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Network efficiency characterizes how information flows within a network, and it has been

used to study the neural basis of cognitive intelligence in adolescence, young adults, and

elderly adults, in terms of the white matter in the human brain and functional connectivity

networks. However, there were few studies investigating whether the human brain at

different ages exhibited different underpins of cognitive and emotional intelligence (EI)

from young adults to the middle-aged group, especially in terms of the morphological

similarity networks in the human brain. In this study, we used 65 datasets (aging 18–64),

including sMRI and behavioral measurements, to study the associations of network

efficiency with cognitive intelligence and EI in young adults and the middle-aged group.

We proposed a new method of defining the human brain morphological networks

using the morphological distribution similarity (including cortical volume, surface area,

and thickness). Our results showed inverted age × network efficiency interactions in

the relationship of surface-area network efficiency with cognitive intelligence and EI: a

negative age × global efficiency (nodal efficiency) interaction in cognitive intelligence,

while a positive age × global efficiency (nodal efficiency) interaction in EI. In summary,

this study not only proposed a new method of morphological similarity network but

also emphasized the developmental effects on the brain mechanisms of intelligence

from young adult to middle-aged groups and may promote mental health study on the

middle-aged group in the future.

Keywords: MRI, morphological network, network efficiency, intelligence, aging

INTRODUCTION

Cognitive intelligence and emotional intelligence (EI) were generally regarded as different aspects
of the human abilities (Gardner, 1987; Goleman, 1995), and they complemented each other in
an additive manner (Van Rooy and Viswesvaran, 2004; Cote and Miners, 2006). Also, it was
well-known that they were both related to life outcomes, including academic accomplishment, work
performance, and longevity (Mayer et al., 2004; Petrides et al., 2004; Deary, 2008, 2012). As we grew
older, cognitive intelligence and EI exhibited distinct trajectories of development (Williams et al.,
2006, 2008; Giedd, 2008). Although not fully understood, different age groups showed differences
in these behaviors that were both accompanied by the human brain morphological and functional
changes (Schnack et al., 2015; Szymkowicz et al., 2016; Xia et al., 2019). In more detail, cognitive
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intelligence, such as memory and processing speed, showed a
rapid increase during childhood and adolescence, which peaked
around 20s to 30s and then gradually declined throughout
the later part of the life span, particularly after 50 years of
age (Salthouse, 2009, 2012, 2017; Singh-Manoux et al., 2012).
Contrary to the negative effects of aging on cognitive intelligence,
EI was relatively well-preserved or even improved during aging,
which was supported by the evidence that older age was
associated with a greater positivity bias, better emotional control,
and better emotional stability (Gross et al., 1997; Lachman and
Bertrand, 2001; Charles et al., 2003; Phillips and Allen, 2004).

Previous studies have reported that both anatomical (white
matter [WM] tractography) and functional network efficiencies
were related to cognitive intelligence (Li et al., 2009; van den
Heuvel et al., 2009; Langer et al., 2012) and EI (Smith et al.,
2018b; Dzafic et al., 2019) in adolescence, adults, and elderly
groups. However, most of them focused on one age group, and
no study investigated whether, and how, the associations between
the human brain network efficiency and intelligence changed
from young adults to the middle-aged group. In contrast,
researchers found a developmental shift from a predominantly
negative correlation between cognitive intelligence and cortical
thickness in early childhood to a positive correlation in late
childhood and adulthood (Shaw et al., 2006; Schnack et al.,
2015), and the positive correlation continued in people older
than 60 (Naumczyk et al., 2018). These findings of different brain
mechanisms for different age groups provided some foresights
to better understand the neural mechanism from developmental
perspective. Also, the brain mechanisms linked to both the
decline of cognitive intelligence and the increase or maintenance
of EI remains to be answered. Studies using two different age
groups (including young adults and the middle-aged group)
and two different behavioral measurements (including cognitive
intelligence and EI) would provide a unique perspective to
understand the neural mechanisms of intelligence and aging.

A single measurement of the human brain morphology only
captured one profile of the complexity of neurobiological changes
associated with aging, and the multiple measurements of the
human brain characteristics have been proved to better explain
individual differences in intelligence (Rodrigue and Kennedy,
2011; Kievit et al., 2012; Ritchie et al., 2015). Moreover, the
human brain was organized as an efficient network composed
of, spatially distributed but functionally linked, the brain regions
(Bullmore and Sporns, 2009; Vogel et al., 2010). Recent studies
turned the focus from investigating the structural underpins
of cognitive intelligence and EI using only one measurement
of the brain characteristics to explore the brain mechanisms
of intelligence using morphological networks (Li et al., 2009;
Angel Pineda-Pardo et al., 2016). The existing methods of
building the human brain morphological networks are WM
tractography (diffusion-weighted tractography; Li et al., 2009;
Koenis et al., 2018) and the structural covariance network
(Mechelli et al., 2005; Alexander-Bloch et al., 2013). WM is
substantially the bundle for information transfer composed of
myelinated axons and very few neurons. In contrast to Diffusion
Tensor Imaging (DTI), which provides a direct measurement of
structural connectivity in the human brain, wher a long-range

structural connectivity could not be reliably quantified (Jeurissen
et al., 2019), the measurement of gray matter (GM; composed
mainly of cell bodies) allowed the detections of both short-
range and long-range structural connectivity (Alexander-Bloch
et al., 2013). In addition, the data analysis of DTI was largely
affected by head motion and may involve a large number of
false-positive connections (Thomas et al., 2014; Maier-Hein et al.,
2017). The structural covariance network of GM could only yield
one correlation matrix for a group of subjects (Alexander-Bloch
et al., 2013), which only represented the characteristics of the
population and did not reveal the individual differences. Besides
the two methods of constructing morphology network, there was
also a new method constructing interregion similarity network
for a single individual from 10 brain properties (Seidlitz et al.,
2018; Morgan et al., 2019). Goulas et al. (2017) reported that
the cytoarchitectonically similar areas of the brain region were
more likely to be axonally connected to each other, which might
result in the synchronization of the brain regions when facing a
task or a joint action of a cognitive activity. Thus, compared with
WM connection network and the structural covariance network,
the morphological similarity could measure the connectivity
between the brain regions in a single individual and might be
the most accurate and rational method to reflect the information
transfer between them. The similarity network using 10 brain
properties from MRI and DTI data should be more reliable but
may contain more limitations because of the limitation of every
single morphological measurement. Therefore, combined with
the graph theory, we proposed a new method of constructing
a large-scale morphology network based on the distributions
of cortical surface characteristics from a structural MRI (sMRI)
scan (cortical volume, surface area, and thickness) to study
the associations of the morphological network efficiency with
cognitive intelligence and EI.

Here, we recruited 67 healthy participants (aging 18–64), who
finished sMRI scanning, followed by the assessment of cognitive
intelligence and EI. Additionally, we used the morphological
similarity network of cortical volume (surface area and thickness)
to explore the associations between network efficiency and
intelligence, including cognitive and emotional perspectives at
different ages. The graph theory was applied to explore the
information processing in the large-scale morphological network
of the human brain. The global efficiency corresponds to long-
distance interactions and reflects the information integration
over the whole network; the nodal efficiency reflects the
information transfer ability of the parcel (node), whereas the
local efficiency reflects the specialization of a single node within
the network (Latora and Marchiori, 2001; Bullmore and Sporns,
2012). We attempted to answer the following questions: Were
cognitive intelligence and EI related to distinct brain organization
patterns? Were there developmental effects on the correlations
between the brain network efficiency and intelligence?

MATERIALS AND METHODS

Participants
Participants were recruited from local community by
advertisements. The initial sample included 67 participants
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(32 males and 35 females; mean age = 32.79 ± 13.11; ranged
from 18.59 to 64.30). All participants were invited for a
detailed mental health interview using the Mini-International
Neuro-Psychiatric Interview, and people with a history of
major neuropsychiatric illness, head injury, alcohol, or drug
abuse were excluded from the study. We also excluded
people with MRI contraindications, including people with
implants, pacemakers, brain surgery, current pregnancy, and
very recent tattoos. In addition to the MRI scanning, the
participants were also assessed with Wechsler Adult Intelligence
Scale (WAIS; 4th edition, Chinese) and Schutte Self-Report
Emotional Intelligence Scale (SSEIS; Chinese). The final
sample included 65 participants. Participants who were absent
from the MRI scanning (n = 1) or did not pass the mental
health interview (n = 1) were excluded. The institutional
review board of Institute of Psychology Chinese Academy of
Sciences approved this study, and written informed consent
was obtained from the individual participant prior to the
data acquisition.

Behavior Measures
Cognitive Intelligence
The WAIS, 4th edition (Chinese), was applied to measure
cognitive intelligence (Wang et al., 2013). In the 4th edition,
the full-scale intelligence quotient (FSIQ) is a composite score
obtained from 10 subtests measuring two components of
cognitive ability: the general ability index (GAI), which is the
FSIQ of previous versions, and the cognitive proficiency index
(CPI), which was proposed with the development of cognitive
psychology. The GAI is comprised of two subsets: the verbal
comprehension index (VCI, estimated by the subtest as follows:
vocabulary, similarities, and information) and the perceptual
reasoning index (PRI, estimated by the subtest as follows:
block design, visual puzzles, and matrix reasoning); and the
CPI is comprised of two subsets: the working memory index
(WMI, estimated by the subtest as follows: arithmetic and
digital span) and the processing speed index (PSI, estimated
by the subtest as follows: coding and symbol search). The
raw scores of the 10 subtests and the standardized scores
were recorded for the FSIQ computation. We combined both
the raw scores of 10 subsets and standardized scores in final
statistical analysis.

Emotional Intelligence
The SSEIS was applied to measure EI. It is a valid assessment
developed by Schutte et al. (1998) based on the original model
of EI of Salovey and Mayer (1990). The Chinese version has a
high reliability and validity, and it consists of 33 items, via a
five-point Likert scale for all items, to measure four dimensions
as follows: emotion perception, emotion management of the
self, emotion management of others, and emotion utilization
(Wang, 2002). Participants were asked to response on which
“1” represented “not true of me” and “5” represented “very
true of me.” The Cronbach’s α in the present study was 0.903.
We aimed to examine the associations of the human brain
morphological network efficiency with EI total score and four
subscale scores.

Imaging Acquisition
All MRI images were collected on a Discovery MR750 3.0-
T scanner (GE Healthcare) at Institute of Psychology Chinese
Academy of Sciences. The participants completed a T1-weighted
structural MRI scan (eyes closed) with a magnetization-prepared
rapid gradient-echo (MPRAGE) sequence with the following
parameters: repetition time (TR) = 6.652ms, echo time (TE) =
2.928ms, inversion time (T1) = 450ms, flip angle (FA) = 12◦,
field of view = 256mm × 256mm, acquisition matrix = 256 ×

256, slice thickness= 1.0mm, 192 sagittal slices, and voxel size=
1mm× 1mm× 1 mm.

Imaging Data Preprocessing
All the images were preprocessed by the Connectome
Computation System (CCS), which was formulated by our
lab using fMRI Software Library (FSL), Analysis of Functional
Neuroimages (AFNI), and FreeSurfer (Xu T. et al., 2015). It
focuses on the surface-based analysis compared to other resting
state fMRI data analysis pipelines, and detailed descriptions
of the system could be found in our previous publications
(Jiang et al., 2015). The preprocessing comprised structural
image preprocessing and functional image preprocessing.
The structural image preprocessing included noise removal,
brain extraction using the volBrain Automated MRI Brain
Volumetry System (http://volbrain.upv.es; Manjon and Coupe,
2016), intensity inhomogeneity correction, segmentation of
cerebrospinal fluid (CSF), WM, and GM, construction of the
GM-WM (white surface) and GM-CSF interface (pial surface),
and spatial registration by matching the cortical folding patterns
across participants by recon-all in FreeSurfer and Gaussian
spatial smoothing (FWHM = 6mm). Finally, the 3D structure
images were projected onto the fsaverage5 standard cortical
surface with 10,242 vertices per hemisphere.

Quality Control
Quality control is very important for solid data analysis. For
structural MRI, our quality control procedure (QCP) was as
follows: (1) we performed visual inspection on all the original
images and excluded participants with obvious structural brain
abnormalities and significant motor artifacts during the scan; (2)
CCS provides screenshots of the brain tissue segmentation as
well as screenshots of pial and white surface reconstruction. We
visually checked the screenshots, and participants with bad brain
tissue segmentation and surface reconstruction were excluded
from the subsequent analysis. All the participants passed the
quality control.

The final sample included 65 participants. There was one
participant who only underwent the EI test but did not undergo
the cognitive intelligence test. Therefore, we had 64 participants
for the cognitive intelligence analysis and 65 participants for the
EI analysis. For further detailed visualization, the whole group
was divided into two age groups: young adults and the middle-
aged group. The descriptive information of two groups is shown
in Table 1.
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Morphological Network
Using a large-scale brain network, parcellation developed by
Yeo et al. (2011), which subdivided the entire cortical surface
into 51 spatially connected parcels based on resting-state
functional connectivity, we computed the total cortical volume
and the total cortical surface area of each parcel by summing
the volume or area of all vertices belonging to that parcel.
Mean thickness was calculated by averaging the thickness of
all the vertices within each parcel. We excluded the parcels
whose vertex number was <50, and finally 32 parcels were
reserved for the final group analysis, expanding across all
the Yeo-7 networks: visual network, sensory motor network,
dorsal attention network, ventral attention network, limbic
network, frontoparietal network, and default mode network
(see Table 2).

We proposed a new method to construct a morphological
network, including cortical volume, surface area, and cortical
thickness. In a word, we estimated the distribution similarity of
each morphological measurement for each pair of parcels (see
Figure 1A, take cortical volume as an example). First, for each
pair of parcels, we uniformly divided both of their volumes into

TABLE 1 | Descriptive statistics of young adults and middle-aged group.

N Sex

(male: female)

Age (year) Education (year)

Mean ± SD Range Mean ± SD Range

Young

adults

34 17:17 26.45 ± 4.68 18.59–32.84 16.47 ± 2.61 9–22

Middle-

aged

group

31 15:16 49.17 ± 7.97 35.92–64.30 14.16 ± 3.37 8–22

Whole

group

65 32:33 37.29 ± 13.11 18.59–64.30 15.37 ± 3.19 8–22

TABLE 2 | The vertex number of reserved 32 brain regions.

Brain region(lh) Vertex

number

Brain region(rh) Vertex

number

Vis(lh) 1213 Vis(rh) 1266

SomMot(lh) 1590 SomMot(rh) 1612

DorsAttn_Post(lh) 627 DorsAttn_Post(rh) 614

DorsAttn_FEF(lh) 97 DorsAttn_FEF(rh) 98

SalVentAttn_ParOper(lh) 130 DorsAttn_PrCv(rh) 50

SalVentAttn_FrOper(lh) 331 SalVentAttn_TempOccPar(rh) 208

SalVentAttn_Med(lh) 216 SalVentAttn_FrOper(rh) 313

Limbic_OFC(lh) 213 SalVentAttn_Med(rh) 242

Limbic_TempPole(lh) 331 Limbic_OFC(rh) 237

Cont_Par(lh) 151 Limbic_TempPole(rh) 321

Cont_PFCl(lh) 291 Cont_Par(rh) 167

Default_Par(lh) 263 Cont_PFCl(rh) 543

Default_Temp(lh) 359 Default_Par(rh) 183

Default_PFC(lh) 771 Default_Temp(rh) 269

Default_PCC(lh) 281 Default_PFCv(rh) 60

Default_PFCm(rh) 461

Default_PCC(rh) 225

30 bins. Second, we computed the vertex frequency for each
bin of the two parcels so that we got the frequency distribution
histogram for each parcel. Third, the Pearson’s correlation was
calculated to estimate the volume distribution similarity, and
we got a 32 × 32 morphological correlation matrix for each
participant. The positive and negative connectivity, respectively,
mean that the two brain regions have activation and inhibition
effects. Significant inhibition effects should also be taken into
account when calculating the entire network topology. Therefore,
in this study, we considered the absolute values of connections
to compute network efficiency. Considering orthogonal minimal
spanning trees (OMST; Dimitriadis et al., 2017) as a threshold-
free method to extract the strongest and the most important
connections of a network, we used it to get an undirected
weighted graph as shown in Figure 1B, and further, the network
efficiency was computed based on the binary (unweighted)
correlation matrix.

Network Efficiency
We applied the graph theory (Achard et al., 2006) to compute
global efficiency Eglob, nodal efficiency Enodal, and local
efficiency Eloc (in more detail, we used the Brain Connectivity
Toolbox, http://www.brain-connectivity-toolbox.net; Rubinov
and Sporns, 2010).

In the graph theory, the global efficiency for a network G is
defined as:

Eglob (G) =
1

N(N − 1)

∑
i,j,i6=j∈G

1

Lij
(1)

whereN is the number of nodes and Lij is the shortest path length
between nodes i and node j in graph G (Latora and Marchiori,
2003). It was a global measure of the parallel information transfer
ability of the whole network. The nodal efficiency of a node i is
defined as:

Enodal(i) =
1

N − 1

∑
j,i6=j∈G

1

Lij
(2)

where N and Lij are the same as that in Equation (1), respectively
the number of nodes and the shortest path length between
nodes i and j in graph G (Latora and Marchiori, 2003). The
nodal efficiency measures the importance of the node for the
information transfer in the network. The local efficiency of a node
i is defined as:

Elocal(i) = Eglob (Gi) (3)

where Gi is a subgraph and is composed of the nodes that

connected to node i (not including node i) directly and to

interconnected edges. The local efficiency indicated how well the

information was exchanged in the given subgraph.

Statistical Analysis
To investigate whether the association between the brain network

efficiency and intelligence was age dependent, we added an

interactive term age × network efficiency in the general linear
model that took age, morphological network efficiency (E, global
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FIGURE 1 | The workflow for the construction and thresholding of the morphological network for cortical volume. (A) For each pair of parcels, like the left SomMot

and the left DorsAttn_Post, we uniformly divided their volumes into 30 bins (5.4–66.4). Each bin had a width of (66.4–5.4)/30 = 2.03, and the frequency distribution

histograms were presented in the middle. By computing the Pearson’s correlation of two sets of frequencies, we got the similarity of these two parcels. (B) showed

the thresholding schemes of the network, and we first got absolute value of each connection in the network and then applied the data-driven thresholding scheme

based on orthogonal minimal spanning trees (OMST).

efficiency, nodal efficiency, or local efficiency), sex, education,
intracranial volume (ICV), and total cortical volume for volume
network (or total surface area for area network or mean thickness
for thickness network) as covariates. The detailed statistical
model is shown in Equation (4).

beh = α1 × age+ α2 × E+ α3 × sex+ α4 × edu+ α5

× ICV + α6 ×morptotal/mean + β × age× E+ γ (4)

False discovery rate (FDR, q < 0.05) correction for 32 parcels
was used to control type 1 error over multiple tests. Also, the
general linear model statistical analysis was performed using
MATLAB scripts including regress.m and mafdr.m. Moreover,
we further tested the reproducibility of the results using the
leave-one-out (LOO) method. The LOO reproducibility was
performed as follows: after one subject was randomly removed
from the 65 subjects, we did the linear regression model on the
remaining 64 subjects, which was repeated for 65 times (C1

65). The
reproducibility was defined as the proportion of occurrences out
of 65.

RESULTS

Behavior Data
Table 3 illustrates detailed information about WAIS and SSEIS
for the two groups, including their average, SD, maximum, and

minimum. There were no significant differences between the two
groups with respect to the total score and each dimension of
IQ and SSEIS. Within the raw scores of 10 subsets in WAIS,
only similarity subtests showed no significant differences between
young adults and the middle-aged group; in other nine subsets,
the middle-aged group always had a poorer performance than
young adults possibly because of aging. However, raw scores of
EI exhibited no significant differences between young adults and
the middle-aged group.

Inverted Age × Global Efficiency
Interactions in Cognitive Intelligence and
EI
In the surface area network, we found significant negative age
× global efficiency interactions in the raw scores of cognitive
intelligence subtest (see Table 4 for details), while there was
significant positive age × global efficiency interactions in EI
(see Table 5 for details): these meant different age-dependent
patterns for both cognitive intelligence and EI. For an intuitive
illustration of the global efficiency as well as cognitive intelligence
and EI, we also plotted scatters for each significant interaction
in Figure 2. We plotted the partial correlations of the global
efficiency with cognitive abilities for each age group. For young
adults, the global efficiency predicted cognitive intelligence
positively (Figures 2A–C), while for middle-aged group, the
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lower global efficiency was related to the higher cognitive
intelligence (Figures 2D–F). Inversely, EI was negatively related

TABLE 3 | Descriptive statistics of Wechsler Adult Intelligence Scale and Schutte

Self-Report Emotional Intelligence Scale test.

Young adults Middle-aged group

Mean ± SD Range Mean ± SD Range

General ability

index

121.06 ± 11.01 98−146 122.93 ± 13.07 102–144

Cognitive

proficiency index

118.24 ± 11.09 92–142 119 ± 10.94 98–147

Verbal

comprehension

index

121.97 ± 10.42 93–145 122.57 ± 10.55 107–149

Perceptual

reasoning index

115.18 ± 12.14 84–142 117.6 ± 16.45 94–144

Working memory

index

113.53 ± 11.69 80–134 115.63 ± 13.44 89–148

Processing speed

index

118.56 ± 13.54 92–145 117.67 ± 11.21 94–138

FSIQ 121.41 ± 10.77 97–142 122.93 ± 11.83 103–141

Emotion

perception

46.53 ± 6.29 33–58 45.52 ± 5.7 30–56

Emotion

management of

the self

33.53 ± 2.94 28–38 32.65 ± 3.67 26–40

Emotion

management of

others

25.35 ± 3.2 17–30 25.29 ± 3.13 21–30

Emotion utilization 30.79 ± 3.84 21–35 29.03 ± 3.89 20–35

EI 136.21 ± 13.96 110–157 132.48 ± 13.57 105–161

SD, standard deviation.

to global efficiency in young adults but positively related to global
efficiency in the middle-aged group.

Inverted Age × Nodal Efficiency
Interactions in Cognitive Intelligence and
EI
In the volume network, we found significant negative age
× nodal efficiency interactions in cognitive intelligence in
the Limbic_TempPole(rh). In the area network, we found
inverted age × nodal efficiency interactions in cognitive
intelligence and EI: significant negative age × nodal efficiency
interactions in the SalVentAttn_ParOper(lh) and Cont_Par(lh)
(see Table 2 for detail), while significant positive age ×

nodal efficiency interactions in EI in the SomMot(rh),
Limbic_TempPole(lh) Cont_Par(lh), Default_Par(lh),
Default_PFC(lh), Default_PCC(lh), and Default_PCC(rh)
(see Table 5 for detail). There was no significant age × nodal
efficiency interaction in cognitive intelligence or EI in the cortical
thickness network.

Positive Age × Local Efficiency
Interactions in Cognitive Intelligence
Only significant positive age × local efficiency interactions
were found in cognitive intelligence in the Default_PFCv(rh)
and Cont_PFCl(rh) (see Table 4 for detail). We also plotted
scatters for the two different age groups. For young adults, we
found negative correlations between digit span in the cognitive
intelligence test and local efficiency in the Default_PFCv(rh) of
the volume network (Figures 3A,B), as well as the negative
correlation of vocabulary in cognitive intelligence test
with local efficiency in the Cont_PFCl(rh) of area network
(Figure 3C). The correlations above were reversed in the
middle-aged group.

TABLE 4 | The significant age × network efficiency interactions in cognitive intelligence.

Morphological

network

Reproducibility (%) Significant interactions Beta coefficient Corrected p-value

Parcel Behaviors

Eglob Area network 96.92 Global efficiency Vocabulary −0.27 0.019

80.00 Global efficiency Matrix reasoning −0.19 0.039

98.46 Global efficiency Digital span backward −0.25 0.021

Enodal Volume network 89.23 Limbic_TempPole(rh) Processing speed index −0.38 0.031

Area network 96.92 SalVentAttn_ParOper(lh) General ability index −0.38 0.016

98.46 SalVentAttn_ParOper(lh) Perceptual reasoning index −0.40 0.015

87.69 SalVentAttn_ParOper(lh) FSIQ −0.37 0.031

100.00 SalVentAttn_ParOper(lh) Matrix reasoning −0.33 0.008

69.23 Cont_Par(lh) Vocabulary −0.36 0.043

Eloc Volume network 90.77 Default_PFCv(rh) Digital span 0.37 0.027

95.38 Default_PFCv(rh) Digital span forward 0.39 0.020

Area network 93.85 Cont_PFCl(rh) Vocabulary 0.36 0.023

Eglob, global efficiency; Enodal, nodal efficiency; Eloc, local efficiency; Beta coefficient, the standardized regression coefficient of age× efficiency in the general linear regression models;

the corrected p-value, the significance for regression coefficient of age × efficiency (corrected by the false discovery rate [FDR] correction for 32 brain parcels); lh, left hemisphere; rh,

right hemisphere; Limbic_TempPole, temporal pole; SalVentAttn_ParOper(lh), temporal-parietal junction (TPJ); Cont_Par(lh), inferior parietal sulcus (IPS); Default_PFCv, ventral medial

prefrontal cortex (vmPFC); Cont_PFCl, anterior dorsal lateral prefrontal cortex (aDLPFC). We employed a leave-one-out process to assess the reproducibility of the significant interactions,

which means that the data of 64 out of 65 subjects were randomly selected for the further analysis.
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TABLE 5 | The significant age × network efficiency interactions in emotional intelligence.

Morphological

network

Reproducibility (%) Significant interactions Beta coefficient Corrected p-value

Parcel Behaviors

Eglob Area network 100.00 Global efficiency Emotion perception 0.31 0.013

100.00 Global efficiency Emotion management of others 0.33 0.012

100.00 Global efficiency EI 0.30 0.018

Enodal Area network 67.69 SomMot(rh) Emotion perception 0.38 0.040

98.46 SomMot(rh) Emotion management of the self 0.44 0.011

55.38 SomMot(rh) Emotion management of others 0.36 0.046

100.00 SomMot(rh) EI 0.43 0.019

75.38 Limbic_TempPole(lh) Emotion perception 0.41 0.040

58.46 Limbic_TempPole(lh) Emotion management of others 0.39 0.046

95.38 Limbic_TempPole(lh) EI 0.41 0.030

80.00 Cont_Par(lh) Emotion perception 0.42 0.040

78.46 Cont_Par(lh) Emotion management of others 0.43 0.038

96.92 Cont_Par(lh) EI 0.43 0.019

52.31 Default_Par(lh) Emotion management of others 0.34 0.046

56.92 Default_PFC(lh) Emotion management of others 0.36 0.046

53.85 Default_PCC(lh) Emotion management of others 0.34 0.046

47.69 Default_PCC(rh) Emotion management of others 0.34 0.046

Eloc –

Eglob, global efficiency; Enodal, nodal efficiency; Eloc, local efficiency; Beta coefficient, the standardized regression coefficient of age× efficiency in the general linear regression models;

corrected p-value, the significance for regression coefficient of age × efficiency (corrected by the false discovery rate [FDR] correction for 32 brain parcels); lh, left hemisphere; rh, right

hemisphere; SomMot, sensory motor area (SMA); Limbic_TempPole, temporal pole; Cont_Par(lh), inferior parietal sulcus (IPS); Default_Par, lateral parietal cortex (LPC); Default_PFC,

medial PFC (mPFC); Default_PCC, posterior cingulate cortex (PCC). We employed a leave-one-out process to assess the reproducibility of the significant interactions, which means

that the data of 64 out of 65 subjects were randomly selected for the further analysis.

DISCUSSION

In this study, we found (1) associations between network
efficiency and intelligence including cognitive intelligence and
EI were age dependent; (2) the negative age × global efficiency
interactions in cognitive intelligence implied stronger correlation
of global efficiency with cognitive intelligence in young adults
than the middle-aged group and emphasized the importance
of parallel information transfer and integrated processing in
young adults; and (3) on the other hand, the positive age ×

global efficiency interactions in EI implied stronger correlation
of global efficiency with EI in the middle-aged group than young
adults, and this may rely on increased connections between
different networks such as sensory motor network, limbic
network, frontoparietal network, and default mode network. In
a summary, our findings demonstrated that global efficiency of
cortical networks facilitated cognitive abilities for young adults;
however, due to dynamic changes of between- and within-
network connectivity, the correlation between global efficiency
and cognitive intelligence decreased with aging, whereas for
EI, the correlation between EI and global efficiency increased
with age.

Inverted Age × Global Efficiency
Interactions in Cognitive Intelligence and
EI
Cognitive intelligence and EI are two components of the
human intelligence. Our results indicated that they had different

developmental trajectories from young adults to the middle-
aged group, which was consistent with previous studies, namely,
cognitive intelligence decreased with advancing aging, but
EI was relatively well-preserved across the two age groups
(Salthouse, 2009, 2012; Mather, 2012, 2016). From the brain
mechanism perspective, the neural underpinnings of intelligence
also exhibited age-dependent patterns, more specifically, a
positive correlation between cognitive intelligence and global
efficiency, as well as nodal efficiency in young adults but
inverted in the middle-aged group, and a positive correlation
between EI and global efficiency, as well as nodal efficiency in
the middle-aged group but inverted in young adults. Previous
studies using structural and functional MRI data illustrated that
the cognitive-related brain regions (mainly the frontoparietal
network) showed age-related decrease in GM volume andwithin-
network connectivity (Good et al., 2001; Tisserand et al., 2002;
Fjell et al., 2009) and increased between-network connectivity
(Avelar-Pereira et al., 2017); older adults showed less segregated
network organization than young adults (Betzel et al., 2014;
Cao et al., 2014). Also, the greater within-network connectivity
(more segregated network organization) corresponded to the
higher cognitive ability such as working memory (Damoiseaux
et al., 2008), while the greater between-network connectivity was
related to the poorer performance of cognitive test such as WAIS
vocabulary test (Li et al., 2012). Combining the results of previous
findings, our results further verified that the global efficiency
as a measurement of the global information transfer ability
became more vulnerable and the predictive value decreased in
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FIGURE 2 | Inverted age × global efficiency interactions of the surface area network in cognitive intelligence and emotional intelligence (EI). (A–C) showed cognitive

intelligence, and (D–F) showed EI. The solid lines represented the statistically significant subgroup correlations, whereas the dashed lines represented the subgroup

correlations that did not pass the significance test or the false discovery rate (FDR) correction.

the middle-aged group compared to young adults (Ng et al.,
2016; Tsvetanov et al., 2016; Petrican et al., 2017). However, there
was no significant volume declines in emotional-related regions,
mainly the emotion network (SEN, Seeley et al., 2007), the limbic
network, and the paralimbic network, including the amygdala,
anterior cingulate cortex, and subcortical areas (Salat et al., 2004;
Grieve et al., 2005; Fjell et al., 2009; Lemaitre et al., 2012). The
connectivity between the subcortical and paralimbic structures
increased, implying improved emotion processing in the middle-
aged group. Combining with the enhanced connectivity between
the prefrontal cortex and the limbic areas (Kober et al., 2008;
Nashiro et al., 2017), EI of middle-aged group may benefit more
from higher global efficiency of the cortical networks (Smith
et al., 2018b).

Different Brain Mechanisms of Cognitive
Intelligence in Young Adult and
Middle-Aged Group
The human brain is composed of segregated brain networks and
regions, which has independent functions and interrelate with

each other to make sure the integration of information across
different system (Watts and Strogatz, 1998). Previous studies
emphasized the importance of parallel information transfer and
integrated processing in cognitive abilities (Li et al., 2009; van
den Heuvel et al., 2009). In the morphological network of cortical
surface area, our findings showed that the higher global efficiency

was associated with the higher scores in cognitive tests (digital

span backward) in young adults. However, there was also a study

that did not report any significant correlations between global
efficiency and cognitive intelligence (Hilger et al., 2017), and a

meta-analysis research concluded that there was no relationship

between these two variables (Kruschwitz et al., 2018). The reason
of this inconsistency may lie in different age distributions of
participants. In this study, we found that the middle-aged group
showed no relationship or even negative relationship between
global efficiency and cognitive abilities. Cognitive intelligence
declined when aging, probably due to the large-scale GM loss of
frontal-parietal areas (Parkin, 1997; Good et al., 2001). Moreover,
for middle-aged and elderly groups, previous studies showed that
the less segregation among networks (i.e., less within-network

Frontiers in Aging Neuroscience | www.frontiersin.org 8 February 2021 | Volume 13 | Article 605158

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Li et al. Morphological Network Efficiency

FIGURE 3 | Significant age × local efficiency interactions in cognitive intelligence. The upper panels showed the locations of brain regions with significant age × local

efficiency interactions, and the panels below showed scatters of each significant interaction. (A,B) showed volume network, and (C) showed area network. The solid

lines represented the statistically significant subgroup correlations, whereas the dashed lines represented the subgroup correlations that did not pass the significance

test or the FDR correction.

connectivity; more between-network connectivity among ventral
attention network, frontoparietal network, and default mode
network) were related to the poorer cognitive performance
(Betzel et al., 2014; Ng et al., 2016; Avelar-Pereira et al., 2017;
DuPre and Spreng, 2017). In order to reduce the negative effect
of volume loss and to reach the same cognitive level as young
adults as possible, a successful cognitive aging is required with the
preservation of interactions within and between brain networks
(Dennis and Cabeza, 2011; Tsvetanov et al., 2016). On the other
hand, connectivity density of the parietal area increased with age
(Xu X. et al., 2015), and the most obvious change was that the
regions specialized for a single cognitive function in young adults
were coopted in support of multiple functions in older adults (the
sensory system; Baltes and Lindenberger, 1997; themotor system;
Carp et al., 2011; Du et al., 2016; the auditory system; Lalwani
et al., 2019; and the visual system; De Sanctis et al., 2008); and
these reflected a functional compensation of the human brain
function while aging. Therefore, different brain mechanisms of
cognitive intelligence from young adults to the middle-aged
group in terms of global efficiency in the morphological network
may result from less segregation between the brain regions and
not a very clear division of the human brain functions (Xu X.
et al., 2015; Muller et al., 2016).

Contrary to the global information transfer, we found
significant positive age× local efficiency interactions in cognitive
intelligence. The lower local efficiency in the ventral medial
prefrontal cortex (vmPFC) of the volume network and the
anterior dorsal lateral prefrontal cortex (aDLPFC) of the area
network were associated with better performance in young
adults. Local efficiency measured the ability of specialized

information processing among topologically or anatomically
nearby regions, which were simultaneously evoked during the
localized functional activities (Bullmore and Sporns, 2009, 2012;
Sporns, 2013).Meanwhile, the segregated information processing
cannot fully cover the neural mechanism in all aspects of the
brain functions. Considering that (1) prefrontal cortex was
one of the brain regions for cognitive intelligence (Jung and
Haier, 2007); (2) local efficiency decreased with age in 0–
18 age groups (Gozdas et al., 2018); and (3) brain network
changed from a localized organization to a distributed structure;
thus, it was reasonable that cognitive intelligence was negatively
associated with local efficiency in young adults in the vmPFC
and the aDLPFC. For the middle-aged group, local efficiency
was positively related to digit span in the cognitive intelligence
test. Such local efficiency dependence may reflect a strategy to
reduce the side effect of functional compassion and age-related
neural dedifferentiation, and this was also verified by the evidence
that the strong within-network connectivity had been proven to
positively relate to cognitive performance (Damoiseaux et al.,
2008; Mevel et al., 2013).

Different Brain Mechanisms of EI in Young
Adults and Middle-Aged Group
Early explorations of neurobiological substrates of EI mainly
focused on the lesion data, and they proposed a somatic marker
hypothesis (Damasio, 1994; Bar-On et al., 2003), which included
the vmPFC), amygdala, and insular/somatosensory cortices.
There were also some structural and functional MRI studies
which verified the above results and illustrated the importance
of limbic network, salient network, default mode network, and
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frontoparietal network (Smith et al., 2018a,b). Our findings on
EI were mainly in the default mode network and were consistent
with the previous studies.

The middle-aged group was characterized by the maturation
of emotion control and regulation (Helson and Wink, 1987;
Gruehn et al., 2007), and our results showed a positive correlation
between the global efficiency in the area network and EI. The
global efficiency of the cortical network corresponds to the global
information processing among different brain regions, which has
been proved to be crucial for emotion processing (Kinnison et al.,
2012). Although studies found some discrete activation of the
brain regions during different emotional experience (Kesler et al.,
2001; Alkozei and Killgore, 2015; Quarto et al., 2016), a meta-
analysis proved that the experience and perception of emotion
emerge from a set of more basic psychological operational
components (Lindquist et al., 2012), including the cooperation
of the following components: information processing (the visual
and sensory motor system, Ho and Lee, 2013; Satpute et al.,
2015), core affect (limbic system; Heilman, 1997), perception
(salient system, Barrett and Satpute, 2013), conceptualization
(default mode system, Adhikari et al., 2010; Andrews-Hanna
et al., 2014a,b), and executive attention (frontoparietal system,
Sherman et al., 2014). Interestingly, in the area network of
middle-aged group, we found positive correlations of EI and
nodal efficiency in the sensory motor area (SMA: consists
of primary motor area and primary somatosensory area,
involving in the processing of somatosensory inputs in emotional
experience), temporal pole, inferior parietal sulcus (IPS), and
several default mode network regions, which were involved in
the above conceptualization process of emotion. Besides, efficient
communication between cortical areas was reported to be
associated with higher emotional awareness (Smith et al., 2017).

However, for young adults, we found that the lower global
efficiency of area network was related to the higher EI. Compared
with the middle-aged group, young adults needed to pay more
attention to external stimulation and had a higher activation of
emotion experience (Castle et al., 2012; Spreng et al., 2017), which
relied on the connectivity between cortical and subcortical areas
and may reduce the importance of global efficiency in cortical
network. The earlier-maturing visual and subcortical areas are
in charge of primary functions including emotion perception as
a type of stress response; the later-maturing cortical areas are
in charge of higher-level and complex information processing
and probably developed until the middle-aged group (Sowell
et al., 2003; Schneider et al., 2004). With aging, the emotional
information processing extended further into different aspects;
hence, we observed different associations of global efficiency of
area network with EI.

The cortical volume is a product of cortical thickness and
surface area. The cortical thickness is associated with the
number of neurons per column in the cerebral cortex, whereas
the surface area is related to the number of column units
(Rakic, 2009). Three measures have proved to be determined by
different biological and neurodevelopmental factors, and they are
differently associated with behaviors across the age span. Cox
et al. (2018) found that the cortical volume and the surface area,
but not cortical thickness, were associated with cognitive aging
in older adults. In other words, the surface area has greater

sensitivity to lifetime cognitive aging (Cox et al., 2016). Our
results were in line with the findings showing that the network
efficiency of the area network is more sensitive to the prediction
of behaviors.

STRENGTHS AND LIMITATIONS

The present study explored that the developmental brain
mechanism of intelligence across a large age range, especially
the differences between cognitive intelligence and EI, has been
fully illustrated. Furthermore, we tried to explore the impact
of interactions between networks of the brain regions on the
individual differentiated behavior from the perspective of the
brain networks, considering the dynamic changes of between-
and within-network connectivity across life span (Chen et al.,
2011; Chan et al., 2014).

Besides, there were some limitations: (1) considering that
intensity inhomogeneity correction was essential for the
preprocessing of structure MRI, in future studies, we might
choose and apply more efficient correction methods; (2) the
cross-section data may exist some problems to explore the
developmental changes of neural mechanism; further studies
could explore this change from a longitudinal dataset; (3) our
subjects were not fully representative of the general population,
which means that the subjects were likely more intelligent on
average than the general population (mean IQ> 120). This study
has a large proportion of people with higher levels of education
and intelligence, which may, to some extent, limit the extent to
which the results can be generalized and applied.

CONCLUSION

Compared with the previous studies investigating the
associations of network efficiency with cognitive intelligence and
EI in adolescent or old people (Galvan et al., 2007; Saad et al.,
2019), we recruited young adults and middle-aged people as
subjects to explore the early aging process. More importantly,
we proposed a new method to characterize the morphological
network of the human brain, which reflected morphology
similarity of brain regions and would add new insights on
the studies of the human brain organization and neural
dedifferentiation. Our research emphasized the developmental
effects on the brain mechanisms of cognitive intelligence and EI
from young adults to the middle-aged group and may promote
mental health study of the middle-aged group in the future.
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