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Abstract: The aim of this study is to investigate the production of fire-resistant panels made out of
bark from spruce (Picea abies), larch (Larix decidua Mill.) and cement. This research included test
panels produced from bark, cement, water and cement-bonded recycling material aiming for the
target density of 750 kg/m3. The physical (density, dimension stability, thickness swelling) and
mechanical properties such as tensile strength and compressive strength together with fire resistance
were tested. Considering the results, appealing values have been achieved: max. compressive
strength: 3.42 N/mm2; max. thickness swelling: 5.48%; and density: 515 to 791 kg/m3. In principle,
the properties of the produced panels depend not only on the density, but also on the hydration and,
above all, on the compaction and the composition of the boards. The fire tests demonstrated that
the produced panels have an enormous potential in terms of fire resistance and could be utilized for
fire-retardant applications.

Keywords: tree bark; spruce; larch; fire resistance; cement-bonded composite materials

1. Introduction

Homebuilding, do-it-yourself projects and the manufacturing of home furnishings
were the biggest drivers of timber demand worldwide and, as a consequence, the prolif-
erated prices of wooden building materials since 2020. The request on the wood market
products at the beginning of 2022 is at a similar rate as in the second quartal of 2021 on
the European market [1]. The increasing demands on forestry resources for engineered
wood products result in the sparsity of wood supply [2]. The use or reuse of wastes
from construction and wood industry sector, together with sustainable technologies, are
included in the bio-economy strategy the European Union through a bio-based and circular
economy [3]. Alternative lignocellulosic raw materials and an improved utilization rate
of wood resources are key elements of this road map [4]. There is a large potential to
use biomass and minerals in a composite matrix with fire-retardant properties [5]. Cur-
rent nonflammable products on the construction market, mostly with inorganic material,
have a high performance, but the environmental impacts in their production processes are
significant [6].

Beside its hydrophilic nature [7,8], another disadvantage of lignocellulosic material
is low fire resistance due to (C, H, and O) in the cellulose structures that boost to initiate
combustion [9]. Flame-retardant additives have been extensively investigated for construc-
tion materials [10,11] as substances that impede the fire propagation in a material [12]. The
adjoining of clay [13] and cement [14,15] in lignocellulosic composites can contribute to
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the fireproof properties due to the effects of reducing heat transfer and catalyzing the char
development from cellulose due to the metal ions included in the chemical composition
of these materials [5]. Cement bound wood-wool panels have been on the construction
market since the beginning of 20th century [16]. Wood-wool can be replaced successfully
with tree bark in such applications [13]. The phenolic compounds in tree bark also provide
fire-retardant properties to such composites, together with the protective role of bark as
fire-stopping found in many species [17]. As a by-product of wood processing industry, tree
bark has an enormous potential in applications as adhesive filler to reduce formaldehyde
emissions [18], thermal [19,20] and acoustic insulations [21], as raw materials for MDF [22],
particleboard [23], pellets [24] or for medicinal purposes [25]. The combination between
tree bark and cement results in lightweight concrete composites with densities around
800 kg/m3 [14]. Wood and tree bark, due to hemicelluloses, starches, sugars, phenols and
acids, tend to hinder cement hydration in composite, resulting in longer setting time and a
limitation in the strength of material, as a consequence of micro-fracturing of the matrix
during cement hydration [26,27]. There are several studies that dealt with bark-cement
composites. Thermal insulation properties of cement-based admixtures with tree bark were
analyzed by [28,29], in cork composites with slag cement. Other research involving cement
bound cork granules for the manufacture of lightweight composites was carried out by [30].
The influence of Eucalyptus globulus bark fiber on the mechanical properties of cementitious
composites were studied by [31]. It was stated that such composites can find application in
numerous fields, from agriculture to roadways and tunneling. The inhibitory role of the
bark on the cement’s hydration was assessed with sugi bark (Cryptomeria japonica) by [32].
It was found that the addition of magnesium chloride and sodium silicate significantly
improved the hydration behavior of materials and, in some cases, of the compressive
strength. Urstöger et al. [14] examined the compressive strength and hydration behavior of
composites with spruce and larch bark bounded with cement for lightweight composites
and emphasized the larch bark influence on composite properties, especially in cold press-
ing system. This research is a follow-up of [14] and deals with the flammability analysis
of cement bound larch and spruce bark composite panels, besides recycled material from
previous experimental trials.

2. Materials and Methods

The raw materials used in this study were spruce (S) (Picea abies) and larch (L)
(Larix decidua Mill.) bark, sourced from Rupert Deisl Co. sawmill in Adnet, Austria.
The bark material was shredded with a R40 four-spindle shredder (Untha shredding tech-
nology Co., Kuchl, Austria), dried to a moisture content (MC) of 14–15% in an exhaust
air drying system (Hildebrand-Brunner, Hannover, Germany) and then fractionated into
particles < 3 mm, 3–7 mm and 7–12 mm. The binder applied was Portland-composite ce-
ment CEMIIA-LL42.5N ‘PROFI-CEM’ from Zementwerk Leube Co. (St. Leonhard, Austria)
and recycled material from cement-bonded bark with a particle size 1 < x < 4 mm, which
originated from preliminary trials. These trials served as prerequisites for this study, to
find out the appropriate composition of the panels (bark, water and cement amount) at a
target density of 750 kg/m3. The cement-bark mixture from preliminary trials was reused
in this study, at a constant percent of 6.4% for all the boards. This issue emphasized the
role of recycling material in the manufacturing process of cementitious bark-based panels,
combining here two elements of circular economy concept: reuse (bark/cement mixture)
and upcycling of a secondary product of wood industry, namely tree bark.

2.1. Sample Preparation

In order not to influence the water-binder value (w/b value), the moisture content
(MC) of the bark types was raised at the beginning of the experimental trials from 14–15% to
approximately 100% with a 24 h water storage. Subsequently, the bark particles were mixed
with cement and recycled material in a single-shaft ploughshare mixer ENT type WHB-75
(WAMGROUP S.p.A., Ponte Motta, Italy). The water was added after the “dry” components
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formed a homogeneous mass. Four test groups (TG), depending on the particle size and the
compaction method were used; recycled material was added to all TGs, this resulted from
preliminary trials and was added in a proportion of 6.64% in all panel formulations. The
compaction was realized with conventional screw clamps (SC) and a hydraulic press Höfer
HLOP 280 (Höfer, Taiskirchen, Austria) (HP) at room temperature (RT, 20 ◦C) (Table 1 and
Figure 1).

Table 1. Experimental design for bark-based cement-bonded composites. Note: Comp., Compaction;
RM, Recycling Material; Temp., Temperature; SC, screw clamps; HP, hydraulic press; h, hours;
min, minutes.

Bark Comp.
Particle Size (%)

Cement
(%) Water (%)

RM (%) Press Parameter

<3 mm 3–7 mm 7–12 mm <1–4 mm Pressure
(N/mm2)

Temp.
(◦C) Time

TG1
<3–12 mm

spruce SC 9.86 12.30 12.30 39.26 19.64 6.64 - 20 ~168 hlarch
TG2

<3–12 mm
spruce HP 9.86 12.30 12.30 39.26 19.64 6.64 0.8–2.0 20 6–8 minlarch

TG3
<3–7 mm

spruce SC 9.86 24.60 - 39.26 19.64 6.64 - 20 ~168 hlarch
TG4

<3–7 mm
spruce HP 9.86 24.60 - 39.26 19.64 6.64 0.75 20 6–8 minlarch 1.10

The tests were carried out at a w/b value of 0.5 and a target density of 750 kg/m3, with a panel size of
430 × 430 mm and a thickness of 20 mm.

Figure 1. Board compaction by hydraulic press (left); test specimens 430 × 430 × 20 mm in a forming
frame (middle); and board compaction by screw clamps (right).

Depending on the compaction method (SC or HP), the cement bound bio-aggregates
were closed in molds for one week with SC or pressed (at 20 ◦C) for 6 to 8 min with the
Höfer HLOP 280 hydraulic laboratory press with a specific pressure between 0.75 and
2.0 N/mm2 (Table 1). For curing, all samples were stored in a standard climate at 20 ◦C
and 65% relative humidity for 28 days.

2.2. Fire-Resistance Test

The furnace was built according to fire resistance test EN 1363-1:2020 [33] by [34,35]
with porous concrete blocks. The cement-bonded bark panels were set on the top of
the furnace (Figure 2 left). To ensure a sufficient ventilation, spacers of 10 mm were used
between the panel and the furnace. At the right bottom side of the furnace, a gas burner was
placed, which indirectly flamed the material from below. The temperature was measured
with four thermocouples (two in the upper and two in the lower part of the combustion
chamber) connected to a data logger device. At the beginning of the test, the surface
temperature of the specimen was determined and then measured every five minutes. The
classification into fire classes is based on the time needed from test object to reach the
surface temperature by 140 ◦C (thermal insulation), starting from the initial temperature.
For the determination of the integrity, the time needed to reach a temperature increase of
260 ◦C is essential, and finally the time until the surface of the cementitious composite
reaches 300 ◦C was also measured (Figure 2 right).
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Figure 2. Set-up of the experimental design of the fire resistance measurement with the help of the
furnace (left); and test object during the performance of the experiment on the furnace (right).

3. Results

After 28 days, the composite boards were completely cured. Afterwards, the panels
were cut to size (EN 326-1:2005 [36]) to determine the physical (moisture content, thickness
swelling and density) and mechanical properties (compressive and tensile strength). In
order to represent the scatter within the panel and to obtain reliable test results, the test
specimens were cut from different areas of the panel.

3.1. Determination of the Physical Properties

The physical properties tested for the bark-cement panels were moisture content, thick-
ness swelling and density (Table 2). The MC was determined according to EN 322:2005 [37],
the thickness swelling to EN 317:2005 [38] and the density to EN 323:2005 [39].

Table 2. Moisture content, thickness swelling and density of cement-bonded bark panels with spruce
and larch bark and two types of bark particle sizes. Note: TG, test group; SC, screw clamps; HP,
hydraulic press; standard deviation in parentheses.

Bark Compaction Moisture
Content (%)

Thickness
Swelling (%)

Density
(kg/m3)

TG1
<3–12 mm

spruce
SC

13.06 2.69 (0.10) 710 (74)
larch 15.89 2.36 (0.61) 791 (20)

TG2
<3–12 mm

spruce
HP

- - -
larch 14.65 3.43 (0.48) 572 (32)

TG3
<3–7 mm

spruce
SC

13.34 5.48 (1.72) 692 (66)
larch 16.07 2.47 (0.59) 711 (25)

TG4
<3–7 mm

spruce
HP

13.06 - 515 (56)
larch 14.06 3.52 (0.94) 530 (37)

3.1.1. Moisture Content (MC)

The MC of panels made out of larch bark is generally higher in comparison to those
of spruce bark. The test specimens of spruce bark achieved a total average MC of 13.15%,
compared to 15.17% for larch bark (Table 2) due to the differences on chemical composition:
28.8% lignin and 36% polysaccharides for larch bark [40] and 26.9% lignin and 47.9%
polysaccharides [41] for spruce bark.

3.1.2. Thickness Swelling (TS) after 24 h Water Soaking

The larch bark panels achieved an average TS of 2.95%. TG1-S SC reached an average
of 2.69%, while samples of TG3-S SC recorded a mean of 5.48%. Another aspect of TG3-S
SC is an outlier to 8% (TG-S SC 3) while the rest of the samples swelled in thickness with
4.5%. Conspicuous is that the compaction method (SC or HP) influenced this property. As
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the results from Table 2 and Figure 3 show, the values for TG2-L HP and TG4-L HP are 1%
higher than those with SC (when using larch bark).

Figure 3. Thickness swelling after 24 h water soaking of 50 × 50 × 20 mm cement-bonded bark
specimens. Note: TG, test group; S, spruce; L, larch; SC, screw clamps; HP, hydraulic press.

Another characteristic of this test is the different behavior of the cement-bonded
test specimens made out of spruce bark compared to the larch bark samples. While
measurement of TS was possible for the specimens TG1-S SC and TG3-S SC, the series
TG2-S HP broke during the cutting and TG4-S HP during the water storage. For this reason,
it was not possible to carry out the tests. The samples of TG3-S SC yielded values almost
twice as high as those of TG1-S SC, which can be attributed to the different bark-fractions,
nevertheless this finding cannot be stated for other TGs. The standard deviation (SD) in
TG3-S SC is also significantly higher. This suggests a widely spread of the TS values of
this TG. The differences of the compaction methods are illustrated in Figure 3. Samples of
TG1-L SC achieved lower TS than those of TG2-L HP. This finding can also be confirmed in
the comparison between TG3-L SC and TG4-L HP.

3.1.3. Density

The results of the average density measurements are shown in Table 2 and Figure 4.
The samples of TG1-S SC reached on average 710 kg/m3, with the highest SD of all test
groups. Test specimens of TG3-S SC measured a density of 692 kg/m3, TG4-S HP had the
lowest density of all TGs with 515 kg/m3. In case of larch bark, the highest values were
achieved with samples from TG1-L SC (791 kg/m3). For TG2-L HP the densities had an
average of 572 kg/m3. TG3-L SC (711 kg/m3) obtained almost identical results as TG3-S
SC (692 kg/m3), as well as TG4-L HP (530 kg/m3) and TG4-S HP (515 kg/m3).

The densities of the test specimens compressed with HP were far lesser compared to
the press system with SC. In both test groups (TG2 and TG4), significantly lower values as
for samples compressed with SC (TG1 and TG3) were obtained. Compared to the target
density of 750 kg/m3, almost all values are lower, as a consequence of evaporation of water
from cement during the curing process.
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Figure 4. Density of 50 × 50 × 20 mm cement-bonded bark specimens. Note: TG, test group; S,
spruce; L, larch; SC, screw clamps; HP, hydraulic press.

Density is one of the most important factors influencing the mechanical properties of
the specimens, higher values leading to an increase in compressive strength [42] The density
of the cement bonded panels with bio-aggregates ranged between 515 and 791 kg/m3. For
further investigations, the density is an important influencing parameter for the mechanical
behavior and could be increased for new testing groups, as it is usual for cement-bonded
wood-based materials (800 kg/m3).

3.2. Determination of the Mechanical Properties

The mechanical properties analyzed in this research are compressive strength and
transverse tensile strength. The compressive strength (the most relevant test for ce-
mentitious composites) was determined according to EN 826:2013 [43] with samples of
50 mm × 50 mm × 20 mm and the transverse tensile strength (internal bond, that express
the stability of the composite panels and the quality of the bonding between bark particles
and cement) to EN 319:2005 [44] with 50 mm × 50 mm × 20 mm samples fixed with hot
melt glue and disposed at 90◦ in the testing clamps. The mechanical properties of the
test specimens were measured with the universal testing machine Zwick/Roell 250 (Ulm,
Germany) (Figure 5).

3.2.1. Compressive Strength

The highest average compressive strength (Figure 5 left) at 10% compression was
achieved in TG1-L SC with 3.17 N/mm2 (Table 3). For TG3-L SC, the mean value was
2.87 N/mm2, this TG showed the highest compressive strength of all test specimens with
3.43 N/mm2. The samples of TG2-L HP had a compressive strength of 0.22 N/mm2, TG4-L
HP measured 0.32 N/mm2 and TG4-S HP had a compressive strength of 0.27 N/mm2.

As results from Figure 6, there are differences between the TGs: for the panels com-
pressed with SC the compressive strength ranged from 1.12 to 3.43 N/mm2. The hydraulic-
pressed panels did not achieve any values higher than 0.39 N/mm2. The samples from
TG1-L SC and TG3-L SC achieved better results, which is only partially the case for TG2-L
HP and TG3-L HP. Based on these results, no tangible conclusion can be drawn about a
different behavior regarding the influence of bark particle size on the compressive strength.
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Figure 5. Compressive strength measurement at 10% compression of the 50 × 50 × 20 mm cement-
bonded bark specimens using universal testing machine Zwick/Roell 250 (left); internal bond
measurement of the 50 × 50 × 20 mm cement-bonded bark specimen using universal testing machine
Zwick/Roell 250 (right).

Table 3. Compressive strength and internal bond of cement-bonded bark panels with spruce and
larch bark and two types of bark particle sizes. Note: TG, test group; SC, screw clamps; HP, hydraulic
press; standard deviation in parentheses.

Bark Compaction Test
Samples

Compressive
Strength (N/mm2)

Internal
Bond (N/mm2)

TG1
<3–12 mm

spruce
SC

n = 5 1.83 (0.69) 0.03 (0.01)
larch n = 5 3.167 (0.320) 0.08 (0.036)

TG2
<3–12 mm

spruce
HP

n = 5 - * - *
larch n = 5 0.221 (0.032) 0.006 (0.003)

TG3
<3–7 mm

spruce
SC

n = 5 1.795 (0.52) 0.020 (0.016)
larch n = 5 2.870 (0.45) 0.057 (0.016)

TG4
<3–7 mm

spruce
HP

n = 5 0.268 (0.02) - *
larch n = 5 0.321 (0.06) - *

* The measurement was not possible due to the failure of the testing specimen (very brittle).

As shown in Figure 7, there is a significant positive correlation (R2 = 0.87) between
density and compressive strength for all TGs. This is in accordance with the general
fact that density has a considerable influence on the mechanical properties of composite
materials [42].

3.2.2. Internal Bond (IB)

The values of IB were less than 0.14 N/mm2, which can be attributed to the brittleness
and porosity of the panels (Figure 5 center and Figure 8). When comparing the bark
species, larch bark composites measured at least two-fold values compared to the cement
admixtures with spruce bark aggregates.
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Figure 6. Compressive strength at 10% compression of 50 × 50 × 20 mm cement-bonded bark
specimens. Note: TG, test group; S, spruce; L, larch; SC, screw clamps; HP, hydraulic press.

Figure 7. Correlation between compressive strength at 10% compression and density for the cement
bonded bark panels.
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Figure 8. Internal bond of 50 × 50 × 20 mm cement-bonded bark specimens. Note: TG, test group; S,
spruce; L, larch; SC, screw clamps; HP, hydraulic press.

The specimens in TG1-L SC achieved an average IB of 0.08 N/mm2, those of TG1-S
SC only 0.03 N/mm2 (σ = 0.01 N/mm2). In TG2, only the samples made of larch bark
could be tested, while those made of spruce broke/failed during cutting. The specimens of
TG2-L HP had the lowest IB, under 0.01 N/mm2. In TG3, the results were comparable to
those in TG1, whereby both bark types could not reach the strength achieved in TG1-L SC
with 0.06 N/mm2 and TG1-S SC of 0.02 N/mm2. No data could be determined for the test
specimens TG4-S HP and TG4-L HP due to the increased brittleness of the samples, which
failed shortly after the test start.

The highest results of IB were achieved with TG1-L SC and reached values similar
to other mineral-bonded bark materials [13]. Samples of TG1-S SC (fraction < 3–12 mm)
obtained higher results compared to TG3-S SC (fraction < 3–7 mm). There are partially large
deviations between the test specimens. For this reason, the individual results are shown in
Figure 9, in order to better recognize the scattered values within the test groups. A number
of results are clearly above the average. However, the IB of the specimens is generally very
low, but represents a characteristic of mineral-bonded bio-aggregates [13,15].

IB is strongly related to particle distribution, bonding and compaction inside the
panels [14], but can also be caused by incorrect or incomplete curing of the cement [45]. In
case of specimens with spruce bark, the low IB can be attributed to incomplete curing of
the cement, in some cases the specimens failed even without the application of force during
the test preparation (Figure 5 right). The influence of the different cellulose content (due
to biodegradation during storage) in the bark might also play a significant role within the
mixture [46].

The test specimens were porous, this resulted in an inhomogeneous bond between
the bark fractions and the cement [47], which is also reflected in the low IB, especially
of samples from TG2-L HP. The pressing method could also have a significant influence,
the samples compacted with HP showed lower values compared to the compaction using
SC [14]. It is possible that too much pressure during pressing is not necessary and reduces
the panel properties.
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Figure 9. Distribution of internal bond within the TGs of 50 × 50 × 20 mm cement-bonded bark
specimens. Note: TG, test group; S, spruce; L, larch; SC, screw clamps; HP, hydraulic press.

Failures of the test specimens were already detected after minimal loads, which can
be described by various parameters for examples the hydration or the different chemical
ingredients [30]. The findings of the experimental trials also showed that higher IB was
not obtained by pressing with HP. Too high pressure can have a negative influence on
the mechanical properties due to breakage of particles. The hydration of the panel is
also essential for this test, because if there is an incorrect curing inside the panel, it is not
possible to ensure an appropriate bonding of the bark particles [14]. As a further aspect,
the generally low IB of concrete can be mentioned, as described by [48].

3.2.3. Fire Resistance

For the determination of the fire resistance, one test panel with the dimensions of
430 × 430 mm was used per test group. Due to the considerable complications that arose
during the removal of the cementitious panels from the molds and their manipulation and
preparation of experimental setup, not all test groups could be tested for fire resistance. The
test was carried out according to EN 1363-1:2020 [33], so the results give a rough overview
on the properties of the panels in terms of fire resistance, but are not comparable with
established products tested under standardized conditions [10].

The flame-retardant mechanism of the bark cement-boards (Figure 10) is mainly
due to mineral enriched matrix in the composites. Cement belongs to the class of non-
combustible building materials according to DIN 4102-4:2004 [49]. On the other side,
bark is a natural barrier of tree against fire. In regions more prone to fire, resistant and
thicker barks that protect the underlying meristematic tissues against high temperatures
were developed [17]. The main components of bark that inhibit fire are graphite, inserted
and distorted graphite–graphene aggregates [50] and polyphenols (tannins). The tannins
contribute to the generation of graphite during charring. Moreover, tannins have high
molecular weights (up to 20,000) and form complexes with proteins and alkaloids, that
precipitate. The polyphenols form complexes with polysaccharides too and perform as
antioxidants. Moreover, tannins are able to neutralize radicals due to their endowment
to donate electrons [51]. Through electron donation, tannins determine reduction of heat
power, which could retard and slow down the fire.
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Figure 10. Flame-retardant mechanism of cementitious panels with spruce and larch bark.

Due to the different external influences and the fact that the tests took place outdoors,
the temperature curve could not be achieved as described in the standard [33]. During this
experiment, test panels of TG1-L SC, TG2-L HP, TG3-L SC, TG4-L HP, TG4-S HP and a
gypsum reference could be tested with regarding to the fire resistance, including thermal
insulation and integrity.

The test panel from TG2-L HP achieved the most representative result with a time of
18 min for thermal insulation (étanchéité). Noticeably, the temperature increase was slow
at the beginning, but as soon as the first temperature limit (140 ◦C) was reached, a rapid
rise was developed on the backside of the panel. The time difference between reaching
the limits for thermal insulation (140 ◦C), integrity (260 ◦C) and the end of the test was
measured minute by minute. For TG4-S HP (*) (Table 4 and Figure 11) it was not possible to
make a reliable measurement, as the panel failed after 7 min at a temperature of 140 ◦C and
began to crack at different spots. Due to complications during hydration, the test specimen
of TG3-S SC broke as soon as it was placed on the top of the combustion chamber.

Table 4. Results of the fire resistance measurement of the 430 × 430 × 20 mm cement-bonded bark
test samples and a gypsum reference panel. Note: TG, test group; S, spruce; L, larch; SC, screw
clamps; HP, hydraulic press; *, failed during test.

Fire Resistance According to
EN 1363-1:2020 TG1-L SC TG2-L HP TG3-L SC TG4-L HP TG4-S HP Gypsum

Reference

Furnace temp.—start
(combustion chamber ≈ 100 ◦C) 110.0 ◦C 109.6 ◦C 113.5 ◦C 121.4 ◦C 121.3 ◦C 91.4 ◦C

Surface temp—start 32 ◦C 34 ◦C 35 ◦C 37 ◦C 34 ◦C 25 ◦C
Thermal insulation

(surface temp. + 140 ◦C) 8 min 18 min 12 min 13 min 7 min * 8 min
Integrity

(surface temp. = 260 ◦C) 9 min 20 min 12 min 14 min - 9 min

End
(surface temp. = 300 ◦C) 10 min 22 min 13 min 15 min - 10 min
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Figure 11. Comparison of the cement bonded bark test specimens with gypsum reference panel
(430 × 430 × 20 mm). Note: TG, test group; S, spruce; L, larch; SC, screw clamps; HP, hydraulic press.

Due to the partly large deviation from the standard fire curve and the acceptable
results regarding fire resistance, it should be admitted that significantly longer test times
are possible if the tests were carried out strictly according to the standard (EN 1363-1:2020).
In this case, the values of the thermal insulation were used to determine the fire resistance
(Table 4 and Figure 12).

Figure 12. Relationship between density, fire resistance and thermal insulation cement-bonded bark
panels. Note: TG, test group; S, spruce; L, larch; SC, screw clamps; HP, hydraulic press.

There is no correlation (R2 = 0.06) between the density and the fire resistance duration
(Figure 13). The assumption is that panels with higher densities have a higher cement
content (>40%) and therefore more fire-retardant material is available [15].

The fire resistance measurements delivered acceptable results irrespective of the high
deviation from the standard fire curve. External influences during these outdoor tests, i.e.,
weather conditions (wind), can be mentioned as important influencing parameters. Due to
fire protection regulations, the test could not be carried out inside the campus facilities, so it
was necessary to select a wind-protected location and select testing days without significant
wind for the test setup to limit the other influencing parameters, such as the air current and
temperature outside.
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Figure 13. Correlation between fire resistance duration and density of cement-bonded bark panels.

The evaluation of the test provided interesting results regarding the correlation be-
tween density and fire resistance duration.

The longest thermal insulation (resistance) was achieved with TG2-L HP (18 min.)
(Figure 12). The reason for this is on the one hand the fine and compact structure of the
cement admixtures with bark aggregates, which protects well against heat, and on the other
hand the acceptable curing behavior of the panel. Furthermore, it was observed that in the
case of panels with nests of large bark particles (Figure 14), the burn-through occurs rapidly,
especially in these areas. The panel heats up from these clusters, so the temperature limits
are reached quickly.

Figure 14. Cement bonded bark test specimens (430 × 430 × 20 mm) in a forming frame, nests with
large bark particles marked in red.

4. Conclusions

The fire behavior of cementitious composites with spruce and larch bark is strongly
influenced by the constituents synergy. Cement as non-flammable construction material
(A1 classification) in the matrix was mixed with bio-aggregates made of tree bark, known
for its protective role for the tree. The tannin content of softwood bark helps reducing
the heating power of the flame, acting as charring agent, by forming a protective layer
against the heat and against diffusion to the flame of combustible volatile compounds. The
significant variation of tannin amount in the analyzed bark species leads to the conclusion
that more studies are required to find out in which way the fire retarding mechanism can
be improved by adding other components to the panel´s formulation.

This composite type may provide an option for using lignocellulosic residues with
improved properties as fire retardancy with application for example as wall covering and
filling material in constructions sector. The use of mineral-bonded bark-based composites
is highly dependent on building regulations codes, construction specifications, esthetics,
and all the other factors which influence public approach of a product.

The experimental trials with cement-bonded panels with bio-aggregates of spruce
and larch bark showed that test groups with larch bark pressed with screw clamps (TG-L
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SC) had the greatest potential regarding to the performed tests. In the case of applying
hydraulic pressing (HP), it resulted that further investigations of the pressing parameters
such as temperature, pressure and time are necessary to continuously optimize the quality
and strength of the panels. Based on the available values for HP, it can be assumed that
the pressing time was too short to ensure sufficient compaction of the panel. Additional
investigations should be conducted to determine the influence of the pressing time and, if
appropriate, the molds can be weighted after pressing and during curing. The different
chemical constituents of the bark types (lignin, holocellulose, extractives) also provide
an interesting base for further research and could have different influences on the setting
behavior, as noticed between the samples made of spruce (TG-S) and larch (TG-L). The
amount of holocellulose in bark negatively influences the compatibility between cement
and bio-aggregates.

The quantity ratio (w/b ratio) (Table 1) was kept constant at 0.5, but this aspect still
offers enormous potential for further optimization. At the same time, it would be useful to
reduce the cement proportion to a minimum, thus saving valuable resources and reducing
costs in order to create an economically attractive product. As an alternative, the percentage
of bark and recycled material should be consequently observed, which will also result in a
higher proportion of sustainable material in the end-product.

The different fractions of the bark (<3–12 mm and <3–7 mm) presented no significant
influence with regard to the physical and mechanical properties of the panels. Correct
hydration [14] can be considered as another important factor, which is why preliminary
tests should be carried out to find other appropriate types of bark. Furthermore, the
different pH values of bark can also have a relevant influence on hydration.
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