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Biomedical Applications of the Dynamic Nuclear  
Polarization and Parahydrogen Induced Polarization  

Techniques for Hyperpolarized 13C MR Imaging

Neil J. Stewart and Shingo Matsumoto*

Since the first pioneering report of hyperpolarized [1-13C]pyruvate magnetic resonance imaging (MRI) of 
the Warburg effect in prostate cancer patients, clinical dissemination of the technique has been rapid; close 
to 10 sites worldwide now possess a polarizer fit for the clinic, and more than 30 clinical trials, predomi-
nantly for oncological applications, are already registered on the US and European clinical trials databases. 
Hyperpolarized 13C probes to study pathophysiological processes beyond the Warburg effect, including tri-
carboxylic acid cycle metabolism, intra-cellular pH and cellular necrosis have also been demonstrated in the 
preclinical arena and are pending clinical translation, and the simultaneous injection of multiple co- polarized 
agents is opening the door to high-sensitivity, multi-functional molecular MRI with a single dose. Here, we 
review the biomedical applications to date of the two polarization methods that have been used for in vivo 
hyperpolarized 13C molecular MRI; namely, dissolution dynamic nuclear polarization and parahydrogen- 
induced polarization. The basic concept of hyperpolarization and the fundamental theory underpinning 
these two key 13C hyperpolarization methods, along with recent technological advances that have facilitated 
biomedical realization, are also covered.
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REVIEW

The first in-man hyperpolarized [1-13C]pyruvate MRI exams 
in patients with prostate cancer realized the potential for 
observing metabolic processes beyond glycolysis, which is 
typically probed by 18F-fluorodeoxyglucose positron- emission 
tomography (18F-FDG-PET); until recently the only meta-
bolic imaging method used routinely in the oncology clinic.4 
This pioneering study has been followed by a rapid dissemi-
nation of HP [1-13C]pyruvate MRI for clinical applications,5 
facilitated by the development of commercial, sterile polari-
zation systems for clinical use.6 As of June 2019, more than 
30 clinical trials worldwide pertaining to HP [1-13C]pyruvate 
MRI are either in a complete, in progress, or pending phase 
and this number is predicted to only increase further over the 
coming years.

In this review article, we provide a brief overview of the 
concept of hyperpolarization and the theory behind the 
methods to obtain liquid-state 13C polarization; namely, 
dissolution dynamic nuclear polarization (d-DNP) and 
para hydrogen-induced polarization (PHIP), followed by a 
com pre hensive review of the biomedical applications of HP 
13C MRI by, with a particular focus on recent clinical MRI 
applications of HP [1-13C]pyruvate and other hyperpolarized 
13C molecular imaging probes with clinical promise.

Introduction
Hyperpolarization refers to a class of methods that enable 
the fundamental sensitivity limits of magnetic resonance 
imaging (MRI) to be overcome, allowing functional imaging 
of exogenous agents of unprecedented quality.1 Over the 
last 20 years, hyperpolarized (HP) 3He and 129Xe noble gases 
have been developed from experimental tools into safe, 
inhalable contrast agents for high-resolution, functional MRI 
of the lung airspaces and are already used routinely in a clin-
ical setting.2 On the other hand, HP 13C-labelled liquid-phase 
probes for molecular and metabolic MRI hold great promise 
for interrogating pathophysiology at the cellular level.3 
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Theoretical Background
Hyperpolarization
When placed in a magnetic field B0, spin-½ nuclei of gyro-
magnetic ratio g  occupy one of two Zeeman states at energies 
±g B0/2. The nuclear spin “polarization” is defined as the 
fractional difference in the population of the two states, 
which under conditions of thermal equilibrium is derived 
from the Boltzmann distribution:
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The Boltzmann (thermal) polarization of 13C—the only 
stable spin-½ carbon nucleus—at typical clinical magnetic field 
strengths is ~10−6. In fact, MR of endogenous 13C is challenging 
not just due to its ~fourfold lower gyromagnetic ratio than 1H; 
the natural abundance of 13C is only 1.1% and thus sensitivity is 
poor. A ~100-fold MR signal enhancement can be obtained on 
endogenous tracers through 13C-labeling, and a further 4–5 
orders of magnitude enhancement via hyperpolarization.

Hyperpolarization denotes a temporary state of dramatic 
population excess in one nuclear spin state (see Fig. 1) and can 
be realized by a number of approaches; brute force polariza-
tion (utilizing low temperatures and high magnetic fields to 
directly increase the nuclear polarization)7,8; spin-exchange 
optical pumping9 and metastability-exchange optical 
pumping10 for hyperpolarized gases; and d-DNP11 and PHIP12 
for  solution-state 13C applications. The latter two methods 
have been demonstrated for biomedical 13C molecular MRI 

applications and these form the focus of this review article. We 
note that signal amplification by reversible exchange 
(SABRE),13 closely-related to conventional PHIP, is recently 
showing progress toward potential in vivo application14 but 
will not be covered in this article as biomedical application is 
yet to be shown; we refer the reader to Robertson and Mewis15 
for an up-to-date review.

The MR signal enhancement associated with hyperpo-
larization is not permanent; longitudinal relaxation acts to 
return the nuclear spin state populations to that of thermal 
equilibrium, and after radiofrequency excitation, the hyper-
polarized state is not recovered.16 Research into generating 
so-called “long-lived” states and also generation of continu-
ously re-hyperpolarization17 are an active fields18; however, 
hyperpolarized [1-13C]pyruvate, the most promising mole-
cule for clinical applications, remains limited by a T1 ~ 60 s. 
The decay in magnetization associated with a number of RF 
excitations n with repetition time TR and flip angle a can be 
described as follows:
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For a constant flip angle, and TR << T1, Equation (2) can 
be simplified to M nxy

n( ) sin ( ) cos ( )= -M 0

1a a  [for example, 
after N = 128 RF excitations at flip angle 8° a magnetization of 
only M N Mxy ( ) . sin ( )» °0 3 80  remains]. The signal decay 
during acquisition leads to filtering of the k-space and image 
blurring, but which can be somewhat compensated for by 
modifying the flip angle throughout the acquisition pro-
cess.16,19 Nevertheless, acquisition of hyperpolarized signals 
necessitates efficient encoding of k-space, such as with spiral 
trajectories,20 parallel imaging21 or compressed sensing.22 
Hyperpolarized 13C metabolic MRI relies upon the discrimina-
tion of MR signals from the injected probe (e.g. pyruvate) and 
its metabolic products (e.g. lactate) by chemical shift. If spatial 
information is not essential, dynamic spectroscopy is a simple 
and robust means to probe metabolism dynamics.23 Several 
imaging strategies have been developed24 including: phase-
encoded chemical shift imaging (CSI).25 which although inef-
ficient, allows acquisition of full spectra; echo planar 
spectroscopic imaging, in which (usually fly-back) gradients 
are used for simultaneous 1D spatial encoding and spectral 
readout, permitting several-fold acceleration at the expense of 
SNR;26,27 spiral chemical shift imaging, wherein multi-dimen-
sional spatial data is encoded simultaneously with spectral 
data in a similar manner to tomosynthesis;28 spiral encoding 
schemes29 combined with the robust iterative decomposition 
with echo asymmetry and least-squares estimation technique;30 
and spectral-spatial excitation for additional efficiency and the 
flexibility of a different flip angle on each resonance of 
interest.31 In light of the long T2 of 13C in vivo, SNR benefits 
have been realized by using single or multi-echo balanced 
steady-state free precession.32,33

Fig. 1 Concept of hyperpolarization. (a) The occupation of nuclear 
Zeeman states of a spin-½ system in thermal equilibrium in a mag-
netic field follows that of the Boltzmann distribution [cf. Equation 
(1)]; for 13C at 1.5T and 300 K, the polarization, i.e. the popu-
lation difference between the spin up and down states for 13C is 
only P ~ 10−6. (b) Hyperpolarization describes the state of a large 
excess population in one of the nuclear Zeeman states, leading to 
a nuclear polarization several orders of magnitude greater than the 
Boltzmann polarization (Data is reproduced from the original dis-
solution dynamic nuclear polarization (d-DNP) paper11 (Copyright 
(2003) National Academy of Sciences, USA) and compares NMR 
spectra obtained from thermally-polarized and hyperpolarized 13C 
urea of ~60 mM concentration).
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Dynamic nuclear polarization
Dissolution dynamic nuclear polarization—to date the prin-
cipal polarization techniques employed to generate hyperpo-
larized [1-13C]pyruvate—relies upon the relatively large 
electron gyromagnetic ratio ( )g ge P» 660  which [according 
to Equation (1)] leads to an electron Boltzmann polarization 
of approximately unity at temperatures ~1 K at high field 
(see Fig. 2a).34 An efficient electron paramagnetic agent (free 
radical, see e.g. Lumata et al.35) is mixed with a glassing 
agent and the target probe to be polarized (e.g. pyruvate), 
which is cooled to ~1 K under a magnetic field of several 
tesla. In the subsequent glassy solid state where d-DNP is 
most efficient, microwave irradiation is used to induce polar-
ization transfer from free electrons to 13C nuclei over the 
course of ~1 h. At temperatures < 4.2 K, polarization transfer 
is believed to be primarily driven by the thermal mixing 
effect,36 though depending on exact experimental conditions, 
contributions from the so-called solid effect and cross 
effect,37 and the Overhauser effect in the solution phase,38 
may not be ignored. After polarization transfer, the frozen 

sample is rapidly dissolved in a superheated solvent and 
transferred to the MRI system for measurement [hence the 
term “dissolution (d)”11].

The first commercial d-DNP system for preclinical 
research applications shortly followed the publication of 
the original d-DNP paper11 (HyperSense, Oxford Instru-
ments, UK) and other efficient research systems have since 
been developed.39 Most d-DNP systems including the 
HyperSense require large quantities of liquid helium to 
maintain the low sample temperature; however, two recent 
landmark developments have enabled d-DNP without con-
sumption of cryogens; a high-throughput, sterile polarizer 
for clinical applications SpinLab6 (GE Healthcare, 
Waukesha, WI, USA), and an efficient research polarizer 
with variable magnetic field (the SpinAligner, (Polarize, 
Frederiksberg, Denmark)),40 both of which are commer-
cially available. The SpinLab (Fig. 2a), operating at ~0.9 K 
and 5T and routinely obtaining up to 40% [1-13C]pyruvate 
polarization, is the only system to date approved for human 
application.

Fig. 2 Concept diagram for dissolu-
tion dynamic nuclear polarization 
(d-DNP) and parahydrogen-induced 
polarization (PHIP) polarization tech-
niques. (a) In d-DNP, the source of 13C 
nuclear polarization (P) is the approx-
imately unity electron polarization (P) 
at low temperature and high magnetic 
field (curves plotted for 3.35T) (i). This 
is transferred to 13C via microwave 
excitation (ii), predominantly medi-
ated via the thermal mixing effect. (iii) 
Prototype commercial cryogen-free 
d-DNP system reported in Ardenkjaer-
Larsen et al.40 (original photo cour-
tesy of Jan Henrik Ardenkjaer-Larsen, 
Technical University of Denmark and 
GE Healthcare). (b) In PHIP, the source 
of 13C polarization is the inherent spin 
order of the parahydrogen spin isomer 
of hydrogen, which can be generated 
to very high purity by cooling normal 
hydrogen in the presence of a para-
magnetic catalyst (i). Parahydrogen is 
reacted with an unsaturated substrate, 
generating 1H hyperpolarization, which 
is subsequently transferred to 13C or 
other target heteronucleus (ii). Several 
dedicated low-field (mT) polarization 
systems have been designed for auto-
mating the hydrogenation and polar-
ization transfer processes; the example 
shown is reprinted with permission 
from Springer Nature (Hövener et al).58

i)

ii)

iii)
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Parahydrogen-induced polarization
Despite surmounting the hurdle associated with cryogen con-
sumption, the initial outlay required for d-DNP systems 
remains high (~several million USD for the SpinLab). PHIP12 
is a relatively recent technique that offers a cheaper route to 
hyperpolarized 13C molecules for biomedical MRI applica-
tions.41 PHIP relies on the inherent spin order of parahy-
drogen, a spin isomer of hydrogen. At room temperature, the 
two spin-½ nuclei of each hydrogen molecule have an equal 
probability to occupy one of four spin states; three states of 
total spin 1 (orthohydrogen, “triplet” state) and one state of 
total spin 0 (parahydrogen, “singlet” state). When cooled in 
the presence of a paramagnetic catalyst (typically iron(III)
oxide or charcoal, which promotes the otherwise slow 
 symmetry-forbidden transition between orthohydrogen and 
the lower energy parahydrogen state) to ~20 K, a parahy-
drogen fraction of ~1 can be obtained (see Fig. 2b).

Parahydrogen itself is NMR silent since it has a total 
nuclear spin of 0; however, upon pairwise addition to 
 magnetically-inequivalent sites on an unsaturated substrate 
molecule, the symmetry of the parahydrogen singlet state is 
broken and hyperpolarized 1H MR signals can be observed. 
This hydrogenation reaction is typically performed in an 
organic solvent or the aqueous phase in the presence of a 
transition metal (typically Rh- or Ru-)based catalyst.42 The 
resulting 1H nuclear spin state depends on the magnetic field 
at which parahydrogen addition is performed; at high field, 
e.g. within the MR system itself, the parahydrogen and syn-
thesis allow dramatically enhanced nuclear alignment effect 
is observed,12 whilst for hydrogenation at low field followed 
by adiabatic transport of the sample to the MR system for 
detection, the adiabatic longitudinal transport after dissocia-
tion engenders nuclear alignment effect is observed.43 Sev-
eral studies using PHIP of 1H nuclei have been performed 
(e.g. to generate J-coupling derived contrast44 and gas-phase 
imaging45); however, due to the large background signal  
in vivo and lack of attainable pathophysiological functional 
information such as that pertaining to metabolism, heteronu-
clei such as 13C or 15N are of greater interest for biomedical 
applications. Polarization transfer from 1H to heteronuclei is 
mediated by spin–spin couplings and can be driven by spe-
cialized RF pulse sequences46–48 or by subjecting the sample 
to a magnetic field cycle.49–51 The selection of polarization 
transfer method and its parameters depends on the configura-
tion of the target molecular probe.52,53

Regarding hardware, parahydrogen enrichment of ~50% 
can be achieved by simply flowing hydrogen gas through a 
cryogenic tube submersed in liquid nitrogen.54 A high-
throughput system to generate and store up to 50 bar of 98% 
parahydrogen has been developed for biomedical applica-
tions55; once stored, parahydrogen enrichment can be main-
tained for months provided that paramagnetic molecular 
oxygen is not present.56 Several automated PHIP polarizers 
for low-field hydrogenation and polarization transfer have 
been developed57–59 incorporating heated, high-pressure 

spray reactors; however, promising results have also been 
obtained by simply shaking or bubbling of a parahydrogen-
filled NMR tube followed by field cycling by hand (see e.g. 
Chukanov et al.60). In addition, unlike d-DNP, it is possible to 
perform both the hydrogenation reaction and polarization 
transfer and generate heteronuclear hyperpolarization within 
the NMR magnet itself, minimizing the time for polarization 
decay.46,61

d-DNP-polarized [1-13C]pyruvate: the pathway to 
clinical application
Abnormal metabolism is a hallmark of cancer, cardiovas-
cular disease and other pathologies, and is intrinsically linked 
to inflammation and immune response.62 18F fluorodeoxyglu-
cose (FDG), a glucose analog, is routinely used for high-
sensitivity and specificity clinical PET imaging of glucose 
metabolism63 and is the recommended clinical indicator for 
head, neck, lung and pancreatic cancer.64 However, since 
FDG-6-phosphate does not undergo further glycolysis, FDG-
PET cannot probe metabolism beyond the first step of the 
glycolysis pathway. In this respect, d-DNP of [1-13C]pyru-
vate represents a significant development permitting unprec-
edented access to downstream metabolites to further aid 
understanding of cancer and disease mechanisms.

Whilst the first in vivo studies of a molecule polarization 
by d-DNP were performed with HP 13C-urea,65 it was quickly 
realized that [1-13C]pyruvate, which plays a critical role in 
metabolism (see Fig. 3), is an ideal molecule for d-DNP since 
it is self-glassy and has long T1 for 13C at the 1 and 2 positions 
(~40–60 s).66 Golman et al.67 demonstrated the first real-time 
metabolic imaging of metabolic production of [1-13C]lactate, 
[1-13C]alanine and [1-13C]bicarbonate from hyperpolarized 
[1-13C]pyruvate in healthy rats and pigs, and demonstrated dif-
ferences in metabolite signal intensity in tumor tissues.68 In 
cancer cells, glycolysis prevails over oxidative phosphoryla-
tion and the conversion of pyruvate to lactate via lactate dehy-
drogenase is up-regulated; this is known as the Warburg 
effect.69 To date, increased HP [1-13C]pyruvate to [1-13C]lac-
tate conversion has been used as the principal outcome of HP 
[1-13C]pyruvate MRI studies in several types of cancers.68,70–73 
The high sensitivity of HP [1-13C]pyruvate MRI affords the 
possibility of non-invasive assessment of cancer treatment 
response, first demonstrated by Day et al.,74 who showed a 
decrease in of HP 13C pyruvate–lactate flux after chemotherapy. 
The technique has since been applied in several studies of radi-
otherapy response75,76 and assessment of other treatments77,78 
and reported to present a viable clinical alternative to FDG-
PET for early tumor response in a preclinical study.79

In a landmark paper, Nelson et al. reported the utilization 
of GE’s prototype sterile d-DNP system6 to perform the first 
in-man HP [1-13C]pyruvate MR spectroscopy and imaging 
feasibility study of patients with prostate cancer,4 demon-
strating distinction of high- and low-grade tumors. This 
development has opened the door to realize real-time clinical 
metabolic imaging with HP [1-13C]pyruvate and the rapid 
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uptake of the technology is epitomized by the fact that more 
than 20 GE SpinLab polarizers have been installed worldwide, 
with close to half presently in use for human studies. First 
reports of the application of [1-13C]pyruvate to study metab-
olism in the healthy human heart80 and brain81 have reported 
good tolerance of the procedure and contributed valuable ref-
erence data for interpretation of patient studies. In prostate 
cancer, HP [1-13C]pyruvate has been shown to detect early 
response to androgen deprivation therapy with a sensitivity 
exceeding that of T2- and diffusion-weighted MRI.82 Prelimi-
nary reports in patients with liver metastases83 and those with 
brain tumors84,85 demonstrate the wide range of potential tar-
gets of the technology and provide important pilot data for 
future trials. Several of these early clinical results are sum-
marized in Fig. 4. Furthermore, at the 2019 International 
Society for Magnetic Resonance in Medicine (ISMRM) 
meeting, first HP [1-13C]pyruvate data in human patients 
with breast cancer, in which the relationship between intertu-
moral heterogeneity and gene expression analysis was inves-
tigated,86 and preliminary longitudinal HP [1-13C]pyruvate 
data in glioma patients87,88 was reported, highlighting the 
advantages of the non-invasive nature of the technique for 
short- and long-term patient follow-up. Moreover, more than 
30 clinical trials (sum of completed, ongoing and pending 
trials) are registered on the US and European clinical trials 
registries (summarized in Table 1) targeting a range of 
 conditions, including prostate, brain, breast, ovarian, uterine, 
pancreatic and skin cancers, in addition to cardiovascular 

indications and other brain pathologies. Comparison with 
FDG-PET to further comprehend the complementary infor-
mation that can be obtained89,90 is a critical next step to aid 
interpretation of human HP [1-13C]pyruvate data and 
encourage further clinical dissemination.

As the number of clinical studies with [1-13C]pyruvate 
increases, there is a growing need for robust quantitation 
methods that can be applied universally for multi-site valida-
tion studies.91 Typically, HP [1-13C]pyruvate MR examina-
tions include dynamic spectroscopy of the time-course of 
metabolic conversion of pyruvate, in addition to imaging. 
Semi-quantitative analysis of metabolic dynamics measured 
by MR spectroscopy can be performed using one of several 
models that have been developed to describe the rate of pyru-
vate–lactate conversion kPL.92 For the most simple two-com-
partment model of pyruvate-lactate conversion, written in 
matrix form (see e.g. Harrison et al.92 and Harris et al.93):
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where PZ and LZ are the z-magnetization of pyruvate and lac-
tate, respectively, kLP is the (reverse) lactate–pyruvate con-
version rate and r ai iT= -1 1/ log (cos ( )) /, TR  describes 
T1 relaxation and RF-induced depolarization [cf. Equation 
(2)]. This equation can be analytically74 or numerically 
solved and utilized to fit the magnetic resonance spectroscopy 

Fig. 3 Schematic of glycolysis, 
pyruvate metabolism to alanine 
and lactate, and the tricarboxylic 
acid (TCA) cycle within the mito-
chondria. Green circles: products 
of [1-13C]pyruvate; red triangles: 
products of [2-13C]pyruvate.
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(MRS) signal intensities of lactate and pyruvate (see for 
example the data in Fig. 4a) to yield kPL as a metric of the 
Warburg effect. Model-free approaches such as the area 
under the signal-time curve and time-to-peak present simple, 
robust alternatives.91 CSI-based techniques yield individual 
images for each metabolic product, and ratio maps of lactate 
to pyruvate signal intensity are commonly used to provide 
some degree of quantitation in a regional manner.

d-DNP beyond [1-13C]pyruvate: other candidate 
molecular probes
The range of molecular imaging targets that can be polarized 
by d-DNP is vast and an exhaustive list94 is beyond the scope 
of the present article. In the following, we introduce several of 
the most promising d-DNP-polarizable 13C molecular probes 
for biomedical applications (see Table 2 for a summary).

While the large majority of pre-clinical and clinical 
studies to date have exploited the sensitivity of HP [1-13C]
pyruvate to the Warburg effect (i.e. pyruvate–lactate metabo-
lism), the C1 atom of the remaining pyruvate that enters into 
the mitochondria is oxidized to CO2 and subsequently con-
verted to bicarbonate, and thus cannot be used to probe tri-
carboxylic acid (TCA) cycle metabolism. However, the C2 
atom passes to acetyl-CoA and enters into the TCA cycle, 
exhibiting several metabolic fates (Figs. 3 and 5b). Schroeder 
et al.23 first reported detection of downstream metabolites 
including [1-13C]acetylcarnitine, [1-13C]citrate, [5-13C]gluta-
mate in perfused rat hearts after injection of HP [2-13C]pyru-
vate, with decreased citrate and glutamate production 
post-ischemia. In response to rapid pacing challenge, in vivo 
measurements of cardiac metabolism showed increased 
[5-13C]glutamate production,95 and increased glutamate, 

Fig. 4 Clinical examples of hyperpolarized [1-13C]pyruvate MRI. (a) Representative dynamic 13C MRS data of pyruvate and lactate signal 
in prostate cancer region and contralateral prostate region of a prostate cancer patient, and lactate/pyruvate signal ratio map overlaid 
on a T2-weighted 1H MR image (adapted from Figs. 2 and 4, respectively of Nelson et al.4 reprinted with permission from the American 
Association for the Advancement of Science (AAAS)). (b) HP [1-13C]pyruvate, lactate and bicarbonate MR images and a non-selective MR 
spectrum of the healthy human heart (adapted from Figs. 1 and 3, respectively of Cunningham et al.80 reprinted with permission from 
Wolters Klumer Health, Inc). (c) Comparison of HP [1-13C]pyruvate and lactate MR images to contrast-enhanced T1-weighted MRI and 
perfusion plasma volume mapping in a patient with recurrent glioblastoma (adapted from Fig. 4 of Miloushev et al.85 permission from the 
American Association for Cancer Research (AACR)).

a

b c
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Table 1 Summary of ongoing clinical trials pertaining to hyperpolarized 13C MRI (from clinicaltrials.gov, clinicaltrialsreg-
ister.eu and drks.de, accessed on 2019/06/12)

Primary condition 
(number of trials)

Participating center (country) Enrollment†

Brain cancer6 Sunnybrook Health Sciences Centre, Toronto (Canada) 121

UT Southwestern Medical Center, Dallas (USA) 44

M D Anderson Cancer Center, Dallas (USA) 13

University of California San Francisco, San Francisco (USA) 80

UCSF Helen Diller Family Comprehensive Cancer Center, San 
Francisco (USA)

9

Uterine and ovarian cancer2 Sunnybrook Health Sciences Centre, Toronto (Canada) 10

Addenbrooke’s Hospital, Cambridge (UK) 40

Breast cancer2 UT Southwestern - Advanced Imaging Research Center, Dallas (USA) 110

Sunnybrook Health Sciences Centre, Toronto (Canada) 13

Traumatic brain injury and 
CNS tumors2

UT Southwestern Medical Center, Dallas (USA) 16

Stanford University School of Medicine, Palo Alto (USA) 10

Other: Sarcoma1 Advanced Imaging Research Center, Dallas (USA) 20

Fatty liver1 UT Southwestern Medical Center, Dallas (USA) 16

Pancreatic cancer1 Aarhus University Hospital, Aarhus (Denmark) 15

Skin cancer1 Aarhus University Hospital, Aarhus (Denmark) 30

General cancer1 Memorial Sloan Kettering Cancer Center, New York (USA) 84

Prostate cancer9 University of California San Francisco, San Francisco (USA) 261

Sunnybrook Health Sciences Centre, Toronto (Canada) 40

M D Anderson Cancer Center, Dallas (USA) 10

Cardiovascular disease5 UT Southwestern Medical Center, Dallas (USA) 10

Sunnybrook Health Sciences Centre, Toronto (Canada) 112

University College London, London (UK) 25

University Hospital Zurich, Zurich (Switzerland) 50

Aarhus University Hospital, Aarhus (Denmark) 20
†Enrollment: approximate patient numbers scanned or anticipated (in cases of multiple studies at the same center, enrollment 
represents a summation of the enrollment for each individual study).

Table 2 Non-exhaustive list of 13C MR molecular probes polarizable by dynamic nuclear polarization (adapted with the publisher’s 
permission from Table 1 of Hurd et al.163) and their chemical shift (and literature reference)

HP 13C probe (chemical shift) Metabolic products (chemical shift) Biomedical applications

[1-13C]Pyruvate (173 ppm)164 [1-13C]Lactate (185 ppm), [1-13C]alanine (178 ppm), 
[1-13C]bicarbonate (162 ppm), [1-13C]pyruvate hydrate 
(181 ppm)164

Warburg effect (cancer)

[2-13C]Pyruvate (208 ppm)96 [2-13C]Lactate (71 ppm),96 [2-13C]alanine (53 ppm), 
[1-13C]citrate (180–181 ppm),165 [5-13C]glutamate 
(184 ppm), [1-13C]acetylcarnitine (175 ppm), [3-13C]
acetoacetate (177 ppm)96

Tricarboxylic acid (TCA) 
cycle metabolism

13C-Urea (162.5 ppm)100 None (end product) Perfusion
[1,4-13C2]Fumarate (175.4 ppm)103 [1-13C]Malate (181.8 ppm), [4-13C]Malate (180.6 ppm)103 Cellular necrosis
[1-13C] Dehydroascorbate (174.0 ppm)109 [1-13C]Ascorbic acid (vitamin C) (177.8 ppm)109 Redox status
13C-Bicarbonate (161 ppm)113 Carbon dioxide (125 ppm)113 pH mapping
[1,5-13C2]Zymonic acid (ppmurea + 10–15 ppm)116* None
[5-13C]Glutamine (178.5 ppm)166 [5-13C]Glutamate (181.5 ppm)166 Glutaminase metabolism, 

TCA cycle metabolism[1-13C]a-ketoglutarate (172.6 ppm)117 [1-13C]Glutamate (177.5 ppm)117

[1-13C]Acetate (182.5 ppm)120 [1-13C]Acetylcarnitine (202.1 ppm)120 Acetyl-CoA synthetase 
activity

*pH-dependent chemical shift.
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acetoacetate and acetylcarnitine production was observed 
post-injection of an anti-cancer agent in rats.96 The first clin-
ical MR spectroscopy and imaging data of HP [2-13C]pyru-
vate in the healthy human brain was reported at the 2019 
ISMRM meeting;97 however, application of the probe 
remains challenging due to the relatively low concentration 
of downstream metabolites generated; in one study, none 
were detectable.66

[1-13C]urea, the first hyperpolarized 13C molecular MR 
imaging agent demonstrated by the d-DNP method,11 is met-
abolically inert and shows promise as a HP MRI agent for 
perfusion assessment.98,99 Furthermore, [1-13C]urea can be 
co-polarized with [1-13C]pyruvate for simultaneous assess-
ment of metabolism and perfusion,100 and co-labeling with 
15N2 exhibits prolonged 13C relaxation times and improved 
SNR101 facilitating for example the investigation of renal 
functional changes.102

[1,4-13C2]fumarate can be hyperpolarized by d-DNP and 
the rate of its conversion to malate, catalyzed by fumarase, is 
indicative of cellular necrosis.103 HP [1,4-13C2]fumarate 
exhibits high sensitivity to necrosis in myocardial infarc-
tion104 and acute kidney injury105 among other tissue patholo-
gies, is complementary to [1-13C]pyruvate in the assessment 
of treatment response (Fig. 5a) in breast cancer106 and effi-
cient co-polarization schemes offer simultaneous probing of 
multiple metabolic pathways.107

Hyperpolarization of the reduced and oxidized forms of 
vitamin C—namely [1-13C]dehydroascorbate and [1-13C]
ascorbate, respectively—offers a novel means to probe intra-
cellular redox status, a critical factor in normal and abnormal 
cellular function.108,109 High concentrations of [1-13C]ascor-
bate can be observed post-injection of [1-13C]dehydroascor-
bate, and reduced HP [1-13C]ascorbate signal has been 
utilized as an MR biomarker of renal oxidative stress.110,111

Several HP 13C-based molecular probes have been pro-
posed for measurement of pH,112 a critical physiological factor. 
In particular, injection of hyperpolarized 13C-bicarbonate and 
monitoring of its conversion to 13CO2 has been proposed to 
monitor pH113 and demonstrates sensitivity to abnormal pH in 
cancer113 and ischemic heart disease.114 An alternative method 
involves monitoring the HP 13CO2 production from injected 
[1-13C]pyruvate.115 Recently, HP [1,5-13 C2]zymonic acid has 
been proposed for high-sensitivity in vivo pH mapping, exhib-
iting a pH-sensitive chemical shift and T1 benefits over [1-13C]
bicarbonate.116

To probe glutaminase and alanine transaminase metabo-
lism, respectively, HP [5-13C]glutamine and [1-13C]gluta-
mate have been investigated. Conversion of injected HP 
[1-13C]a-ketoglutarate to [1-13C]glutamate has been pro-
posed as a potential biomarker of isocitrate dehydrogenase 1 
gene mutations in glioma.117 Although the longitudinal relax-
ation of 13C nuclear spins in the glucose molecule is extremely 
short, perdeuteration has facilitated studies of glycolysis 
using HP [U-13C]glucose in cells118 and in vivo.119 The action 
of acetyl-CoA synthetase in generating acetyl-CoA—a 

crucial molecule in fatty acid synthesis and TCA cycle 
 metabolism—has been investigated with HP [1-13C]acetate 
in the heart120,121 and skeletal muscle.122

PHIP: candidate 13C molecular and metabolic  
MRI probes
The choice of molecular probes for conventional hydrogena-
tive PHIP is fundamentally limited by the requirement of an 
unsaturated precursor substrate (i.e. a molecule containing a 
double or triple bond to which parahydrogen is added to 
yield the hyperpolarized probe).123 Nevertheless, a number 
of promising HP 13C probes for biomedical MR applications 
can be produced with a polarization level comparable to or 
approaching that of d-DNP. Some of these are highlighted in 
the following text and also in Table 3; for an exhaustive list, 
we refer the reader to Hövener et al.41.

To date some of the most promising probes for metabolic 
MRI by PHIP are based on succinate and its derivatives  
(Fig. 6), the metabolic activity of which was introduced ear-
lier. Hyperpolarized [1-13C]succinate can be generated by 
one of two PHIP strategies: two-step parahydrogen addition, 
first to [1-13C]acetylenedicarboxylate (ADC) to yield [1-13C]
maleate, to which parahydrogen is added again to yield 
[1-13C]succinate124; or by single-step parahydrogen addition 
to [1-13C]fumarate.125,126 The latter method offers a pro-
longed [1-13C]succinate polarization lifetime, particularly if 
deuterated fumarate is used, and also reduces the risk of 
undesired injection of ADC, which is mildly toxic, and also 
the intermediate (maleate).125 Whilst initial in vivo experi-
ments in the rat brain did not exhibit clear metabolic conver-
sion of PHIP-polarized [1-13C]succinate,124 the second 
hydrogenation approach enabled detection of downstream 
TCA cycle metabolites in a murine tumor model.126  
Furthermore, the diethyl ester of [1-13C]succinate, derived by 
parahydrogen addition of diethyl[1-13C]fumarate, appears to 
exhibit some TCA cycle metabolic sensitivity and was shown 
to distinguish murine tumor characteristics.126,127

Hyperpolarized hydroxyethyl [1-13C]propionate, produced 
by parahydrogen addition of hydroxyethyl[1-13C]acrylate 
(HEA), presents a potential high-sensitivity PHIP contrast 
agent for angiography applications.50,128,129 In a recent study, the 
entire process of parahydrogen addition to HEA followed by 
polarization transfer, injection and in vivo MRI detection of 
HEP was realized within an MRI system, i.e. without the 
requirement of an external polarizer.130 Since 2-hydroxyethyl[1-
13C]propionate is easily polarized by PHIP and has strong, well-
defined heteronuclear spin–spin couplings, it has also been 
utilized to validate several novel techniques for optimization of 
polarization transfer between parahydrogen and 13C.50,131,132

Hyperpolarized tetrafluoropropyl[1-13C]propionate (TFPP) 
can be derived parahydrogen addition of the corresponding 
acrylate precursor and subsequent polarization transfer, and 
has been proposed as a “targeted” molecular agent for inter-
rogating lipid-rich atherosclerotic plaques.133 However, 
whilst HP 13C-HEP and 13C-succinate can be generated in the 
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Fig. 5 Pre-clinical MRI examples of promising HP 13C probes other than [1-13C]pyruvate. (a) HP 13C chemical shift imaging (CSI) of cel-
lular necrosis pre- and post-etoposide treatment (increased necrosis) in a murine tumor model after HP [1,4-13C2]fumarate injection, and 
13C MR spectra obtained from murine lymphoma cells; (i) untreated, (ii) post-etoposide treatment, (iii) lysed cells, demonstrating a strong 
relationship between malate production and necrosis (adapted from Figs. 1 and 4 of Gallagher et al.103 with the publisher’s permission). 
(b) CSI-derived maps and accompanying spectra of metabolites derived from mitochondrial metabolism after injection of [2-13C]pyruvate 
into a healthy rat, exhibiting [1-13C]acetyl carnitine and tricarboxylic acid (TCA) cycle-derived [5-13C]glutamate resonances (adapted with 
the publisher’s permission from Park et al.167). Results obtained pre- and post-injection of dichloroacetate (DCA), a proposed anti-cancer 
drug used to influence acetyl-CoA production by modulating pyruvate dehydrogenase, are shown.

a

b
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Table 3 Non-exhaustive list of 13C MR molecular probes polarizable by parahydrogen-induced polarization (adapted with the 
 publisher’s permission from Table 1 of Hövener et al.41 and their chemical shift (and literature reference†)

HP 13C precursor Hydrogenation products Biomedical applications

[1-13C]Acetyl dicarboxylic acid (151.6 ppm)155 [1-13C]Maleate (160 ppm) → [1-13C]Succinate (175 ppm)124 Tricarboxylic acid (TCA) 
cycle metabolism[1-13C]Fumarate (166.5 ppm)155 [1-13C]Succinate (175 ppm)124

Diethyl[1-13C]fumarate (167.4 ppm)127 Diethyl[1-13C]succinate (175.8 ppm)127 TCA cycle metabolism
13C-Hydroxyethyl-acrylate 13C-Hydroxyethylpropionate (~180 ppm)50 Angiography

Tetrafluoropropyl[1-13C]acrylate Tetrafluoropropyl[1-13C]propionate (174 and 177 ppm)133 Atheromatous plaques

[1-13C]Phosphoenol-pyruvate (171.9 ppm)135 [1-13C]Phospholactate → [1-13C]Lactate (182.1 ppm)135 Gluconeogenesis, lactate 
dehydrogenase metabolism

Propargyl[1-13C]pyruvate  
(160 ppm)60

Allyl[1-13C]pyruvate (160.5 ppm)60 → [1-13C]pyruvate 
(173 ppm) after hydrolysis

Warburg effect (cancer)

Vinyl[1-13C]acetate  
(168 ppm)60

Ethyl[1-13C]acetate (174 ppm)147 → [1-13C]acetate  
(182.5 ppm) after hydrolysis

Acetyl-CoA synthetase 
activity

†Chemical shift values only quoted for the particular solvent in the literature reference cited.

Fig. 6 In vivo magnetic resonance imaging (MRI) application of several hyperpolarized 13C probes generated by parahydrogen-induced 
polarization (PHIP). (a) MRI angiogram of HP 13C-labeled malate dimethyl ester with corresponding 1H spin echo reference image of a 
healthy rat (adapted with permission from Golman et al.49). (b) Chemical shift imaging (CSI) of HP diethyl [1-13C]succinate in a murine 
model of renal cell carcinoma (reproduced from Zacharias et al.126 under the Creative Commons Attribution License). The 13C spectrum 
corresponding to the pixel indicated by the white square shows tricarboxylic acid (TCA) cycle metabolism of diethyl succinate (DES) to 
succinate (SUC) and fumarate (FUM). (c) Representative HP tetrafluoropropyl [1-13C]propionate (TFPP) fast imaging with steady-state 
precession (FISP) image overlaid on a 1H RARE image, and HP 13C-TFPP spectra obtained from low density lipoprotein receptor (LDLR) 
deficient mice compared with control mice, demonstrating excess lipid in LDLR mice (reproduced from Bhattacharya et al.133 with the 
publisher’s permission).

a b c

pure aqueous phase using a water-soluble catalyst, TFPP 
requires a high dose of ethanol as a co-solvent, limiting 
potential in vivo applications.133

Since [1-13C]ethyl pyruvate ester has been shown to be 
polarizable by d-DNP and shows some promise in compar-
ison to [1-13C]pyruvate for functional brain imaging 

applications,134 the hydrogenation precursor [1-13C]vinyl 
pyruvate is an interesting potential target for PHIP, however 
an efficient synthesis route remains elusive.60

Shchepin et al.135 have proposed [1-13C]phospholac-
tate, the hydrogenation product of [1-13C]phosphoenolpyru-
vate, as a possible route to HP [1-13C]lactate in vivo, which 
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is subsequently taken up by tumors and several critical 
organs.59,136 The hydrogenation reaction can relatively 
easily be performed in water,137 which holds promise for 
future biomedical studies.

Ester derivatives of 13C-glucose have been demonstrated 
to be polarizable by PHIP;138 however, the short polarization 
lifetime (~s) must be overcome (e.g. by deuteration) to facilitate 
the realization of in vivo glycolysis measurement by PHIP of 
glucose derivatives and the possibility of corroboration 
against FDG-PET.

Alteration of choline metabolism is a hallmark of tumor 
progression, and several groups have investigated choline 
precursors as potential molecular probes for PHIP.139,140 
Rather than 13C, 15N-labeling can be used; although 15N pos-
sesses an intrinsically low gyromagnetic ratio and hence sen-
sitivity compared with 13C, extremely long relaxation times 
can be realized, enabling metabolism dynamics to be fol-
lowed over the course of several minutes. In particular, the 
recent demonstration of 12% 15N polarization with a lifetime 
of over 20 min on a choline derivative is of interest for  
in vivo cancer metabolism applications.141

Side-arm hydrogenation (PHIP-SAH):  
a route to HP [1-13C]pyruvate
The majority of the above-mentioned probes offer only limited 
or no metabolic information of sufficient sensitivity compared 
with [1-13C]pyruvate produced by d-DNP; however, the lack 

of a suitable hydrogenation precursor of pyruvate, lactate or 
other metabolically-linked molecules has led Reineri et al.142 
to develop the method of side-arm hydrogenation PHIP (PHIP-
SAH). In PHIP-SAH, parahydrogen is added to an unsaturated 
ester of the molecule of choice in the organic phase, where the 
hydrogenation reaction is most efficient, then polarization 
is transferred from 1H to the [1-13C] atom of the carboxylic 
acid of interest, and finally the ester “side-arm” is hydrolyti-
cally cleaved to yield the HP carboxylic acid of interest along 
with ester alcohol in the aqueous phase. Hyperpolarized 
[1-13C]pyruvate, [1-13C]acetate142 and [1-13C]lactate143 
have been demonstrated using this approach.

Following optimization of the initial experimental pro-
cedure with a view to in vivo application,144 a 13C polariza-
tion of ~5% on [1-13C]pyruvate at the time of experiment was 
obtained, enabling realization of the first in vivo metabolic 
MR spectroscopy and imaging in a mouse model of dilated 
cardiomyopathy,145 the results of which are highlighted in 
Fig. 7. Whilst the sensitivity remains relatively low com-
pared with that produced by d-DNP, a recent comparison of 
the polarization efficiency of several pyruvate and acetate 
precursors has provided insights into the best substrate of 
choice for future in vivo metabolic MRI applications.146  
In particular, hydrogenation products ethyl acetate and allyl 
pyruvate (hydrogenation products of vinyl acetate and 
 propargyl pyruvate, respectively) were found to yield the 
highest 13C polarization.146 Furthermore, when a deuterated 

Fig. 7 (a) Slice-selective dynamic 
13C MRS of a healthy wild-type 
mouse after injection of HP 
[1-13C]pyruvate produced by  
parahydrogen-induced polariza-
tion (PHIP)-side-arm hydrogena-
tion (SAH), and (b) corresponding 
whole-body 13C chemical shift 
imaging (CSI) of [1-13C]pyruvate 
and [1-13C]lactate (reproduced 
from Figs. 2 and 3 of Cavallari 
et al.145 under the Creative 
Commons CCBY License).

a

b
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precursor is combined with optimized polarization transfer 
techniques, 13C polarization of more than 50% on acetate has 
been realized using the vinyl ester precursor,147 which may 
permit in vivo investigations of acetyl-CoA synthetase 
activity in the near future by PHIP.

Future Perspectives
Ongoing and future clinical trials of [1-13C]pyruvate MRI 
serve a critical role in evaluating the clinical viability of the 
technique for and beyond oncological studies of metabolism, 
and also in assessing the reproducibility and robustness of 
hyperpolarized MR acquisition methods and analysis proce-
dures in order to provide guidelines to standardize workflow 
for future multi-site validation studies.5 In particular, robust 
clinical comparison studies of HP [1-13C]pyruvate MRI and 
18F-FDG-PET in several oncological pathologies are required 
to further understanding of the relationship between the patho-
physiological information gleaned from each technique and 
further accelerate clinical translation.89,90 Clinical trials of 
d-DNP probes such as [1-13C]fumarate, [1-13C]bicarbonate 
and others are either pending or expected in the near future, 
and co-polarization techniques are likely to yield unprece-
dented access to multiple aspects of metabolic function with a 
single hyperpolarized dose.107,148 d-DNP probe development 
has not ceased with the advent of clinical application of [1-13C]
pyruvate, with several novel probes reported in the last few 
years.149,151 In parallel to clinical studies, the fundamental  
science of d-DNP remains a field of active development.152

Whilst biomedical applications of PHIP are relatively 
few in number to date when compared with those of d-DNP, 
novel approaches such as PHIP-SAH offer an expanded pal-
ette of polarizable molecular targets and a low-cost means  
of generating HP [1-13C]pyruvate for preclinical and with  
further refinement, eventually clinical applications.142,145  
In addition, the development of increasingly efficient and 
versatile hydrogenation catalysts is a thriving research field 
(see e.g. Glöggler et al.,153 Leutzsch et al.154). In particular, 
rhodium-based catalysts commonly used for efficient hydro-
genation predominantly yield cis-selective products, but a 
novel trans-selective ruthenium-based catalyst has recently 
been shown to demonstrate hyperpolarized [1-13C]fumarate 
by parahydrogen addition to acetylene[1-13C]dicarboxylate 
for the first time.155 With appropriate filtering of the catalyst156 
and other unwanted co-solvents or hydrolysis side products 
(in the case of PHIP-SAH), the purity of injected doses can 
be improved to appropriately high levels with a view to clin-
ical application in the foreseeable future.

It is not only the 13C nucleus that shows promise for bio-
medical hyperpolarized MRI applications; as previously 
noted, the 15N nucleus has a relatively low MR sensitivity, but 
exhibits extremely long polarization lifetimes and metabolic 
probes can be prepared in an environment suitable for biolog-
ical application, analogous to 13C.157,158 In addition, 19F, which 
has a gyromagnetic ratio and therefore a baseline sensitivity 

similar to that of the proton, may find biomedical application 
in targeted MRI of hyperpolarized 19F-labelled drugs, though 
limited progress in this direction has been made to date.159  
Furthermore, while all the above noted applications pertain  
to liquid-phase molecular probes, parahydrogen can be used  
in combination with a solid-phase catalyst to generate 
1H-hyperpolarized propane (from propylene) in the gaseous 
phase.160,161 which shows some promise as a relatively cheap 
alternative to hyperpolarized noble gases for biomedical lung 
imaging, though the high 1H background signal may be  
problematic and no in vivo experiments have been attempted 
to date.

Finally, the SABRE parahydrogen method, wherein 
polarization transfer occurs by reversible exchange and the 
target molecule remains chemically unaltered upon interac-
tion with parahydrogen, has the potential yield heteronuclear 
(13C, 15N) hyperpolarization on a broader range of molecular 
imaging probes than conventional PHIP and may lead to sev-
eral unprecedented avenues of biomedical application.162 
Although to date no in vivo experiments have been performed 
with SABRE-polarized probes, the recent demonstration of 
both hyperpolarized [1-13C] and [2-13C]pyruvate,14 although 
at relatively low polarizations, represents a significant step 
toward biomedical application.
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