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Abstract: The space special environment mainly includes microgravity, radiation, vacuum and
extreme temperature, which seriously threatens an astronaut’s health. Bone loss is one of the
most significant alterations in mammalians after long-duration habitation in space. In this review,
we summarize the crucial roles of major factors—namely radiation and microgravity—in space
in oxidative stress generation in living organisms, and the inhibitory effect of oxidative stress
on bone formation. We discussed the possible mechanisms of oxidative stress-induced skeletal
involution, and listed some countermeasures that have therapeutic potentials for bone loss via
oxidative stress antagonism. Future research for better understanding the oxidative stress caused by
space environment and the development of countermeasures against oxidative damage accordingly
may facilitate human beings to live more safely in space and explore deeper into the universe.
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1. Introduction

After the Moon landing in 1969, humankind never stop exploring the universe. For example,
Shenzhou programs and the International Space Station (ISS) that are orbiting around the Earth recruit
crew members continuously [1,2], and several research programs have been launched towards the
Moon [3,4]. Even the Mars journey has been gradually industrialized [5,6]. We are standing in the space
age now. Although space traveling sounds fascinating, it can cause dramatic changes of the human
body, especially long-term spaceflights. More and more evidence proves that the space environment
negatively affects human physiological functions with the extension of space stays. Gravitational
unloading due to microgravity and cosmetic rays are conditions experienced by astronauts during
space flight. The medical examinations conducted before, during and after spaceflight have revealed
several health issues for space travelers, e.g., cardiovascular dysfunction, disruption in nervous system,
and reduced immune function [7–11]. Bone loss induced by microgravity is also a well-documented
alteration in astronauts [12–14]. It happens especially on weight-bearing bones and needs a very long
duration to recover after returning to earth [15]. In the absence of countermeasures, this change can
impact the performance and safety of crew members severely during extravehicular activities, and
putting them at high risk of fracture [16]. Bone loss is one of the major obstacles to space exploration
for human beings now.

Nowadays, researchers make great efforts to catch the mechanisms hidden behind the
physiological alterations of bone during spaceflight and to develop countermeasures accordingly.
Russian investigators found reductions in some blood antioxidants and increased lipid peroxidation in
human after long-term space flight [17,18]. Urinary excretion of 8-iso-prostaglandin F2α and 8-oxo-7,8
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dihydro-2 deoxyguanosine, which are markers of oxidative damage to lipids and DNA respectively,
increased during and after long-duration space flight (90 to 180 days) [19]. It means that the balance
between oxidant production and antioxidant defenses has been disturbed, and the excessive oxidants
may attack DNA and membrane lipids resulting in oxidative damage. The pro-oxidative conditions
caused by space environment may contribute to the bone alterations after long space habitation.

In this review, we summarized the oxidative effect to bone caused by microgravity and
radiation, and expounded the relationship between oxidative stress and bone formation. The possible
mechanisms will be discussed as well. Some prevention countermeasures of bone loss against oxidative
injuries will be included too. This manuscript will help to capture the latest research progresses and
inspire the possible direction of future studies.

2. Effects of Oxidative Stress on Bone Formation

The redox balance in the human body is maintained delicately, with the balance slightly inclined
to oxidants [20]. Reactive oxygen species (ROS) are generated as normal by-products of aerobic
metabolism, usually by leakage from the electron transport chain during oxidative phosphorylation in
mitochondria [20,21]. The major forms of ROS include the superoxide anions (O2

−, hydrogen peroxide
(H2O2) and free radicals such as hydroxyl radicals (OH·). ROS at lower concentrations serve as
signaling molecules to activate specific physiologic pathways that control several life processes [22,23].
Meanwhile, elevated levels of ROS can damage proteins, lipids, and DNA, eventually trigger oxidative
stress and leading to cell death [24,25]. Oxidative damage to bio-macromolecule has been proved in
the etiology of a wide variety of acute and chronic diseases, including osteoporosis [26].

It is reported that the increased level of ROS had opposite effects on osteoblast and osteoclast
cells. ROS inhibits osteoblast function. It is believed that the increased level of ROS in osteoblast
is one critical element of the pathophysiology of bone loss [27–30]. Almeida et al. reported
that ROS inhibited osteoblast differentiation and promoted apoptosis [31–33]. ROS achieve this
function by activating a small family of transcription factors known as Forkhead box O (FoxO),
which contains four members: FoxO1, FoxO3a, FoxO4, and FoxO6 [34]. FoxOs defense ROS by
up-regulating free radical scavenging enzymes such as Catalase, manganese superoxide dismutase
(Mn-SOD), and glutathione peroxidase-1 (GPx-1) [35]. Importantly, FoxO-mediated transcription
requires the binding of β-catenin that is also essential companion for T-cell factor (Tcf) family of
transcription factors [36,37]. Without Tcf transcriptional activities, the downstream effects of the
Wnt/β-catenin pathway cannot be conducted [37,38]. Thus, by competitive binding to β-catenin,
FoxOs antagonizes Wnt/Tcf-mediated transcription after being activated by ROS (Scheme 1) [39].
Regarding the importance of Wnt/β-catenin/Tcf to bone formation, the attenuation of this pathway
will inevitably lead to decreased osteogenesis [40]. Several researchers indicated that conditional
deletion of FoxOs (FoxO1, FoxO3, FoxO4) in mice osteoblast resulted in a decrease in the number of
osteoblasts, the rate of bone formation and bone mass but an increase of osteoblast apoptosis and
oxidative stress in bone [41,42].

On the contrary, ROS play crucial roles in osteoclast differentiation and function. By increasing
receptor activator of nuclear factor-kappa B ligand (RANKL) production and activating
ERK/NF-κB/TNF/interleukin 6, ROS inhibit osteoclast apoptosis and promote osteoclastogenesis [29].
In addition, it is reported that RANKL could suppress the transcriptional activity of FoxOs, loss FoxOs’
transcription factor function promoted osteoclast differentiation and survival, because intracellular
H2O2 accumulation is pivotal for osteoclastogenesis and bone resorption [43]. Therefore, FoxOs are
crucial regulators of both osteoblast and osteoclast physiology, and direct mechanistic links between
oxidative stress and skeletal involution.

Another oxidative stress-related pathway includes Nrf2/HO-1, which also can adjust cellular ROS
via a switch on gene transcription of several antioxidative enzymes such as SOD, Catalase, GPx, etc. [44].
Mitochondrial dynamics [45], endoplasmic reticulum stress pathway [46], and autophagy [47] are also
participated in the bone loss induced by oxidative stress.
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Scheme 1. The scheme of possible mechanism of space environment-induced bone loss: the increment 
of ROS caused by Space environment antagonizes the skeletal effects of Wnt/β-catenin/Tcf by 
diverting β-catenin from Tcf—to FoxOs-mediated transcription. LRP: LDL receptor-related proteins. 

3. Microgravity Increases Oxidative Stress in Bone System 

Microgravity conditions in space cause an imbalance between bone formation and resorption 
[48–51]. The average rate of aBMD loss is 1–1.5% per month evaluated by dual-energy X-ray 
absorptionmetry (DXA) scans from preflight and postflight [52]. Bone loss under microgravity 
conditions is relevant to oxidative injury. Microgravity is considered to increase free radical 
formation and causes oxidative stress [53–56]. Findings either from the real spaceflight missions or 
ground-based models (head-down bed rest model and hind-limb unloading rodents) all 
demonstrated elevated oxidative damage markers and attenuated total antioxidant capacity 
[53,57,58]. Hind-limb unloading (HLU) rodents, rotary wall vessel bioreactor (RWVB) and Random 
Positioning Machines (RPMs) are commonly used microgravity models in vivo and in vitro. Xin et 
al. and Sun et al. both observed that malondialdehyde levels (oxidant marker) were raised but total 
sulfhydryl content (anti-oxidant marker) descended in femurs of HLU Sprague-Dawley (SD) rats 
[59,60]. MC3T3-E1 cells that were exposed to RWVB had higher cellular ROS levels but lower 
differential abilities [59,60]. On the contrary, RWVB treatment-induced ROS generation facilitated 
osteoclastogenesis of RAW264.7 cells [59,60]. Their findings illustrated that the generation of ROS 
increased in response to microgravity. The excessive ROS destroyed normal function of osteoblasts 
but enhanced the osteoclasts’ capabilities, which lead to insufficient bone formation and massive 
bone absorption. 

It is believed that the oxidative damage caused by the space environment is related to insufficient 
nutrition intake and disturbed iron metabolism as well [54,55]. By analyzing blood and urine samples 
from 23 crew members who participated in missions lasting 50 to 247 days on the ISS, Zwart et al. 
found serum ferritin was positively correlated with 8-hydroxy-2′-deoxyguanosine (r = 0.53, p < 0.001) 
and prostaglandin F2α (r = 0.26, p < 0.001), which are oxidative damage makers [55]. In addition, they 
revealed that greater amount of ferritin during flight is accompanied by greater loss in bone mineral 
density in the total hip (p = 0.031), trochanter (p = 0.006), hip neck (p = 0.044), and (p = 0.049) after flight 
[55]. Their research inspired us that microgravity-induced bone loss may be associated with oxidative 
stress caused by increased iron store. 

Besides iron metabolism, the downregulation of anti-oxidative enzymes like Mn-SOD are also 
key reasons for oxidative stress-induced bone loss in response to microgravity [61–63]. The deficiency 
of anti-oxidative enzymes can cause distinct weakness in bone and bone fragility [64], and 
dysfunctional oxidative defense system will exacerbate bone loss via suppressed osteoblastic abilities 
during mechanical unloading [65]. 

Scheme 1. The scheme of possible mechanism of space environment-induced bone loss: the increment
of ROS caused by Space environment antagonizes the skeletal effects of Wnt/β-catenin/Tcf by diverting
β-catenin from Tcf—to FoxOs-mediated transcription. LRP: LDL receptor-related proteins.

3. Microgravity Increases Oxidative Stress in Bone System

Microgravity conditions in space cause an imbalance between bone formation and
resorption [48–51]. The average rate of aBMD loss is 1–1.5% per month evaluated by dual-energy
X-ray absorptionmetry (DXA) scans from preflight and postflight [52]. Bone loss under microgravity
conditions is relevant to oxidative injury. Microgravity is considered to increase free radical formation
and causes oxidative stress [53–56]. Findings either from the real spaceflight missions or ground-based
models (head-down bed rest model and hind-limb unloading rodents) all demonstrated elevated
oxidative damage markers and attenuated total antioxidant capacity [53,57,58]. Hind-limb unloading
(HLU) rodents, rotary wall vessel bioreactor (RWVB) and Random Positioning Machines (RPMs) are
commonly used microgravity models in vivo and in vitro. Xin et al. and Sun et al. both observed
that malondialdehyde levels (oxidant marker) were raised but total sulfhydryl content (anti-oxidant
marker) descended in femurs of HLU Sprague-Dawley (SD) rats [59,60]. MC3T3-E1 cells that were
exposed to RWVB had higher cellular ROS levels but lower differential abilities [59,60]. On the contrary,
RWVB treatment-induced ROS generation facilitated osteoclastogenesis of RAW264.7 cells [59,60].
Their findings illustrated that the generation of ROS increased in response to microgravity. The excessive
ROS destroyed normal function of osteoblasts but enhanced the osteoclasts’ capabilities, which lead to
insufficient bone formation and massive bone absorption.

It is believed that the oxidative damage caused by the space environment is related to insufficient
nutrition intake and disturbed iron metabolism as well [54,55]. By analyzing blood and urine samples
from 23 crew members who participated in missions lasting 50 to 247 days on the ISS, Zwart et al.
found serum ferritin was positively correlated with 8-hydroxy-2′-deoxyguanosine (r = 0.53, p < 0.001)
and prostaglandin F2α (r = 0.26, p < 0.001), which are oxidative damage makers [55]. In addition, they
revealed that greater amount of ferritin during flight is accompanied by greater loss in bone mineral
density in the total hip (p = 0.031), trochanter (p = 0.006), hip neck (p = 0.044), and (p = 0.049) after
flight [55]. Their research inspired us that microgravity-induced bone loss may be associated with
oxidative stress caused by increased iron store.

Besides iron metabolism, the downregulation of anti-oxidative enzymes like Mn-SOD are also key
reasons for oxidative stress-induced bone loss in response to microgravity [61–63]. The deficiency of
anti-oxidative enzymes can cause distinct weakness in bone and bone fragility [64], and dysfunctional
oxidative defense system will exacerbate bone loss via suppressed osteoblastic abilities during
mechanical unloading [65].
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In brief, microgravity affects oxidative status of bone in many aspects. Mechanical
unloading-induced bone loss is closely associated with increased ROS level in different types of
bone cell in response to microgravity. Through disturbing oxidative-antioxidative defense systems,
microgravity breaks the equilibrium between bone formation and bone absorption leading to
skeletal fragility.

4. Radiation Induces Oxidative Stress in Bone System

In addition to microgravity, cosmic radiation is another predominant feature of the space
environment, and it is a strong incentive to oxidative stress [66–69]. To date, direct research in
spaceflight about the connection between oxidative stress caused by radiation and bone involution
is rare. However, some ground-based study suggested the inhibitory effect of radiation to bone
formation. Irradiation suppressed bone-like nodule formation, alkaline phosphatase (ALP) activity
and expression of osteoblast markers in MC3T3-E1 cells [70]. Meanwhile, the depletion of antioxidant
defense enzymes and accumulation of cellular ROS were observed [70]. A similar phenomenon was
also exhibited in bone marrow-derived skeletal cell progenitors after a single dose (1–5 Gy) irradiation
(137Cs Gy/min) exposure [71]. In an HLU mouse model, total body gamma irradiation (1 or 2 Gy
of 137Cs) to C57BL/6 mice decreased cancellous bone volume fractions in the proximal tibiae and
lumbar vertebrae significantly, but increased osteoclast surface 47% in the tibiae [72]. Irradiation
to total body also stimulated generation of ROS in marrow cells and promoted cell apoptosis [72].
These results inferred that irradiation may cause oxidative stress and inhibit the osteoblasts’ growth
and differentiation, but encourage bone absorption. Thus, cosmic radiation may affect critical bone cell
functions by stimulating production of ROS, and its suppressive effect to osteoblast involved oxidative
stress-mediated activation of Nrf2/HO-1 pathway [70].

5. Countermeasures against Bone Loss Caused by Oxidative Stress in Spaceflight

The development of effective countermeasures against oxidative damage in bone during long-term
spaceflight is essential. Expanded investments in ground-based or in-flight studies revealed some
approaches for antagonism of oxidative stress triggered by microgravity and cosmic radiation.

Adequate intake of antioxidant vitamins (e.g., vitamins C and E and carotenoids) can reduce
oxidative damages in bones [73,74]. Some research indicated drinking of hydrogen water could relieve
microgravity-induced reduction of bone mineral density and augmentation of malondialdehyde in
bone tissue [60]. In addition, consuming a diet that provides other naturally occurring antioxidants,
such as carotenoids and flavonoids is also effective to reverse microgravity-induced skeletal involution.
For example, curcumin, a phenolic natural product isolated from the rhizome of Curcuma Longa
(turmeric), could attenuate HLU-induced bone loss by suppressing oxidative stress [59].

Some natural products have exhibited skeletal benefits against oxidative stress. Tanshinol,
extracted from Salvia miltiorrhiza Bunge, rescued the decrease of osteoblastic differentiation
via down-regulation of FoxO3a signaling and upregulation of Wnt signal under oxidative
stress [75]. Some extracts from teas also have osteogenic benefits against oxidative stress [76,77].
Other antioxidants, e.g., α-lipoic acid and N-acetyl cysteine, could restore the changes induced by
oxidative stress in bone as well [70,72]. Although these data are not from ground-based models
or in-flight studies, they can still enlighten the development of countermeasures against bone loss
induced by oxidative stress during space flight.

Humans are embarking on the adjustment of diet in long-duration space flight. It seems that intake
of rich antioxidants will prevent oxidative damage caused by space environment. With the progress of
research, certain medical approaches will be created and we will conquer oxidative stress-induced
bone loss eventually.
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6. Conclusions and Perspectives

Space is a stressful environment. Microgravity and cosmic rays are main adverse factors
challenging the survival of organisms. The oxidative stress triggered by spaceflight causes a variety
of damages to the human body including skeletal involution. In this review, we summarized the
stimulation of oxidative stress by radiation and microgravity in space, and its inhibitory effect on bone
formation. We discussed the possible mechanisms of oxidative injury induced by space environment to
the bone system. Presently, it is mainly believed that the attributed factors include inadequate nutrition
intake, increased iron store, and an impaired oxidative defense system. Some countermeasures
that have therapeutic potentials for bone loss via oxidative stress antagonism are also mentioned in
this manuscript.

Although some progress has been made, the mechanisms of oxidative injuries induced by space
habitation are not fully understood. For example, how is gravity sensed and transduced in the bone
system and how does it cause the elevation of ROS correspondingly? How do ROS cause bone
loss under the special space environment? Further steps need to be taken to thoroughly clarify the
whole predisposing process of oxidative stress in space flight and mechanotransduction of gravity,
and to develop countermeasures accordingly. It is understandable that resources are limited for
spaceflight itself, because the crew time and sample return are restricted and the subject pools are
small. Therefore, some ground-based models can be used as vital experimental platforms that allow
researchers to examine the effects of the special space environment on bone system. To date, researchers
suggest the potential application of antioxidants as a useful dietary source in astronauts’ lifestyles.
Perhaps it is one solution for oxidative injury during long-term space habitation. The development of
countermeasures against oxidative damage will facilitate human beings residing longer in space and
truly entering the space era.
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ROS Reactive Oxygen Species
HLU Hind-limb Unloadings
ISS International Space Station
FoxO Forkhead box O
Mn-SOD Manganese superoxide dismutase
GPx-1 Glutathione peroxidase-1
Tcf T-cell factor
LRP LDL receptor-related proteins
aBMD Areal bone mineral density
DXA Dual-energy X-ray absorptionmetry
RWVB Rotary wall vessel bioreactor
SD Sprague-Dawley
RANKL Receptor activator of nuclear factor-kappa B ligand
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