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Abstract

Missense variants are present amongst the healthy population, but some of them are

causative of human diseases. A classification of variants associated with “healthy” or

“diseased” states is therefore not always straightforward. AAU : PleaseconfirmthattheedittothesentenceAdeeperunderstandingofthenatureofmissensevariantsin:::iscorrect; andamendifnecessary:deeper understanding of the

nature of missense variants in health and disease, the cellular processes they may affect,

and the general molecular principles which underlie these differences is essential to offer

mechanistic explanations of the true impact of pathogenic variants. Here, we have formal-

ised a statistical framework which enables robust probabilistic quantification of variant

enrichment across full-length proteins, their domains, and 3D structure-defined regions.

Using this framework, we validate and extend previously reported trends of variant enrich-

ment in different protein structural regions (surface/core/interface). ByAU : PleaseconfirmthattheedittothesentenceByexaminingtheassociationofvariantenrichmentwithavailablefunctional:::iscorrect; andamendifnecessary:examining the

association of variant enrichment with available functional pathways and transcriptomic

and proteomic (protein half-life, thermal stability, abundance) data, we have mined a rich

set of molecular features which distinguish between pathogenic and population variants:

Pathogenic variants mainly affect proteins involved in cell proliferation and nucleotide

processing and are enriched in more abundant proteins. Additionally, rare population vari-

ants display features closer to common than pathogenic variants. We validate the associ-

ation between these molecular features and variant pathogenicity by comparing against

existing in silico variant impact annotations. This study provides molecular details into

how different proteins exhibit resilience and/or sensitivity towards missense variants and

provides the rationale to prioritise variant-enriched proteins and protein domains for ther-

apeutic targeting and development. The ZoomVar database, which we created for this

study, is available at fraternalilab.kcl.ac.uk/ZoomVar. It allows users to programmatically

annotate missense variants with protein structural information and to calculate variant

enrichment in different protein structural regions.
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IntroductionAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
The genomic revolution has brought about large advances in the identification of disease-asso-

ciated variants. However, despite the recent explosion of genetic data, the problem of “missing

heritability” still persists [1], where the genetic component of a phenotype remains poorly

identified. For some variants, a causal link to the disease in question is difficult to establish,

e.g., variants with low penetrance and/or those with higher penetrance which are unique to

single/few individuals, such as de novo variants implicated in developmental disorders [2].

Compensated pathogenic mutations represent another such case, where the pathogenic effects

of a mutation are negated by another variant [3]. Difficult cases also arise in the analysis of

somatic cancer variants, where driver mutations can be challenging to segregate from passen-

ger mutations; moreover, this classification may vary from case to case [4]. These variants pose

challenges to the detection of disease association using existing statistical methods. In head-to-

head comparisons against large-scale saturation mutagenesis screens, where mutational impact

could be measured in vitro, current predictive methods were shown to be limited in accuracy

[5,6]. MAU : Anabbreviationlisthasbeencompiledforthoseusedinthetext:Pleaseverifythatallentriesarecorrect:oreover, the majority of in silico methods focused primarily on detecting differences

between disease-associated and common variants, thus it has been suggested that these meth-

ods do not perform so well when distinguishing rare neutral variants from those which are

pathogenic [7]. The boundary separating disease-causing from neutral variants can be fluid:

for example, a number of missense variants thought to lead to severe mendelianAU : PerPLOSstyle; eponymicderivativeslikeMendelianshouldbelowercaseandshouldbechangedtomendelian:Therefore; uppercaseMendelianhasbeenchangedtolowercasemendelianinthesentenceTheboundaryseparatingdisease � causingfromneutralvariantscanbe:::childhood dis-

ease were identified in nominally healthy individuals in the ExAC database [8].

In silico variant impact prediction methods often fall short at explaining the mechanisms

which lead to the true biological impact of a given missense variant, which depends on the pro-

tein—and position within the protein—to which a missense variant localises. With measure-

ments of the abundance of transcripts and proteins across tissues and cellular states becoming

more widely available [9,10], attempts to map consequences of variants on gene/protein

expression have quickly emerged [9,11]; however, the use of transcript/protein abundance in

understanding the distribution of variants is underexplored. The abundance and stability of

transcripts and proteins conceivably constrains the amount of variations tolerable to the given

gene/protein [12,13]; however, this has not been explored systematically using new, large data-

sets (e.g., [10,14,15]).

A large-scale analysis which surveys the distribution of variants across proteins with differ-

ent proteomics profiles, as well as regions within proteins defined using annotations such as

protein disorder and solvent accessibility, is essential to derive molecular principles and rules

which dictate the pathogenicity of a given variant. However, the exploration of these molecular

features in the context of variant annotation has often been limited to individual pathways and

specific sets of proteins. For example, certain protein subsets have been used as controls to vali-

date variant impact prediction tools, e.g., olfactory receptors are a control case absent of dis-

ease-causing variants [7,16]; the enrichment and depletion of variants in cancer driver genes,

specifically within protein interfaces [17], as well as protein regions defined by solvent accessi-

bility [18,19], have also been extensively investigated. Only a small number of studies have

attempted to compare the distributions of selected datasets of pathogenic and nonpathogenic

variants [20,21,22], but these focused on specific protein features, and none used a unified

approach to consider multiway comparisons between pathogenic variants and those with dif-

ferent frequencies within the population. WhileAU : PleaseconfirmthattheeditstothesentenceWhilesmaller � scaledstudieshaveprovidedtoolsandmethodsto:::arecorrect; andamendifnecessary:smaller-scaled studies have provided tools and

methods to explore variant distributions across proteins, to our knowledge, a systematic

approach which achieves the following is yet to exist: (1) compares comprehensive sets of path-

ogenic and nonpathogenic variants; (2) considers a wide range of features such as protein

structure, pathways and measurements of transcripts, and protein abundances; and (3) utilises
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robust statistical methods which take into account the substantial differences in protein size

and data coverage (e.g., systematic biases in availability of crystal structures). Methods which

address these concerns are in great need to decipher molecular principles which underlie vari-

ant pathogenicity.

Here, we present a detailed analysis of different classes of missense variants, including

germline disease variants, somatic cancer variants (both “driver” and “passenger” variants

with varying effects on tumour progression), as well as population variants of different fre-

quencies, in the quest to extract the governing principles of variant pathogenicity. We rely on

the synergy between utilising 2 types of data: First, we place emphasis on mapping the localisa-

tion of variants on protein structures, taking into account their positions in the protein fold, as

well as their proximity to functional sites (e.g., posttranslational modifications (PTMs)

[20,21,23–26]. Such protein structural information has been shown to be effective in uncover-

ing the impact of variants at the molecular level [27]. In the field of cancer research, protein

structure-based methods have been used to successfully predict cancer driver genes, as vali-

dated by a recent large-scale study by Bailey and colleagues [28]. Second, we also make use of

recently available large-scale proteomic measurements, including protein abundance [10],

half-life [15], thermal stability [14], and transcriptomics data [9], to uncover biophysical and

biochemical principles governing the impact of variants. Our analyses highlight a striking dif-

ference in the enrichment of pathogenic and population variants, which depends upon their

localisation to protein domains and structural features. This integrative analysis provides

molecular details into how resilience and sensitivity to missense variants are manifested in dif-

ferent proteins and functional pathways. We have created the ZoomVar database

(fraternalilab.kcl.ac.uk/ZoomVar), which holds the data generated in this analysis. ZoomVar is

designed for large-scale programmatic structural annotation of missense variants and calcula-

tion of the enrichment of missense variants in different protein structural regions. Compre-

hensive mapping of structural localisation of variants could inform the development of

therapeutic interventions, e.g., structure-based drug design and/or drug repurposing [29].

More generally, the wealth of features that separates missense variants in health and disease

could contribute to charting the biophysical rules which govern missense variant impact.

Results

A detailed protein-centric anatomy of variant enrichment across scales

We present a multifactorial analysis of missense variants observed in the general population

(gnomAD database) [30], in comparison to somatic cancer-associated missense variants from

the COSMIC database [31] and disease-associated missense variants from the ClinVar data-

base [32]. Throughout this analysis, we further divide the gnomAD data by their minor allele

frequencies (MAF) into common and rare variants, to investigate whether there are differences

between these 2 subsets. We also considered all variants in a continuum of pathogenicity by

ranking them using in silico variant impact predictions and evaluate features which are associ-

ated with such pathogenicity measures. A summary of the numbers of missense variants inves-

tigated is given in Table 1, and a more detailed breakdown is given in S1 Data.

Defining the protein anatomy

We compare pathogenic and population variants in terms of their associations with specific

features across the molecular scale, in a framework we call “protein anatomy,” where we

partition the human proteome in different ways. ThisAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif proteins; domains; anddomain � typeinthesentenceThisincludestheconsiderationofindividualproteinsðforexample; investigating:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:includes the consideration of individ-

ual “proteins” (for example, investigating the enrichment of missense variants in the epider-

mal growth factor receptor [EGFR] protein), specific constituent “domains” of proteins
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(e.g., the EGFR tyrosine kinase domain), or generally for all instances of a “domain-type”

(e.g., all tyrosine kinase domains) found in the human proteome. These AU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif }levels}inthesentenceThesearereferredtoasthelevelsofproteinanatomy:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:are referred to as

the “levels” of protein anatomy (Fig 1A). ForAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif }regions}inthesentenceForeachlevel;weanalysevariantenrichmentinfull � length:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:each level, we analyse variant enrichment in

full-length entities (i.e., protein/domain/domain-type, dependent on the level of interest)

and also various constituent “regions” defined using different criteria (Fig 1B and 1C).

These include protein structural information (partitioning into surface, core, and interact-

ing interfaces), protein disorder predictions (segregating into ordered and disordered

regions, within or outside of Pfam domains), and vicinity to functional sites such as phos-

phorylation and ubiquitination sites. We explore the interplay of “microscopic,” atomistic

protein structural features, and large-scale, “macroscopic” features like functional pathways,

as well as the various proteomics features collated (see Materials and methods and below),

in terms of understanding the distributions of pathogenic and nonpathogenic missense var-

iants over these features.

Evaluating variant enrichment

To quantify missense variant enrichment, we employ a similar approach to that used in the

prediction of cancer driver genes [17]: Variant enrichment has been modelled as the assign-

ment of an observed number of variants into different levels and regions of the protein anat-

omy. Based on the size (in terms of the number of amino acids) of the entity of interest, we

calculated the probability of observing the given number of variants localised to this entity.

This quantified the likelihood of observing the given amount of variants over the null scenario

where no bias towards localising to any entities were expected, while also taking the size of the

region/protein/domain into account. Using the binomial distribution (Materials and methods,

Eq 1), this probabilistic calculation yielded a Variant Enrichment Score (VES), ranging from 0

to 1 (Figs 1D and S1 and S2; also see Materials and methods), allowing for intuitive interpreta-

tion. For details, please read S1 Text. We also quantified the robustness of such quantification

of variant enrichment: The significance of the enrichment/depletion of missense variants, in

terms of their density, is assessed by comparison to simulated null distributions, in which the

number of missense variants is kept identical to that observed in the data, but their positions

within the protein are randomised. This goes beyond similar studies (e.g., [20,21,26]) and

addresses biases which could result from the selective focus in molecular studies of disease-

related proteins.

Table 1. Numbers of missense variants which localise to different levels and regions of protein anatomy. Data are listed for each of gnomAD, COSMIC, and ClinVar

datasets. Here, “common” and “rare” variants are subset of gnomAD defined using the minor allele frequency (MAF) cutoff of 0.01, below which variants are classified as

“rare.” This definition is used throughout this work except for the analysis on varying the “rarity” of variants (see main text). Note that the full-length domain-type statistics

are omitted here, as by definition they will be identical to the “full-length domain” row. Fig 1B illustrates the definition of regions listed here in the first column.

Common Rare COSMIC ClinVar

full-length protein 54,571 3,806,698 1,731,030 21,272

full-length domain 23,634 1,772,768 852,597 15,831

surf 12,151 966,409 491,179 8,558

interact 403 38,108 22,205 768

core 2,789 296,291 152,356 5,194

intra-ord 20,650 1,575,286 755,683 14,620

intra-dis 2,984 197,482 96,914 1,211

inter-dis 17,352 1,045,997 439,437 1,128

phos 1,661 158,192 82,364 2,362

ubiq 440 52,250 25,778 607

https://doi.org/10.1371/journal.pbio.3001207.t001
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Validating VES calculation

We first applied the method of VES calculation and examined known cases of variant enrich-

ment. By examining a curated list of oncogenes and tumour suppressor genes (TSGs) [33] in

Fig 1. Variant enrichment crossing scales of protein anatomy. (A) Levels of the protein anatomy. At the protein/domain level, the number of missense

variants in a protein or domain is compared to the number of missense variants in the whole dataset which localise to defined proteins/domains. At the

domain-type level, the number of missense variants in a particular Pfam defined domain-type is compared to the total number of missense variants which

localise to any Pfam domain-type. These calculations are referred to as the “full-length” protein/domain/domain-type variant enrichment in this manuscript, in

contrast with the calculations at regions of protein anatomy defined next. (B) Regions of the protein anatomy. We considered different levels of definition of

protein regions, including (i) regions close to functional (phosphorylation/ubiquitination) sites; (ii) structural regions (core, surface [surf], and interface

[interact]) of a protein; and (iii) regions predicted to be ordered or disordered which lie either within or outside of Pfam-defined domains. (C) Lists of regions

considered at each level of the protein anatomy in this study. (D) The calculation of enrichment at the different levels is statistically assessed using the binomial

distribution. The binomial cumulative distributive function constitutes a VES with value range 0 to 1, which quantifies enrichment. (E) Enrichment of

COSMIC missense variants in protein core, surface, and interface regions, across a list of annotated oncogene (orange annotations next to the dendrogram)

and TSG (blue) products. Size of points denote the level of statistical significance for the calculated VES. The genes were grouped into 2 clusters using

hierarchical clustering over the VES statistics (clusters highlighted by grey rectangles; also see dendrogram); the number of oncogenes and TSGs in each cluster

is noted. VES statistics can be readily browsed on the online ZoomVar web application. CDFAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 7and9:Pleaseverifythatallentriesarecorrect:, cumulative distributive function; EGFR, epidermal growth factor

receptor; TSG, tumour suppressor gene; VES, Variant Enrichment Score.

https://doi.org/10.1371/journal.pbio.3001207.g001
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the COSMIC dataset, we found, in agreement with others [25,26,34], that these proteins could

be classified into 2 groups by considering their patterns of variant distribution, one comprising

proteins enriched in mutations mainly at interaction interfaces and surfaces, and another

group in the core (Fig 1E). Some proteins in the latter group also show enrichment in interact-

ing interfaces, but a clear depletion of mutations at the surface is evident. The segregation of

these 2 groups in terms of cancer driver status has strong statistical support (Fisher exact test

p-value = 0.0042): The first group of proteins is mainly (17 out of 24) composed of oncogenes,

and the other mainly of TSGs (17 out of 25). These results are consistent with the hypotheses

that activating mutations in oncogenes are likely to affect particular functions by perturbing

specific interactions, while inactivating mutations in TSGs abrogate protein function [26,34].

This validates the ability of our VES formula to recapitulate known variant-enriched and

depleted cases.

Robust statistical quantification confirms and extends variant enrichment

patterns in large variant datasets

We reasoned that with the statistical framework we established, as well as the large variant

datasets at hand, we could give robust quantification of the enrichment of variants in health

and disease. While some trends of variant enrichment have been previously discussed [17–22],

our method enables a unique probabilistic evaluation of these patterns in a uniform manner

over ClinVar, COSMIC, and gnomAD datasets.

Population and disease-associated variants localise to different protein

regions

We first analysed the trends in the enrichment of variants in different regions of the protein

anatomy, defined using structural information, order and disorder, and the vicinity

(distance� 8 A�˘ ) of the variant positions to PTMs (see above).

The following findings are highlighted:

Different structural localisation of pathogenic versus population missense variants.

We find ClinVar variants to be enriched in both protein cores and interfaces but depleted on

protein surfaces (Figs 2A–2C and S3). This reflects the potential disruption, caused by such

mutations, of structurally and functionally important sites [20,21,25]. The enrichment of Clin-

Var variants is further demonstrated by their tendency to affect residues which are highly con-

nected when considering network representations of protein structures (see S3 Text).

GnomAD variants (both common and rare) and somatic variants falling outside of cancer-

related genes display the opposite trend, as variants tend to localise preferentially to protein

surfaces, and are therefore less likely to impact on protein structure and function than either

core or interface mutations. Somatic variants in cancer genes follow trends closer to ClinVar

variants, with slight, but significant, depletion on the surface, but enrichment in the core. Pro-

tein interfaces are enriched in disease-associated variants but depleted of gnomAD rare vari-

ants. GnomAD common variants appear neither significantly enriched nor depleted; however,

this may result from the relative sparsity and high dispersion of the data (fewer variants are

shared between many individuals; see Table 1). Interestingly, COSMIC noncancer gene vari-

ants appear depleted in interacting interfaces. However, it becomes clear that they are actually

significantly enriched when compared to simulated null distributions (see S3 Fig) and that this

enrichment is due to a small subset of proteins which harbour a large number of variants at

interface regions. Genes in which these variants reside may be putative driver genes (see S4

Data), as a number of known driver genes are enriched in variants in protein interface regions

PLOS BIOLOGY Variants in health and disease
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[17,26,28], and this phenomenon has been exploited by Porta-Pardo and colleagues [17] to

identify cancer driver genes.

Pathogenic variants tend to localise to ordered regions within domains. For variant

enrichment in ordered and disordered regions, we again observe clear segregation between

disease and population variants (Fig 2D–2F). ClinVar and COSMIC variants are depleted in

inter-domain disordered regions and enriched in intra-domain ordered regions. In contrast,

Fig 2. The localisation of variants to protein regions. (A–C) The density of mutations in different protein regions, calculated using Eq 1. Density values (ω)

were log-transformed such that negative values indicate a depletion of missense variants, while positive values indicate enrichment. Error bars depict 95%

confidence intervals obtained from bootstrapping. Significance was calculated by comparison to simulated missense variant distributions (significance level

indicated by: � q-value< 0.05, �� q-value< 0.001, ��� q-value< 0.0001). Note here the COSMIC set is split into cancer genes (i.e., mutations mapping to

proteins found in the COSMIC CGC) and noncancer gene subsets. Data are shown for protein surface (surf, panel A), interacting interface (interact, B),

and core (C). (D–F) Density of mutations analogous to panels (A–C) but in regions defined by order and disorder. Data are shown here for intra-domain

ordered (intra-ord, panel D), intra-domain disordered (intra-dis, E), and inter-domain disordered (inter-dis, F) regions. See S2 Data for the

underlying data. CGC, Cancer Gene Census.

https://doi.org/10.1371/journal.pbio.3001207.g002
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gnomAD variants (both rare and common) appear enriched in inter-domain disordered

regions and depleted in intra-domain ordered regions. These results suggest, as one would

intuitively expect, that variants are more likely to be pathogenic if they fall within ordered

domain regions.

Pathogenic variants are close to phosphorylation sites. When proximity to PTMs is

considered (S3 Fig), ClinVar variants appear enriched in terms of the density of missense vari-

ants close to phosphorylation sites but not significantly so in comparison to the simulated null

background; this may be again due to data sparsity, as suggested by large bootstrapped confi-

dence intervals (S3 Fig). COSMIC cancer gene variants are also close to phosphorylation sites;

however, COSMIC noncancer gene variants, which appear depleted in terms of variant den-

sity, are also significantly enriched close to phosphorylation sites in comparison to simulated

null distributions (S3 Fig). This indicates that, in agreement with a number of other studies

[35,36], the disruption of phosphorylation sites may play a particularly important role in can-

cer. In contrast to phosphorylation sites, all datasets appear depleted of variants close to ubi-

quitination sites (S3 Fig).

These analyses conclude that the enrichment of missense variants at various structural fea-

tures consistently segregate population variants from disease-associated ones. For the majority

of structural regions defined here, the greatest, most consistent distinction is always seen

between common and ClinVar variants, provided that the data are not too sparse. We also

observed different patterns of pathway enrichment for variants in surfaces, cores, and inter-

faces (see S3 Text).

Towards a domain-centric landscape of variant enrichment

We now proceed from the protein level to examine variant enrichment across domain-types.

Agglomerating missense variants at the domain-type level has the advantage of enhancing the

statistical power to detect variant enrichment in terms of different protein structural features

([37] and references therein). Here, in contrast to previous studies which focus on variants

clustered in sequence or structure space [22,37,38], we survey the landscape of variant enrich-

ment across domain-types and compare the patterns of enrichment of variants from the differ-

ent health and disease datasets which we have examined above. We focus our discussion on

the most variant-enriched domain-types from each of the 4 variant sets. A comprehensive list

comprising the union of the top 20 enriched domain-types for each dataset can be found in S4

Fig. Fig 3 shows some selected examples of this list; the missense variant enrichment at the

full-length domain-type level (Fig 3A) and in each structural regions (Fig 3B) are depicted.

Here, domain-types which are enriched in variants only in the COSMIC and ClinVar datasets

can be seen, including known drug targets such as tyrosine kinase (Pkinase_Tyr) and ion

channel (Ion_trans) domain-types. A handful of domain-types, which are only enriched in

COSMIC variants, include Cadherin_tail and Laminin_G_2 (Fig 3A), both of which play an

important role in cancer [39,40].

Some domain-types (e.g., Serpin, UDPGT, Collagen, and EGF_CA) contain variants from

all 4 datasets. In such domains, it is likely that the precise structural localisation of a variant

determines whether it plays a pathogenic role. Intriguingly, a few domain-types, such as NPIP

(Nuclear pore complex interacting protein) and NUT (Nuclear Testis protein) appear only

enriched in common variants (Fig 3A). This could suggest that these domains take part in

functions for which it is desirable to maintain diversity within a population; however, little is

known about either domain-type (Pfam accessions PF06409; PF12881). Therefore, this further

highlights the bias in the number of studies targeting domains associated with disease, rather

than those enriched in population variants.
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It also becomes apparent that the global trends in variant localisation to the core, surface,

and interface regions observed above are recapitulated here (Fig 3B) for those domain-types

with structural coverage. The majority of domains are enriched in gnomAD (rare and com-

mon) variants at the surface but ClinVar variants at the core. For COSMIC, the patterns of

localisation are more mixed, but it is clear that in comparison to the gnomAD sets, a larger

proportion of domain-types are enriched in COSMIC variants at the core or interface. These

include domain-types with known cancer driver associations, such as the P53 and VHL

domains [41]. Case studies on CATH architectures [42] and DNA-binding domains further

highlight our observed patterns of variant enrichment (see S3 Text).

We also explored how the targeting of domains by drugs and small molecules mapped to

the observed landscape of variant enrichment. Using DrugBank [43] data, we observe that the

targeting of domain-types by existing drugs is highly biased towards a small number of

domain-types (Fig 3C), such as G protein-coupled receptors (GPCRAU : PleasenotethatGPCRshasbeendefinedasGprotein � coupledreceptorsinitsfirstmentioninthesentenceUsingDrugBank½43�data;weobservethatthetargetingof :::Pleasecorrectifnecessary:s) and tyrosine kinase, as

already extensively pointed out [44]. Indeed, we observe a large number of drugs targeting pro-

teins containing 7tm (GPCR) domains. These domains are enriched in variants from the gno-

mAD and COSMIC database but are devoid of disease-associated ClinVar variants (Fig 3A).

By analysing drug availability together with variant enrichment, this approach allows for more

informed decisions in selecting new therapeutic targets. For example, there are domain-types

Fig 3. A domain-centric landscape of variant enrichment. Here, selected domain-types discussed in the main text are depicted. (A) VES at the full-length

domain-type level. Bubble sizes are scaled by the adjusted p-value of the VES statistic. (B) VES calculated for each structural region (surface [surf], interacting

interface [interact], and core) for the selected domain-types. (C) The number of drugs known to target proteins containing each domain-type is depicted as

a bar graph. See S2 Data for the underlying data. NPIP, Nuclear pore complex interacting protein; NUT, Nuclear Testis protein; VES, Variant Enrichment

Score.

https://doi.org/10.1371/journal.pbio.3001207.g003
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which could be targeted by few or no drugs but are enriched in COSMIC and/or ClinVar vari-

ants. This could offer a starting point to prioritise drug discovery efforts for these domain-

types. For domain-types already targetable by drugs, our analysis highlights domains to which

multiple disease-associated variants localise, which could give scope for drug repurposing or

redesign (see Discussion).

Put together, our statistical method gives probabilistic assessment of variant enrichment

and yields robust quantification of these patterns across different protein and domain regions.

This enables extending previously described trends of enrichment to large variant datasets and

generating insights into variant enrichment in protein domains.

Functional and proteomics features distinguish variants in health and

disease

We next asked whether our statistical framework could generate new insights into the relation-

ship between missense variants and other biological features. While databases of functional

annotation and measurements of transcript/protein abundance and stability are rapidly

expanding, these features have been previously underexplored in the annotation of missense

variants. Here, the VES framework provides metrics which could be readily explored in terms

of their association with these features.

Disease-associated and population variants affect different functional

pathways

We investigated whether variants from each dataset localise to proteins which are involved in

distinct functional pathways. To do this, we performed Gene Set Enrichment Analysis (GSEA)

[45] on lists of proteins ranked using their whole-protein VESs (Fig 4A) calculated for each

dataset. The pathway enrichment scores were then subjected to clustering and Principal Com-

ponent Analysis (PCA) (see Materials and methods). As shown in Fig 4B, variant enrichment

segregates pathways into 3 clusters. Strikingly, each pathway cluster appears to have distinct

characteristics (see Fig 4C–4E for the pathway terms belonging to each cluster). The cluster

visualised in orange is primarily composed of terms associated with cancer, growth, and prolif-

eration, whereas that coloured in pink contains pathways associated with splicing, transcrip-

tion, translation, and metabolic terms. Pathways associated with sensory perception and the

immune response are found in the “green” cluster. A handful of metabolic pathways also local-

ise to this cluster; however, these appear to be more associated with environmental response

and adaptation than those pathways found in the “pink” cluster; for example, pathways associ-

ated with the metabolism of drugs and xenobiotics are found here. For brevity, the “orange,”

“pink,” and “green” clusters will be termed the “proliferation,” “nucleotide processing,” and

“response” clusters, respectively, for the remainder of this text. A list of pathways assigned to

each cluster is given in S7 Data.

Strikingly, this visualisation reveals that population variant datasets (gnomAD rare and

common) are clearly separated from the disease-associated variants by the first principal com-

ponent (PC1) (Fig 4B). Additionally, COSMIC variants are separated from ClinVar variants

along the third principal component (PC3) (S5 Fig). Closer inspection of the pathway enrich-

ment data for the top (most unique) pathways in each cluster reveals a distinction in terms of

the functions that different variant datasets implicate (Fig 4C–4E). “Response” pathways

appear to be enriched in variants in all 4 datasets, while “proliferation” pathways are consis-

tently enriched in COSMIC variants alongside enrichment in ClinVar variants in a subset of

these pathways. Enrichment in ClinVar variants is apparent for specific “nucleotide process-

ing” functions, e.g., ribosomes.
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Fig 4. Pathway clusters defined according to protein-wise variant enrichment. (A) Schematic of GSEA. GSEA was

performed over lists of proteins ranked by VES; here, enrichment over a pathway X for COSMIC variants were

illustrated. The process was repeated over all KEGG pathways and the resulting NES matrix was subject to PCA and

clustering analyses. (B) At the whole protein level, KEGG pathways form 3 clusters (k-means), here visualised as

projected onto the first 2 principal components of the PCA. Pathway enrichment patterns are clearly distinct between

COSMIC, ClinVar, and gnomAD (rare/common) data, as evidenced by the visualisation of factor loadings (arrows).

See S5 Fig for projection onto 3 principal components. (C–E) Pathway terms visualised for the “proliferation” (C),

“nucleotide processing” (D), and “response” (E) clusters, and sized by their cluster uniqueness score. The latter is

defined as the average of the Euclidean distances to the two other cluster centres. For the top 5 unique pathway terms

for each cluster, their pathway enrichment scores calculated with the 4 variant sets are also visualised in a heatmap. S7

Data contains the full list of KEGG terms mapped to these clusters. See S6 Data for the enrichment scores. GSEA, Gene

Set Enrichment Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; NES, normalised enrichment score;

PCA, Principal Component Analysis; VES, Variant Enrichment Score.

https://doi.org/10.1371/journal.pbio.3001207.g004
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Proteomics and transcriptomics features are associated with variant

localisation

Proteins, of course, do not function in isolation but in the crowded environment of the cell

[46]. Therefore, the properties of proteins in cells, including their quantities, turnover rates,

and thermal stability, can crucially affect the fitness of a protein to perform its function. Here,

we ask if variant enrichments are associated with these proteomics features. We have made use

of large-scale proteomics data, including protein abundance data for various organs from

PaxDb [10], proteomics surveys of protein half-lives and thermal stability [14,15], together

with transcriptomics data (GTEx database [9]), to explore relationships between these features

and variant localisation.

We first compared the thermal stability and abundance of proteins enriched in each class

of variants. This comparison demonstrates that for proteins affected by ClinVar variants,

their wild-types tend to be more stable and abundant in comparison to those proteins

enriched with gnomAD variants (S6 Fig). Extending to the entire proteome, the protein-

wise VES of disease-associated variants displays positive correlations with protein abun-

dance, expression, half-life, and thermal stability, whereas population variants exhibit the

opposite trend (Figs 5A and 5B and S7–S9). However, zooming into the enrichment of vari-

ants in the core of protein structures, we found that in comparison to all regions of proteins

with resolved structure, proteins more enriched in ClinVar variants in the core tend to be

less abundant and less stable, whereas the contrary is true for rare population variants (Fig

5). Thus, our results indicate 2 competing trends for disease-associated variants: (i) disease-

associated variants tend to localise to more abundant and stable proteins, which may sug-

gest that these proteins are more sensitive to perturbation by variants; (ii) disease-associated

variants in protein cores tend to localise to less stable proteins, which is consistent with the

idea that such proteins might be more easily destabilised to a degree at which function is

deleteriously impacted (see Discussion). gnomAD common data also show negative correla-

tions with protein stability, for variants occurring at the core; this could potentially support

the argument presented by Mahlich and colleagues [47] that common variants could affect

molecular function more than rare variants. However, we believe this is more likely to be

due to the fact that very few common variants localise to protein cores, as shown in Fig 2B,

resulting in sparse statistics (i.e., the correlation is calculated over VESs which are already

very low). Analogous correlations for variant enrichments at protein surfaces display oppo-

site trends to those observed at the protein cores (see S7 Fig). Due to the relative sparsity of

variants which map to protein interfaces, we believe it is difficult to draw robust conclusions

from any trends observed for correlations of proteomics data with variant enrichment at

protein–protein interaction sites.

We highlight two more observations in terms of the interplay between proteomics features.

First, the various proteomics features examined here are interdependent. Protein abundance

and thermal stability are significantly correlated with one another (see S11 Data), in agreement

with the work of Leuenberger and colleagues [48]. Moreover, thermal stability is correlated

with the density of the protein core (see S3 Text and S10 Fig), albeit with a low correlation

coefficient. The correlation values displayed in Fig 5 are also typically of a weak effect. There-

fore, the interplay between variant enrichment and proteomics features appear multifaceted

and complex. Secondly, in the analysis of protein abundance, the trends observed with variant

enrichment at both full-length proteins and specifically the protein core are less pronounced

for cell line data and break down for extracellular fluids (saliva and urine, Fig 5B). The correla-

tion is most evident for tissues containing long-lived cell-types, such as the brain, ovary, and

testis. Transcriptomics data (S8 Fig) again reinforce this picture, albeit with less contrast
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between datasets (particularly at the protein core). This brings finer granularity into assessing

the impact of variants in different organs and contexts.

We finally ask whether correlations with these proteomic and transcriptomic features could

be associated with the specific functional roles of the involved proteins. For the majority of

proteomic and transcriptomic features, no clear associations with the functional clusters iden-

tified in Fig 4 can be detected (see S11–S14 Figs). An exception to this is protein thermal stabil-

ity: Pathways which belong to the “proliferation” cluster are clearly enriched in proteins of

Fig 5. The protein-wise enrichment of missense variants in comparison to protein abundance, expression, and stability. Spearman correlations for

missense variant enrichment (quantified as VESs) at the full-length protein and the core with (A) protein stability in terms of melting temperature (Tm, ˚C)

and (B) protein abundance (ppm) are depicted here. For (A), the Tm data was taken from epmid26379230, in which 2 measurements of Tm in the absence of

any drug treatment were available; both measurements are considered and are denoted datasets “1” and “2” in the plot. For (B), only data from selected tissue

types are listed. See S7 Fig for the complete list. S9 Data contains the underlying data. (C) Functional enrichment of proteins in KEGG pathways according to

Tm. The NES for each pathway is shown on the vertical axis. KEGG pathways are listed on the horizontal axis and grouped to the 3 clusters as defined in Fig 4.

See S11 Fig for a complete list of pathways depicted here. S10 Data contains the underlying data. KEGG, Kyoto Encyclopedia of Genes and Genomes; NES,

Normalised Enrichment Score; Tm, melting temperature; VES, Variant Enrichment Score.

https://doi.org/10.1371/journal.pbio.3001207.g005
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lower stability than the other 2 clusters (Fig 5C). This suggests that proliferation-related pro-

teins may be vulnerable to disruption by mutations which localise to their already unstable

cores. Taken together, these analyses provide fine molecular details into defining both the

resilience towards variants, and the sensitivity towards variants, for a given protein (see Dis-

cussion). Moreover, the association of variant enrichment with features such as abundance

and stability is indicative of the condition (disease/health) associated with the variants.

Probing the spectrum of variant pathogenicity using protein features

TheAU : PleaseconfirmthattheedittothesentenceTheanalysesaboveextractmolecularfeatureswhichdistinguishbetweenClinVar:::iscorrect; andamendifnecessary:analyses above extract molecular features which distinguish between ClinVar, COSMIC,

and gnomAD common and rare variants. While we successfully segregate common and dis-

ease-associated variants using pathway, structural, and proteomics features, variant impact is a

continuum [49] ranging from benign to very damaging towards protein function. Instead of

grouping variants by the databases from which they are collected and comparing these dispa-

rate variant subsets, we therefore ask whether the protein features discovered above could dis-

tinguish variant impact across a continuous spectrum, thereby validating the utility of these

features in segregating missense variants.

Rare variants are similar to common variants

We first vary the criteria with which to define rarity of variants in the gnomAD set, to examine

whether extremely rare variants would show characteristics akin to disease-associated variants.

Fig 6 demonstrates that rare variants are more similar to common variants, both in terms of

the functional pathways they affect and in terms of the protein regions they localise to (core,

surface, and interface, order and disorder). If more stringent MAF thresholds are used to

define rare variants, their properties move towards those of disease-associated variants but still

remain closest to those of common variants (Figs 6 and S15). A visible separation between

common and rare variants, especially in the pathway analysis, can only be seen if an extreme

MAF cutoff (<0.00001) is used. This reinforces the boundary between population and disease-

associated variants and supports the distinction in terms of molecular characteristics associ-

ated with rare population variants and disease-associated variants.

Variant impact predictors validate structural and proteomics features

The segregation of variants into disease (ClinVar, COSMIC) and healthy (gnomAD) subsets

could not capture the continuous variation in their molecular impact. We therefore seek to

examine the association of the protein features we have discussed above, with orthogonal mea-

sures which treat, as a continuous variable, the impact of variants pooled from all the datasets.

If such association persists, this suggests that the features described above do indeed have seg-

regating power to identify pathogenic variants from polymorphisms which carry little impact

on biological function. We pooled all analysed variants together (Fig 7A) and rank them by 2

in silico variant impact predictors, REVEL [7] and CADD [16]. Based on the scores provided

by these predictors, we proceeded to compare “tolerable” and “damaging” variants labelled by

these predictions in terms of the features we discussed above. The majority of ClinVar variants

were classified damaging (Fig 7B), whereas the majority of COSMIC and gnomAD variants

were deemed tolerable. Under our chosen cutoff (score = 20), CADD classifies a greater pro-

portion of variants as damaging (S16 Fig). We found that damaging variants are enriched in

protein cores and interacting interfaces while depleted in protein surfaces (Fig 7C), similar to

the ClinVar and COSMIC variants above (Fig 2). Tolerable variants show the opposite trends

which resemble that of the gnomAD variants. Similarly, protein stability and abundance also

segregate tolerable from damaging variants in the same way for ClinVar/COSMIC versus
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Fig 6. Rare variants are similar to common variants. (A–D) As for Fig 4B, but only the first 2 PCs are depicted, and,

in separated panels, increasingly stringent MAFs used to define rare variants. MAF cutoffs of 0.01 (panel A, data

identical to Fig 4B), 0.001 (B), 0.0001 (C), and 0.00001 (D) are considered here. See S6 Data for the underlying data.

(E–G) The localisation of rare variants to protein surface (E), interface (F), and core (G). Rare variants have been

defined using different MAF cutoffs as shown on the x-axes. Here, the density metrics (ω) were log-transformed such

that negative values indicate a depletion of missense variants, while positive values indicate enrichment. Results for the

observed variants (red bars), as well as the background levels based on simulated null distributions (cyan bars), are

shown. See S2 Data for the underlying data for the observed statistics. See S12 Data for statistics calculated for

individual realisations of the simulated null distribution. MAF, minor allele frequency; PCs, principal components.

https://doi.org/10.1371/journal.pbio.3001207.g006
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Fig 7. Orthogonal variant impact predictions validate structural and proteomics features. (A) Schematic of pooling variants and annotating variant impact.

(B) Breakdown of variant impact classified by REVEL in the variant datasets. For COSMIC variants in cancer genes, variants were segregated depending on

whether they are driver mutations (curated in IntoGen [50], version 2016.5). (C) The enrichment of tolerable and damaging variants in different protein

structural regions. Variants are annotated using REVEL. The bars represented the median density (ω, here taken logarithm such that negative values indicate

depletion and positive values indicate enrichment) of 1,000 bootstrapped samples, each a subset of 50,000 variants. The error bars represented 95% confidence

intervals from such bootstrapping. See S16 Fig for analogous results for CADD. (D–E) The correlation between VES calculated at the whole-protein level

(“whole”) and the protein core, with protein stability (panel D, melting temperature or Tm) and abundance (E). Identical to Fig 5 but with the “tolerable” and

“damaging” classification under REVEL score. See S17 and S18 Figs for data on CADD, and plots for all tissues represented in the abundance dataset. (F) The

enrichment of surface, core, and interacting interface over variants ranked by REVEL score. The enrichment score from the GSEA procedure was plotted here.

The absence of enrichment would result in a flat line at 0 (dashed black line). Curves represent data from 1 representative bootstrapped sample; the ribbons

indicate 95% bootstrapped confidence intervals. (G) Pathway enrichment analysis for tolerable and damaging variants as defined by REVEL, i.e., underlying

data identical to that of panels (B–D). Here, pathway enrichment scores were projected on 2 principal components analogous to Figs 4B and 6. Pathways were

categorised using the scheme defined in Fig 4B. See S19 Fig for analogous results for CADD. S13 Data contains underlying data for all panels of this figure.

GSEA, Gene Set Enrichment Analysis; Tm, melting temperature; VES, Variant Enrichment Score.

https://doi.org/10.1371/journal.pbio.3001207.g007
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gnomAD variants (Figs 7D–7E and S17 and S18): Damaging variants tend to localise to more

stable and more abundant proteins. However, such variants are more likely to be found in the

core of proteins which are less stable and less abundant. These distinctions described here are

also present if variants are binned using CADD scores (S17 and S18 Figs). These data indicate

that the molecular features that we discovered via comparing ClinVar, COSMIC, and gno-

mAD variants are independent from such crude labelling based on the databases from which

these variant data are collected. Rather, they are associated with variant impact, as assessed by

orthogonal measures independent from our approach.

While these data serve as validation of the features we have discovered, the comparisons

presented involve binning variants by their impact scores, which are based on arbitrarily

determined cutoffs. To address this, we treated these impact predictions as continuous vari-

ables, ranked all variants accordingly, and repeated this analysis. By means of a GSEA

approach which was also utilised above, we found that protein core and interface variants

are indeed enriched in damaging variants, significantly more than the protein surface (Fig

7F). This further demonstrates the validity of structural localisation as a reliable feature to

distinguish between tolerable and damaging variants. Finally, tolerable and damaging vari-

ants are also enriched indistinct functional pathways (Fig 7G). Some “response” pathways

tend to be associated with tolerable variants, while “proliferation” and “nucleotide process-

ing” pathways are more associated with damaging variants, analogous to the analysis on dis-

parate variant sets as we see previously in Fig 4. Taken together, using orthogonal variant

impact predictors, we validate that structural and proteomics features do indeed hold segre-

gating power for tolerable and damaging variants. This suggests the use of the features dis-

covered in our analyses above as a promising avenue to construct next-generation variant

impact predictors (see Discussion).

Discussion

Variants found in diseased and healthy populations are distributed across the proteome, each

exerting a varying impact on molecular function. A detailed analysis of the patterns of variant

localisation could help in understanding the functional constraints that different parts of the

genome experience and improve the interpretation of variant impact. Throughout this work,

we show that missense variants in the general population, considered nominally healthy, show

properties distinct from those in disease cohorts, from both macroscopic (“omics” features

and functional pathways) and microscopic (protein structural localisation) perspectives.

Importantly, these molecular properties are not dependent on arbitrary classification into

ClinVar, COSMIC, and gnomAD datasets, as we validated using orthogonal state-of-the-art

variant impact predictors (Fig 7). Additionally, we find that the properties of rare variants

remain close to those of common variants. These findings contrast with other observations

[47] which suggest that common variants have more impact on molecular function than rare

variants. In this study, only for a few proteomics properties, such as the thermal stability and

abundance of the affected proteins, common variants appear closer in character to disease-

associated variants than to rare variants. However, for these few properties, the results might

not be robust due to sparsity of the data. Rare genetic variations are abundant across individu-

als [51,52], with some predicted to confer a regulatory impact [53] or loss of function [54].

Alhuzimi and colleagues [55] suggest that the properties of genes enriched in rare population

variants are similar to those enriched in disease-associated variants and are thus good candi-

dates for discovering novel disease associations. Instead, we show that proteins enriched in

rare variants are, based on the associated functional pathways, most similar to those enriched

in common variants (Fig 6). Moreover, our results show that population variants implicate
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functions mainly associated with environmental response (Fig 4), in agreement with results

from evolutionary studies reviewed in [56].

We have dissected the extent of variant enrichment in diverse datasets and across different

protein regions (Fig 1). Whereas protein structural information has been utilised to annotate

genetic variants and prioritise impactful variants for further investigations, many of the pub-

lished methods focus on 3D-structural “hotspots,” prioritising variants which cluster in three-

dimensional space (e.g., in [22,37,38]). Here, we have adopted an alternative approach and

quantified enrichment of missense variants without the precondition of spatial clustering. This

provides an unbiased resource to map missense variants to protein structural data. The calcu-

lation of variant enrichment, as an additional layer of annotation, provides a unique link

between cataloguing sequence variants and understanding both their mechanistic and func-

tional effects. This supplies invaluable information to researchers studying specific proteins or

domains, or focusing on proteins involved in a particular function (e.g., DNA binding; S3

Text). By analysing the enrichment of variants in protein regions (core, surface, interface, dis-

order and order, PTM vicinity), we recapitulate trends observed by previous studies (e.g., in

the comparison of oncogenes and TSGs; Fig 1E) [20,21,25,26,34] but also shed light on the

debate as to whether somatic cancer variants are enriched in interface regions, by simulating

null distributions of variants (S3 Fig). These simulations show that it is essential to consider

that variants from different datasets are not uniformly and randomly distributed throughout

the proteome. A similar simulation-based approach was taken by Gress and colleagues [25],

but they found no significant enrichment for COSMIC variants in interface regions. While

they analysed a filtered set of mutations likely to play a driver role, we investigated all somatic

variants and addressed separately mutations that localise to defined cancer and noncancer

genes. Our analysis has of course been limited by the number of proteins with available struc-

tural data, despite enrichment with homologous structures. We are also still limited by the

structural coverage of protein interactions; although enough data exist to uncover broad

trends, our analyses of protein–protein interaction sites generally lacked statistical power.

Moreover, it is likely that a more detailed picture will emerge if different classes of protein

interactions (e.g., transient versus permanent interactions) could be probed systematically. We

envisage that the recent advances in cryo-electron microscopy [57], and the integration of

structural data derived by a variety of techniques [58], will further increase the structural cov-

erage of the protein–protein interaction network, enabling such finer-grained analyses in the

future.

Our analysis of probing the associations between missense variant enrichment and proteo-

mic features is, to the best of our knowledge, unprecedented, and has only been made possible

due to the recent release of large-scale proteomics data [10,14,15,48]. We observe correlations

which suggest an interplay between variant enrichment, protein abundance, and thermal sta-

bility (Fig 5). Together with functional pathways and structural localisation, we have identified

a set of features, based on which different parts of the proteome could be assessed for their ten-

dency to be enriched in disease-associated or population variants (Fig 8). Population variants

are enriched on protein surfaces but depleted in core and interacting sites, and tend to be

found in less abundant, less stable proteins. These features could potentially contribute to

“resilience” towards missense variants, by limiting the impact on proteins harbouring such

variants. On the other hand, disease-associated variants localise preferentially to proteins

which are highly expressed and abundant (Fig 8). However, when selectively looking at vari-

ants mapping to protein cores, which presumably could bring about the most dramatic impact

on fitness, disease-associated variants are actually associated with cores of less stable, less abun-

dant proteins (Fig 5). Such proteins are conceivably easier to inflict damage at the core

(although it is also possible that some of these proteins are not globular but are instead more
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extended in conformation, see below). The combination of these molecular features could also

suggest the likely selection pressure a protein could experience under different contexts. For

example, certain proteins, possibly further to the left of the spectrum presented in Fig 8, could

show a more extreme combination of molecular features compared to those proteins discussed

here to be enriched in disease-associated variants. These proteins are likely to be highly sensi-

tive towards variants, such that any of such variants would be lethal (Fig 8) and be eliminated

via selection; these lethal variants suffer from undersampling in the data analysed here. On the

other hand, some variants which localise to sensitive proteins may bring benefits to cell viabil-

ity; these variants could ascertain a role in driving cancers.

Our work highlights a set of rules which could explain the impact of variants. For instance,

one could be fairly confident that a variant can be disruptive if it localises to the core of an

abundant, stable protein. This type of variant annotation could be valuable to clinicians in

interpreting variants observable in any given patient. These rules correlate with impact predic-

tion scores offered by CADD and REVEL (Fig 7). Here, by annotating structural and proteo-

mics features to the proteins harbouring variants, we offer explanations of the possible

mechanisms through which a variant might confer its impact, enriching information provided

by variant impact scores which appears intuitive yet could imply vastly different molecular

underpinnings [16]. The detailed set of protein features we provide could also be harnessed for

more systematic improvement of variant impact interpretation. Firstly, the analysis concern-

ing protein stability suggests it is important to consider the baseline stability of the protein in

question when assessing the impact a variant could bring. A number of algorithms have used

the estimated change in protein stability upon mutation (ΔΔG) as a proxy for variant impact

[27]. Serahijos and colleagues [12] found that mutations in more stable proteins generally led

to greater destabilisation (ΔΔG variation). Based on this observation, they suggested that pro-

teins which have evolved to become more stable are in a state closer to their peak stability,

Fig 8. Summary of analyses. Here, we have explored patterns of structural localisation, abundance, and stability for

proteins enriched in disease-associated and population variants respectively. These molecular attributes determine the

resilience and sensitivity of the proteins towards missense variants (see Discussion).

https://doi.org/10.1371/journal.pbio.3001207.g008
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where any changes will result in strong destabilisation. Similarly, Pucci and Rooman [13] used

temperature-dependent statistical potentials to investigate the thermal stability of the structur-

ome (all proteins with resolved structure) and concluded that mutations in proteins which are

highly thermally stable lead to a larger decrease in thermal stability, compared with those in

less thermally stable proteins. We observe positive correlation between ClinVar variant enrich-

ment and thermal stability (Fig 5A), which lends support to these conclusions. However, we

also point out, by considering variants at the protein core, that a mutation in an already unsta-

ble protein is more likely to result in complete/partial unfolding under physiological condi-

tions. This is likely to be relevant to globular proteins, whereas for other types of proteins, e.g.,

intrinsically disordered proteins, function will be related less to the fold and the density of the

protein core. These factors should be brought into consideration when interpreting the impact

of missense variants.

Secondly, we show that the combination of protein structures, functional pathways, and

proteomics measurements has the potential to offer valuable mechanistic insights into the

properties of variants. For example, it can be clearly seen that population variants are most

enriched on protein surface (Fig 2) and take part in pathways belonging to the “proliferation”

cluster (Fig 4). Such pathways also appear to be enriched in proteins with less thermal stability

(Fig 5C), suggesting a possible mechanistic basis underlying the localisation of variants (vari-

ants tend to localise to the surface and avoid disrupting the core of these already unstable pro-

teins). This indicates that the combined use of such features may aid in both improving the

prediction of variant impact and in assessing the underlying molecular mechanisms.

Thirdly, our analysis highlights the tissue specificity of variant impact, in terms of the stabil-

ity and abundance of the altered protein. Our association analysis (Fig 5) of variant enrichment

with proteomics features complements a body of research which concludes that the rate of pro-

tein evolution correlates negatively with protein expression and abundance [59], the extent of

which has been found to be tissue specific; those tissues with a high neuron density demonstrat-

ing the highest anticorrelation [60]. Consistent with this, we found the largest negative correla-

tion for the protein-wise enrichment of rare variants, from the gnomAD dataset, with protein

abundance in the brain and, interestingly, also in the ovary and testis, which both harbour long-

lived germline progenitor cells (Figs 5B and S8). Purportedly, the life span of long-lived cells

renders them more sensitive to (and therefore necessitate protective strategies [61] against) the

toxicity of misfolded proteins. Our analysis highlights the importance of considering the under-

lying context, specific to the affected organ alongside with the abundance and stability levels of

the affected proteins, in assessing the potential impact a missense variant could pose.

Fourthly, the wealth of data presented here could have implications in the development of

therapeutic strategies. Rare population variants are known to be abundant in known drug tar-

gets, potentially modulating disease risk and drug response [62]. Here, we envisage that our

domain-centric landscape of variant enrichment (Fig 3), which includes the mapping of tar-

geted drugs, besides providing another feature for the characterisation of variants, will allow

for more informed decisions in optimising therapeutic strategies. For example, targets with

few population variants could be selected, to minimise differential drug response due to

genetic differences between individuals. Interestingly, it has recently been shown that genetic

variants in such domains (GPCRs), identified in the general population, may be associated

with differential drug response between individuals [63]. By viewing variant enrichment and

drug availability together, such a domain-centric landscape of variant localisation has implica-

tions useful for both understanding variant impact and motivating therapeutic design.

In conclusion, with an unbiased quantitative approach to evaluate variant enrichment, our

work highlights unequivocal features, from atomistic protein structural features (“micro-

scopic”) to large-scale (“macroscopic”) functional pathways and proteomics features, which
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could contribute in distinguishing variant pathogenicity. We believe that mapping these anno-

tations to missense variants will aid the interpretation of their biological impact. The ZoomVar

database, which we have made available at fraternalilab.kcl.ac.uk/ZoomVar, will facilitate users

in the structural analysis of variants. A script is downloadable from the site to allow large-scale

programmatic access to the webpage for the structural annotation of user-input variant data;

we also provide in the webpage precomputed data underlying all analyses presented here. Fur-

ther advancement in the structural coverage of the proteome, and the exploitation of high-

throughput proteomics technologies, such as those analysed here [15,48], will ultimately offer

a finer-grained picture of features which segregate variants in “health” and “disease.”

Materials and methods

See Supporting information for a more detailed description.

Data sources

In this study, we have used variant data from ClinVar (dbSNP BUILD ID 149) [32] (for germ-

line disease variants), COSMIC coding mutations (v80) [31] (for somatic cancer variants), and

gnomAD exome data [30] (for population variants). Genomic positions were mapped against

protein sequence data from UniProt [64] and Ensembl [65], protein structural data from the

Protein Data Bank (biounit database, downloaded 28/04/2017), and protein interaction data

from a large nonredundant protein–protein interaction network (UniPPIN) [66], which incor-

porates various interaction databases [67–71] and recent large-scale experimental studies

[72,73,74]. Protein thermal stability and half-life data were obtained from separate large-scale

studies [14,15]. Transcriptomic data were taken from GTEx [9], while protein abundance data

(protein per million [ppm]) for each tissue/sample type were obtained from PaxDb [10]. Both

PaxDb and GTEx normalised data were taken directly for use without additional filtering steps.

ZoomVar database

ZoomVar was constructed by mapping human protein sequences to resolved structures/

homologues from the PDB using BLAST [75]. Protein domains were defined by scanning Uni-

Prot sequences against the PFAM seed library [76] using HMMER [77]. Per-residue mappings

were performed by the alignment software T-COFFEE [78] or Stretcher [79] (which was used

to map UniProt and Ensembl sequences which were not of the same length and were too long

to align using T-COFFEE). These generated correspondences between PDB structures and

those proteins/domains with structural coverage. Interaction complexes were inferred from

homologues (defined using BLAST). As an example, if protein A and B are annotated as inter-

acting in UniPPIN, and their structure homologues A’ and B’ are located in a resolved struc-

tural complex (and at least 1 residue from each protein is involved in a shared interface),

residues from A and B are mapped onto A’ and B’ to infer their interaction interface. The part-

ner-specific regression formula from HomPPI [80] was used to assign a score and confidence

level to way. Only heterocomplexes are considered.

Mapping of variant data

Definition of regions

Structural regions. We partitioned protein/domain into surface, core, and interface

regions. Interface regions were considered to be composed of residues which bind to at least 1

protein interaction partner. The interfaces were assigned using POPSCOMP [81]. ResiduesAU : PleaseconfirmthatthecorrectiontotheunitofmeasurementinthesentenceResidueswithachangeinsolventaccessiblesurfacearea½SASA�:::iscorrect; andamendifnecessary:
with a change in solvent accessible surface area [SASA] > 15 Å2 were annotated as interface
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residues [82]. For surface and core regions, these were classified by considering the quotient

SASA [Q(SASA)] per residue, which was computed using POPS [83]. Core residues were

defined as those with a Q(SASA) < 0.15 [82]. Surface residues were defined as those with a Q

(SASA)� 0.15 which do not take part in protein–protein interaction interfaces.

Order and disorder. Disordered protein regions were predicted using DISOPRED3 [84].

We overlaid these definitions of ordered and disordered regions with Pfam domain bound-

aries and partitioned protein sequences into intra-domain ordered, intra-domain disordered,

and inter-domain disordered regions.

Functional sites. Posttranslational modification (PTM sites, specifically ubiquitination

and phosphorylation sites, were obtained from PhosphoSitePlus [85]. Regions close to phos-

phorylation and ubiquitination sites were defined as those within 8 A�˘ in Euclidean distance,

following studies (e.g., [34]) using this threshold to define regions close to PTMs.

Classification of variant pathogenicity

Variants in each dataset were annotated according to protein region localisation using the

ZoomVar database. Table 1 listed the total number of missense variants in each dataset which

have been mapped to each region considered in this study.

In the exploration of variant enrichment in different structural regions, the COSMIC data was

divided into “cancer genes” and “noncancer genes” subsets, taking “cancer genes” as variants in the

genes which comprise both tier 1 and tier 2 of the Cancer Gene Census (CGC) (COSMIC v84).

The noncancer gene subset contains all other variants. In addition, to address the effect of labelling

variants by the databases from which these data are collected, variants are also pooled and anno-

tated using 2 existing in silico variant impact predictors CADD [16] and REVEL [7] predictions,

using the Ensembl Variant Effect Predictor (VEP) [86]. Variants were labelled “damaging” and

“tolerable” using cutoffs discussed in the publications [7,16] of these predictors (CADD:> 20 as

“damaging”; REVEL:>0.5 as “damaging”; “tolerable” otherwise). The association between such

variant pathogenicity measures and the molecular features extracted when comparing the disparate

variant sets were subsequently investigated. Since these predictors are independent (i.e., not con-

structed directly with features investigated here) from our study, this mediates the impact of arbi-

trary grouping variants into ClinVar, COSMIC, and gnomAD common and rare subsets, and

serves to validate the segregating power of our molecular features on variant pathogenicity.

Missense variant enrichment across levels of protein anatomy

The protein anatomy

In this study, missense variant enrichment was quantified across the “protein anatomy,” in

which we partition the human proteome in different ways (see Fig 1A and 1B). WeAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif levels; proteins; domains; anddomain � typeinthesentenceWefirstdefinealistof levelsoftheanatomy:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:first define

a list of “levels” of the anatomy, namely: (i) individual “proteins”; (ii) specific “domains” of

proteins; and (iii) instances of a “domain-type” across the human proteome. See Results for

detailed examples. HereAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif levelandregioninthesentenceHere;missensevariantenrichmentquantificationwasconsideredinbothof :::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:, missense variant enrichment quantification was considered in both

of the following scenarios: (i) for a given full-length instance of a “level,” relative to all other

instances at the given “level” (e.g., for epidermal growth factor receptor [EGFR] relative to all

other proteins in the human proteome), or (ii) for a given “region,” relative to all regions

defined under a given criteria at a relevant level (e.g., for the protein core relative to all protein

structural regions). For the sake of clarity, in this Materials andAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif entityinthesentenceForthesakeofclarity; inthisMaterialsandmethods:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:methods section, the instance

of interest is hereafter referred to as the “entity” of interest; its use is clarified in the next para-

graph and illustrated in Fig 9.
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Calculation of missense variant enrichment

To calculate the enrichment of missense variant, we first sought for a probabilistic calculation

of the likelihood of observing the given number of missense variants inside an entity. We mod-

elled this problem as the assignment of n variants into various entities and calculated the prob-

ability that k of those localise to the entity of interest. Assuming no bias towards any entity, the

expected probability to assign 1 variant to an entity would be the ratio between the size (in

terms of number of amino acids) of that entity to the total size of all entities.

This can be formulated as a classical binomial distribution problem. The binomial cumula-

tive distributive function (Eq 1, also illustrated in Fig 9A) was used to assess the missense vari-

ant enrichment of a given entity, and the two-tailed binomial test was used to assess the

significance of enrichment/depletion.

PðXentity � kÞ ¼
Xk

i¼0

� n

i

�

pið1 � pÞn� i ð1Þ

where k is the number of observed missense variants which localise to the given entity, n is the

total number of missense variants which localise to all relevant entities, and p is the expected

probability to assign 1 variant to the entity. p is given by the following expression:

p ¼
size of entity of interest
total size of all entities

As an example, when evaluating enrichment in the core of a given protein with complete struc-

tural coverage (i.e., all residues within the protein can be assigned to any one of surface, core,

or interacting interface):

p ¼
number of residues in the core

total number of residues in the protein

The definition of n, k, and p is illustrated in Fig 9B and 9C.

In Eq 1, P(Xentity)� k) is the cumulative probability of observing k missense variants in the

chosen entity. We took the approach used in [17] to identify protein interfaces enriched in

cancer variants and generalised this to look not only at interfaces but other regions and levels

defined in our protein anatomy (see above). Note that this formulation of the binomial model

tests for the concentration (or avoidance) of variants to a specific entity, instead of modelling

each “trial” of the binomial process being the generation of a variant. A detailed comparison

and illustration of methods to calculate variant enrichment can be found in S1 Text.

Hereafter, we refer to the binomial cumulative distributive function of this binomial distri-

bution as the Variant Enrichment Score (VES). Fig 9C contains specific examples of applying

this scheme of VES calculation to different levels and regions of the protein anatomy.

For each analysis at the protein or domain level, the background proteome is defined as the

summation of all UniProt proteins/domains containing missense variants in any of the data-

sets analysed. Proteins belonging to immunoglobulin and T cell receptor gene family products

were filtered from all analyses (HGNC definition [87]), to avoid the inclusion of variants

which could have arisen from the process of affinity maturation. ForAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif regionsinthesentenceForallcalculationsofenrichmentandsimulationsinvolvingproteinor:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:all calculations of enrich-

ment and simulations involving protein or domain “regions” (e.g., core, surface, and inter-

face), cases where the region is of size 0, or where the protein/domain contains no missense

variants, were omitted in this analysis. Note that this framework of variant enrichment quanti-

fication, in contrary to others [22,37,38], is not designed to detect mutational “hotspots” clus-

tered in sequence or structure space. Instead, it quantifies the extent to which missense

variants are populated in the entity concerned, evaluating whether the number of such variants
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are more or less than expected. S1 Fig shows the distributions of whole-protein VES and their

associated p-values for all the variant sets examined in this work.

The overall missense variant enrichment for each dataset was also calculated using a den-

sity-based metric ω (see Eq 2).

oðXentityÞ ¼
Xentity=Sentity

Xall entities=Sall entities
ð2Þ

where S refers to the size in terms of the number of residues, and X refers to the number of

variants.

This expression therefore examines the ratio between the number of variants in the entity

of interest versus that of other entities, normalised by their sizes. As expected, the density

shows good correlation with VES (S2 Fig); for simplicity and consistency, we use the VES met-

ric for variant enrichment/depletion within a given entity (e.g., core of protein Z), whereas the

density metric is used to describe a collection of entities at a given level/region (e.g., cores of

every human protein).

Here, 95% confidence intervals were estimated via bootstrapping (10,000 iterations). The

2-tailed significance of enrichment/depletion was estimated by simulation of the null back-

ground. A totalAU : PerPLOSstyle; numeralsarenotallowedatthebeginningofasentence:Therefore; pleaseconfirmthattheeditinthesentenceAtotalof 10; 000simulationswerecarriedoutforeach:::iscorrect; andamendifnecessary:of 10,000 simulations were carried out for each dataset, in which the number

of variants which localise to a given entity was kept constant, but their location within the

Fig 9. Illustration of missense variant enrichment calculation. (A) The number of missense variants is modelled as a

binomial variable. The cumulative distributive function of this binomial variable is taken as a VES for the level

examined. (B) Illustration of the choice of parameter in defining the binomial variable used in calculating the VES. (C)

Examples of defining the parameter p in quantifying variant enrichment for different cases. VES, Variant Enrichment

Score.

https://doi.org/10.1371/journal.pbio.3001207.g009
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entity randomised. The density of variants was calculated for each simulation and compared

to the actual value in order to derive a p-value. Simulations were performed in this way, keep-

ing the observed number of missense variants fixed, in order to overcome bias which stems

from the assumption that variants are uniformly distributed throughout the proteome.

Enrichment analysis of gene sets

Gene set enrichment

Gene enrichment analyses were performed using Gene Set Enrichment Analysis (GSEA),

using the implementation provided by the R fgsea package [88]. Given an enrichment statistic

for each query gene, the GSEA algorithm outputs a score per gene set, which quantifies the

enrichment of query genes in the sets examined. This is then normalised by the size of the

gene set, to give a normalised enrichment score (NES) [45]. We utilised the centred VES

enrichment statistic, i.e., subtracting 0.5 from the VES, as input into the GSEA algorithm.

Thus, proteins with fewer missense variants than expected would have a negative score.

Definition of pathway clusters

The pathway normalised enrichment scores (NESs), calculated at the whole protein level for

each dataset, were used to perform K-means clustering of KEGG pathways [89]. The R package

NbClust [90] was used to determine the optimum number of clusters.

Analysis of expression, abundance, and stability data

Spearman correlations of protein-wise and region missense variant enrichments with expres-

sion levels (RPKM), abundance (ppm), half-life (hours), thermal stability (Tm, in ˚C), and

density (mean contacts of core Cαs) were calculated. Additionally, gene set enrichment analy-

sis was performed as detailed above, except that the mean value for each quantity of interest

was subtracted to obtain values centred around 0, allowing both pathway enrichment and

depletion to be assessed (see S2 Text).

Statistics and data visualisation

The majority of data analyses were performed in the R statistical programming environment.

All corrections for multiple testing have been done using the Benjamini–Hochberg method in

R (p.adjust function). Bootstrapping was performed using the boot package [91]. Spearman

correlations were performed using the SpearmanRho function of the DescTools package [92].

Heatmaps were produced with either the heatmap.2 function in the gplots package [93] or the

ComplexHeatmap package [94], in which clustering, wherever shown, was performed with

hierarchical clustering (hclust function) using default parameters unless otherwise stated. Cir-

cos plots were generated with the Circos package [95]. Additionally, binomial cumulative dis-

tributive functions were calculated and two-tailed binomial tests performed using the NumPy

package in Python [96].
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