.38 1.52

Table 1.  Formation energy, where subscripts a and b denote the top and the mid regions, respectively.
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The zinc vacancy concentration (Vzn) (atom−1) was calculated by using the equation:

λ
µ

= ⋅
−
−

c S S
S S

b ave b

defect ave

where, μ is the specific trapping rate, and [λ τ=−
b b

1 ] is the positron lifetime in the bulk semiconductor. The sub-
scripts refer to the measured τ or S in the case of average (ave), the bulk value for (b) and the defect specific value 
in the case of defect. The ZnO atomic density was assumed (ρ ~ 8.3 × 1022 cm−3).

In a quenched sample, Save increased by only ~3%, i.e., a much lower value than for the slowly cooled samples 
- leading to a value of only (Vzn) ~ 1.15 × 1017 cm−3 [Table 3]. Generally, it is believed that the actual concentration 
of vacancies will be higher than the equilibrium value if the crystal is annealed at an elevated temperature and 
then cooled suddenly, thereby freezing in the vacancies. Our observation, however, was exactly the opposite since 
the zinc vacancy formation energy in the quenched condition [Table 4] is somewhat higher than that compared to 
the slow cooling case. A precise comparison is not justified, however, since the quenching process does not follow 
thermodynamic equilibrium conditions.

Annealing out zinc vacancies.  A CVT crystal, oxygen annealed at 1100 °C, [(Vzn) ~ 1 × 1018 cm−3 (top 
layer)], was air annealed at various temperature steps (300 °C, 500 °C and 700 °C) for 1 hour each and this proce-
dure was followed by performing the positron measurements [Fig. 6] after every air-annealing step. The positron 
data suggest that the (Vzn) completely anneals out (i.e., to the as-grown (virgin) level) after a 700 °C air anneal for 

Figure 6.  Positron data (a) (S vs Energy/depth) (b) S vs W, of an air-annealed (1 hour) CVT crystal that was 
then oxygen annealed at 1100 °C.

T (K)
Cx (200–700 nm,  
mid region)

Cs (100–150 nm,  
top region) Co (bulk)

−
−

Cx C0
Cs C0 erf (z) z x (cm) D (cm2/s)

1373 2.5 × 10−4 8.5 × 10−4 1.2 × 10−6 2.93 × 10−1 0.70 0.74 4.5 × 10−5 1.07 × 10−14

Table 2.  Diffusion coefficient calculation for CVT samples that were oxygen annealed at 1100 °C for 24 hours. 
Diffusion distance, x = 4.5 × 10−5 cm. Where, Cx, Cs and Co values were calculated using the percentage ratio of 
the zinc vacancy concentration in their respective region to the atomic density (8.3 × 1022 cm−3). From Fick’s 2nd 
law, the zinc diffusion coefficient at 1100 °C was calculated to be ~1.07 × 10−14 cm2/s.

T (K) C (cm−3) (500 nm–1 µm)
Ef

(eV)

1473 1.15 × 1017 1.71

Table 4.  Zinc vacancy formation energy under quenched conditions.

λ −
b

1(ps) μ (s−1) Sb Sdefect Save c (atom−1) C (cm−3)

170 3 × 1015 1 1.07 1.03 1.39 × 1015 1.15 × 1017

Table 3.  Zinc vacancy concentration in the quenched sample.
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1 hour. The S-W data followed a straight–line trend suggesting that no zinc vacancy-related clusters were formed 
during the annihilation process.

A comparative study.  Janoti et al.20, have reported a zinc vacancy formation energy of ~3.7 eV using 
first-principles calculations under p-type conditions (EF at the VBM), in an oxygen-rich atmosphere. Kohan 
et al.21, have suggested that the zinc vacancy formation energy is ~(Zn(0/−1) = 5.8 eV & Zn(−1/−2) = 6.6 eV) 
under a high zinc partial pressure and ~(Zn(0/−1) = 2.42 eV and Zn(−1/−2) = −0.2 eV) under a low zinc pres-
sure condition - assuming EF at the VBM. Various other first-principles calculations are summarized in the 
Tables 5 and 6.

Also, Lany et al.22, have performed first principle calculations and showed that the intrinsic defects (VO and Zni) 
can’t lead to shallow donors due to a large formation energy, when EF is close to the CBM. Tomlins et al.11, performed 
zinc self-diffusion experiment in single crystal ZnO using nonradioactive 70Zn as the tracer isotope and reported zinc 
vacancies formation energy >3.51 eV. Azarov et al.23, did zinc-diffusion measurements using isotopically modulated 
ZnO crystals and showed zinc vacancies formation energy varies as, = . − × −E E E1 1 2 ( )VZn

f
F C , (where, (EF − EC) 

is the difference in the Fermi level and conduction band energy) and depends on the position of the Fermi level. It can 
be seen that there exist a large discrepancies in zinc vacancies formation energy values calculated theoretically or 
experimentally.

Based on the positron analysis for the zinc vacancy concentration, the ZnO crystal region was divided into 
3 parts: (1) top region (100–150 nm), (2) mid-region (200–700 nm) and, (3) bulk region (>3 µm). Our calcu-
lated values are based on the near-surface (~100–700 nm) experimental data (Vzn), that requires less formation 
energy as compared to the bulk region. The calculated (Vzn) formation energy is much lower than any previously 
reported values. This was observed experimentally, since there was no increase in the Vzn concentration in the 
bulk region, which is consistent with the high formation energy Vzn in the bulk region.

Conclusions
The good quality of ZnO crystal with (110) orientation was used in this study as suggested by X-ray diffraction 
ω-rocking curve (XRC). The depth analysis of AES indicates the atomic concentrations of Zn and O are almost 
stoichiometric and uniform throughout the measurement. In general, the diffusivity is greater through the less 
restrictive structural regions, such as the near surface (micron region), as compared to the bulk. Based on the zinc 
vacancy concentration and using Fick’s 2nd law, we have calculated zinc diffusion coefficient of ~1.07 × 10−14 cm2/s 
at 1100 °C in the sub-micron region. The zinc vacancy formation energy (Ef) is calculated to be 1.38 eV (100–
150 nm) and 1.52 eV (200–700 nm) region for 1100 °C oxygen anneal samples. These values are significantly lower 
than the reported values as obtained by first-principles calculations based on the bulk region of the ZnO crystal 
and few other reported experimental results.
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