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Abstract

Introduction

Antipsychotic (AP) safety has been widely investigated. However, mechanisms underlying

AP-associated pneumonia are not well-defined.

Aim

The aim of this study was to investigate the known mechanisms of AP-associated pneumo-

nia through a systematic literature review, confirm these mechanisms using an independent

data source on drug targets and attempt to identify novel AP drug targets potentially linked

to pneumonia.

Methods

A search was conducted in Medline and Web of Science to identify studies exploring the

association between pneumonia and antipsychotic use, from which information on hypothe-

sized mechanism of action was extracted. All studies had to be in English and had to con-

cern AP use as an intervention in persons of any age and for any indication, provided that

the outcome was pneumonia. Information on the study design, population, exposure, out-

come, risk estimate and mechanism of action was tabulated. Public repositories of pharma-

cology and drug safety data were used to identify the receptor binding profile and AP safety

events. Cytoscape was then used to map biological pathways that could link AP targets and

off-targets to pneumonia.

Results

The literature search yielded 200 articles; 41 were included in the review. Thirty studies

reported a hypothesized mechanism of action, most commonly activation/inhibition of
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cholinergic, histaminergic and dopaminergic receptors. In vitro pharmacology data con-

firmed receptor affinities identified in the literature review. Two targets, thromboxane A2

receptor (TBXA2R) and platelet activating factor receptor (PTAFR) were found to be novel

AP target receptors potentially associated with pneumonia. Biological pathways constructed

using Cytoscape identified plausible biological links potentially leading to pneumonia down-

stream of TBXA2R and PTAFR.

Conclusion

Innovative approaches for biological substantiation of drug-adverse event associations may

strengthen evidence on drug safety profiles and help to tailor pharmacological therapies to

patient risk factors.

Introduction

Antipsychotics drugs (APs) have been associated with several adverse reactions including

stroke, acute kidney disease and pneumonia, especially in aged patients [1–3]. In 2009 the

Food and Drug Administration issued a warning on the increased risk of death when APs

were used off-label in persons with dementia, pneumonia being among the most commonly

reported causes of death. Many observational studies have evaluated the association between

APs and the risk of community or hospital-acquired pneumonia in the elderly population [4–

14]. However, most studies investigated APs by class rather than by individual drug, with a few

exceptions. In this respect, classifying drugs as conventional or atypical is a traditional perspec-

tive still reminiscent of the one drug–one target paradigm [15]. It is now widely recognized

that most drugs bind with different affinities to multiple proteins, including but not limited to

traditional receptor targets [16], a property often referred to as polypharmacology [17].This

makes each single drug essentially unique pharmacologically.

The biological pathways underlying antipsychotic-induced pneumonia are not currently

known, although several plausible hypotheses have been postulated [18]. Understanding

which drugs are associated with the highest risk of pneumonia would allow prescribers to

select drugs with a lower risk of pneumonia in persons with risk factors predisposing them to

infectious respiratory diseases. Such risk factors include being bedridden, having chronic

respiratory diseases and/or being prescribed sedating drugs. There is emerging data from

observational studies suggesting a different safety profile for individual APs, which may be

missed when studying drug effects by class [19, 20]. The potential effects of such differences in

adverse drug reactions (ADRs) among single APs could in turn have an impact on AP persis-

tence and healthcare utilization as a result of ADRs, or relapse of symptoms because of differ-

ential AP drug discontinuation. While observational studies are a crucial starting point for the

identification of increased risk of adverse drug reactions they cannot point to an underlying

biological mechanism. Nevertheless, identifying a biologically plausible cause for drug-related

risk, i.e. signal substantiation, is essential to confirm the validity of such risk and identify new

off-targets that otherwise cannot be predicted on the basis of ‘traditional’ systems pharmacol-

ogy, i.e. cholinergic, histaminergic, or serotonergic systems etc. Signal substantiation is defined

as any activity aiming to provide a biological explanation of why an ADR occurs[21]. The

rationale behind this is that an ADR must be biologically plausible to increase the feasibility of
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(http://reactome.org/), Pathway Common (http://

www.pathwaycommons.org/pc/dbSources.do),

WikiPathways (http://www.wikipathways.org/index.

php/WikiPathways) and GeneMania databases

(http://genemania.org/data/). Drugbank database

(https://www.drugbank.ca/), another freely

available online data source, was also used to

further identify pharmacological data. All the data

above was accessed through Cytoscape plug-ins

(as indicated on main text). Finally, the Pubmed

website (https://www.ncbi.nlm.nih.gov/pubmed/)

was used to manually integrate recently published

related data.
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a causal relationship between drug and ADR, in particular for type A ADRs, i.e. those which

are dose-dependent and are related to the drug’s known pharmacological activity.

The aims of this study were to: 1) conduct a systematic review aiming to identify all

hypothesized mechanisms of AP-associated pneumonia in published literature, including

studies employing any study designs (including case reports), in which persons of any age

used APs for any indication, provided that the outcome was pneumonia; 2) confirm the

most relevant drug targets potentially involved in AP-associated pneumonia using compu-

tational approaches for drug safety profiling [22], as well as to identify novel drug targets,

with the ultimate goal of extrapolating clinically relevant information.

Methods and materials

Literature review

Medline and Web of Science were searched for literature from their inception to 27th February

2017 using the following terms: “pneumonia” and “antipsychotic agents”. Articles were

excluded if they were not published in English language or if the full text of the article was not

accessible even after contacting the author. Eligibility criteria included treatment with APs for

any indication in persons of any age and pneumonia as the outcome under investigation. All

study designs and article types were eligible for inclusion, including case reports, letters to the

editor, observational studies and systematic reviews/meta-analyses. For observational studies

reporting a risk of pneumonia with AP use, the study design, population studied, exposure

and comparator, outcome investigated, hypothesized mechanism underlying AP-associated

pneumonia and risk estimate was reported. Two investigators independently examined the

titles and abstracts of selected articles and obtained full texts of potentially relevant papers. Dis-

agreement on inclusion was resolved by discussion. The findings were reporting accordingly

the PRIMA checklist (S1 Fig).

Screening of known and predicted antipsychotic binding to receptors and

associated safety events

CT-link software [22] was used to analyze the experimentally known pharmacology and its

potential link to known safety outcomes of AP drugs. Known in vitro pharmacology data was

extracted from ChEMBL [23]. Statistically significant protein signatures associated to each

safety outcome were generated by analyzing the confusion matrix resulting from the number

of drugs with affinity above or below a certain affinity threshold for a given target and associ-

ated, or otherwise, to a given safety event. Protein signatures were defined for 1,455 safety

terms, mapped to Unified Medical Language System (UMLS) codes, and classified in 25 toxic-

ity categories [24]. CT-link was screened for targets and safety outcomes associated with a set

of 7 APs commonly investigated in the relation to the risk of pneumonia, namely, amisulpride,

clozapine, haloperidol, olanzapine, quetiapine, risperidone, and zotepine [25–29].

Pathway construction

Once targets of interest were identified in CT-Link (i.e., novel targets), the pathways that could

potentially explain a novel biological link between AP off-targets, i.e., binding targets other

than intended ones, and safety terms related to pneumonia were identified and investigated

using the following software: Cytoscape [30], the GeneMania [31], ClueGO [32] and CyTarget

Linker [33] plug-ins (S3 Fig). Cytoscape software was used to find group of elements, either

genes or proteins, that interact with the user-defined query (which consists of one or more

genes/proteins), representing them graphically. Each of the elements (either genes or proteins)
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found by Cytoscape are referred as “nodes” (graphically represented by circles). The interac-

tions are referred as edges (graphically represented by lines connecting different nodes).

To construct a possible molecular pathway downstream of antipsychotic binding to its off-

targets, two approaches were used. In the first approach, a “Physical Interactions” database

was used [31] to identify possible proteins and/or metabolic products that may be responsive

to the function of the identified proteins to which AP drugs bind. Cytoscape was used to iden-

tify all known nodes which physically interact with AP off-targets, using data inputs from the

“Physical Interactions” database of geneMania plug-in. This step was iterated, using the results

of the previous step as input, to widen the biological net of physical interactors.

In the second approach, the “Pathway Commons” [31] database was used in order to iden-

tify nodes related to the function of the off-targets identified. For this step, Cytoscape was fur-

ther screened to identify the pathways that are functionally linked with AP protein targets and

pneumonia-related symptoms. The “Pathway Commons” database of the geneMania plug-in

was used in this step. All molecular cascades, including those weakly related to our starting

query, were identified. Nodes not related to the phenotype under investigation were removed

manually.

Selection and clustering of candidate genes from the biological net

identified: Mapping of hypothetical molecular cascades leading to AP-

derived pneumonia due to novel targets

The relevance of the interactors to pneumonia-related symptoms was checked through the use

of Medline and Cytoscape built-in databases. The nodes having a stronger association were

highlighted. These are hereafter referred to as associated nodes(AN). Nodes within the biologi-

cal net, linking the associated nodes to identified AP off-targets were clustered, where a cluster

is defined as a subgroup of nodes within the biological net under investigation that share a par-

ticular characteristic. In this case, the common characteristic is that they are related to both AP

targets and the associated nodes found in the biological net. ClueGo [32] and CluePedia [34]

plug-ins were then used to identify pathways involved in the function of the nodes included in

the clusters.

Results

Literature review

The results of the article selection process are reported in Fig 1. The search in Medline and

Web of Science yielded 200 articles. Of these, only 48 articles were deemed suitable for further

consideration as they specifically concerned APs as drugs of interest which may have led to

pneumonia. Seven articles were subsequently excluded because they were not in English or

had no full text available, even after the authors were contacted (see S1 Table for details on

excluded studies with no full text). Forty-one articles were included in the final assessment and

of these, the majority were observational studies (N = 16) [1, 4, 6–10, 12, 13, 18, 25–29, 35–46].

Of the 41 articles included, 30 hypothesized a mechanism of action. Ten studies were reviews/

meta-analyses [1, 13, 18, 27, 41–46], while other studies included 12 case reports [47–58]and

one letter to the editor[15]. Most of the literature concerned patients aged 65 and older [1, 4, 6,

8–10, 12, 18, 35, 38, 41, 45, 47, 49, 51] while others investigated an adult population with bipo-

lar/schizophrenic disorders [26, 36, 37, 40, 48, 50, 55, 56, 59]. No randomized clinical trials

(RCTs) were identified, but one meta-analysis of 6 RTCs was found [27](S2 Fig). Limited

information on the effect of dose and duration regarding the risk of pneumonia was available,

although some studies suggested an increased risk of pneumonia with higher AP doses [4, 29]
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Fig 1. Selection of publications in Medline and Web of Science, using the PRISMA model.

https://doi.org/10.1371/journal.pone.0187034.g001
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and mostly close to the start of treatment [29], while another study found no clear link between

the duration of AP exposure and risk of pneumonia[39]. Some groups of AP-treated persons

were found to be at higher risk of pneumonia, including persons with Parkinson’s disease [25],

schizophrenia [25], and those concomitantly using multiple antipsychotic drugs [26].

The most widespread theories about the biological mechanisms underlying pneumonia due

to antipsychotic use concern the affinity of the antipsychotics to cholinergic [1, 4, 6, 8, 9, 12,

18, 25, 26, 36, 37, 43, 45, 48, 51, 59], histaminergic [4, 6, 9, 25, 26, 43–45, 59] and dopaminergic

[1, 6, 9, 18, 25, 36, 41–44, 49, 58]receptors (Table 1). The clinical events triggered by APs bind-

ing to their targets and leading to pneumonia are summarized in Table 1.These include dry

mouth and impaired peristalsis due to muscarinic M1 receptor blockade, as well as sedation

with subsequent impaired swallowing due to histamine H1 receptor blockade. Lesser known

mechanisms proposed involved the immune system [6, 10, 26, 36, 41, 43], cytochrome metab-

olism system [47], inflammatory pathways [15, 41], an eotaxin (i.e., a chemoattractant for

eosinophils) and serotonin eosinophilic-specific chemo-attracting action leading to eosino-

philic pneumonia [49].

Most of the hypotheses concerned antipsychotic drug classes rather than individual drugs,

or referred to antipsychotics in general. Several studies did not specify a biological mechanism

leading to pneumonia but described the antipsychotic-associated clinical signs or symptoms

which may cause pneumonia [10, 15, 35, 42, 44, 50, 53, 54]. The most commonly hypothesized

physiological/clinical conditions leading to antipsychotic-associated pneumonia were extrapy-

ramidal symptoms (5 studies reporting extrapyramidal symptoms with conventional APs, 5

studies where AP class was not specified; none for atypical APs), sedation (7 studies reporting

sedation with conventional APs, 5 with atypical APs, 6 where class was not specified), xerosto-

mia (6 studies reporting xerostomia after atypical AP use, 2 studies not specifying AP drug

class and none for conventional APs) and oropharyngeal dyskinesia/impaired swallowing (10

studies reporting this for atypical APs, 8 without specifying a drug class; none for conventional

APs). Less common clinical features included aspiration, sialorrhea, agranulocytosis, and sup-

pression of the cough reflex.

Of all the observational studies/reviews identified, 17 reported a risk estimate of pneumonia

associated with antipsychotic use (Table 2). Most risk estimates were available for AP drug

classes rather than individual drugs, suggesting that the overall risk of pneumonia associated

with atypical APs is similar to conventional APs, when non-use of APs was the reference

group. No comparison of pneumonia risk could be made for individual APs due to the variety

of reference groups used.

Off-target pharmacology and links to respiratory safety events

The results of the search in CT-link for the known AP receptor-binding profile broadly con-

firmed the results of the literature review (Fig 2). The comparison of the experimental affinity

profiles of the 7 APs across a set of proteins for which in vitro affinity data was available shows

that, even though these drugs are all considered to belong to the same pharmacological class,

there are significant differences between their pharmacologic profiles. For example, amisul-

pride and haloperidol show a clear binding preference for the dopamine receptors D2 (DRD2)

and D3 (DRD3), while having a much weaker affinity for the histamine H1 receptor (HRH1)

than the other APs. In addition, with the exception of quetiapine and amisulpride, all APs bind

strongly to the serotonin receptor subtypes 5-HT2A (HTR2A) and 5-HT2C (HTR2C). Also, in

general, clozapine and risperidone seem to interact more strongly with the alpha-2A adrenergic

receptors than the other APs. Finally, olanzapine and clozapine interact markedly with the mus-

carinic receptors compared to other APs. Altogether, the unique polypharmacology of every

Biological substantiation: Antipsychotics and pneumonia
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Table 1. Summary of potential biological mechanisms underlying antipsychotic-associated pneumonia identified in the literature.

Receptor system Molecular/cellular target Associated signs/symptoms Antipsychotic drug or drug

class

Cholinergic

system

M2, M3 and M5 receptor antagonism [59] - Clozapine

M4 muscarinic receptor agonism[48, 59] Hypersalivation[37, 59] Clozapine

M1 muscarinic receptor antagonism

[26, 59]

Xerostomia[26, 36, 37] Clozapine

Xerostomia[36] Olanzapine

Esophageal dilatation and

hypomotility[26, 36, 37]

Clozapine

Esophageal dilatation and

hypomotility[36]

Olanzapine

Impaired peristalsis[36] Olanzapine

Impaired peristalsis

[36, 37]

Clozapine

Interaction with muscarinic receptor system with no specification as to receptor

subtype and nature of effect (agonist or antagonist)

[1, 9, 12, 18, 43]

Not specified Not specified

Anticholinergic activity with no specification to receptor subtype [8, 25] Xerostomia[4, 6, 43, 45] Atypical APs

Anticholinergic activity with no specification to receptor subtype [45] Aspiration[4, 8, 45] Conventional APs

Anticholinergic activity with no specification to receptor subtype[4] Esophageal dysfunction [8] Atypical APs

Decreased peristaltic function[8] Not specified

Bronchorrhea[51]

Hypersalivation[51]

Hypersalivation

[37]

Clozapine

Adrenergic system Alpha-2 receptor antagonism

[48]

Not specified Clozapine

Serotonergic

system

5-HT2a receptors antagonism

[49]

Not specified Risperidone

Dopaminergic

system

Post-synaptic D2 receptors antagonism [49] Not specified Risperidone

D2 receptors[36] Extrapyramidal symptoms[36] Haloperidol

Dopaminergic activity with no specification to receptor subtype and nature of effect

(agonist or antagonist)[9, 25, 43]

Extrapyramidal symptoms[4, 9, 25,

45]

Conventional APs

Dopaminergic activity with no specification to receptor subtype and nature of effect

(agonist or antagonist)[1, 41–44]

Extrapyramidal symptoms

[30–33]

Not specified

Dysphagia[29, 43] Not specified

Oropharyngeal dyskinesia[6, 43]

Oropharyngeal rigidity and spasm[6,

43]

Aspiration[6, 58]

Gasping and choking[58]

Histaminergic

system

H1 receptor blockade[45] Sedation

[4, 6, 9, 25, 26, 43–46]

Conventional APs

H1 receptor blockade [6, 25, 43, 44, 46] Impaired swallowing

[4, 6, 9, 25, 43, 45]

Atypical APs

H1 receptor blockade[26] Aspiration[4, 37, 43, 45] Clozapine, olanzapine, and

quetiapine

H1 receptor blockade [43, 44] Not specified Phenothiazines

Not specified Not specified

H1 receptor blockade[59] Impaired esophageal peristalsis, due

to sedation [59]

Clozapine

Effect on H1 receptors, with no specification as to nature of effect (agonist or

antagonist)

Sedation[29] Not specified

No subtypes specified Sedation[29, 36, 37] Olanzapine, clozapine

- Immune system[29] Agranulocytosis[10] Not specified

Altered cytokine profile [41] Individual APs or class not

specified

Agranulocytosis[6, 26, 43, 59] Clozapine

(Continued)
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individual antipsychotic will ultimately translate in a unique drug safety profile associated with

those protein interactions.

Most drugs are the result of a long and careful drug design process aiming at maximizing

the affinity of a drug for its primary intended target, in the case of antipsychotics, dopaminer-

gic receptor blockade. The primary targets of a drug are therefore those proteins for which the

drug has strongest affinity. Accordingly, a total of 41 protein interactions with binding affinity

stronger than 10nM (pKi� 8.0) are currently experimentally known for those 7 APs [23]. Of

these, 39 interactions (95%) are with aminergic G protein-coupled receptors. They will be

most likely the main factor responsible for some of the antipsychotic-associated pneumonias

reported. However, in spite of the optimization process, most drugs will still have residual,

weaker, affinities for other proteins. In the case of the 7 APs in this study, the number of

known protein interactions goes up to 184 when considering weaker binding affinities, such as

1μM (pKi� 6.0). This off-target pharmacology, i.e. drugs targets other than the known and/or

expected ones, could also contribute and be partly responsible for some of the respiratory

safety events linked to pneumonia. The identified off-targets as potentially novel mediators of

AP-associated pneumonia were then screened using a repository of drugs and their associated

safety events. The thromboxane A2 receptor (TBXA2R) and the platelet-activating factor

receptor (PTAFR) were preliminarily identified as such novel off-targets of interest for which

micromolar affinity was observed for all 7 APs except for amisulpride.

A repository of the data from drug labels, safety predictions and ontologies in CT-link was

used to screen safety events associated with the set of 7 APs. It was found that a total of 95

respiratory safety terms were associated with these antipsychotics. The most commonly identi-

fied terms were alveolitis, lung diseases, dyspnea, and respiration disorders (S2 Table). The

antipsychotics most consistently linked to pneumonia-related signals were quetiapine and ris-

peridone, whereas the least associated with pneumonia-related signals were olanzapine and

clozapine. Interestingly, the latter were the two antipsychotics having a receptor binding

Table 1. (Continued)

Receptor system Molecular/cellular target Associated signs/symptoms Antipsychotic drug or drug

class

- No pharmacologic or other systems specified Sedation[1, 10, 41–43] Not specified

Sedation[48] Clozapine

Sedation[8] Atypical APs

Impaired swallowing and dysphagia

[10, 41–43, 54]

Not specified

Impaired swallowing and dysphagia

[28]

Atypical APs

Impaired swallowing and dysphagia

[15, 48]

Clozapine

Xerostomia[10, 42] Not specified

Hypersalivation[15, 48, 50] Clozapine

Esophageal dysfunction [15, 50] Clozapine

Suppression of cough reflex [41, 54] Not specified

Sialorrhea

[53]

Clozapine

Hypertonic movement of pharyngeal

muscles

[54]

Not specified

Abbreviations- AP: antipsychotic.

https://doi.org/10.1371/journal.pone.0187034.t001
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Table 2. Summary of all identified observational studies investigating the risk of antipsychotic-associated pneumonia.

Type of study Study population Exposure Mechanisms hypothesized Outcome and risk estimate

(95% CI)

High risk groups

Nested case-control

study[25]

Persons aged�65 Olanzapine, risperidone,

quetiapine, ziprasidone,

aripiprazole

The increased risk of pneumonia with olanzapine

compared to quetiapine could be due to the increased

affinity of olanzapine to histaminergic and muscarinic

receptors compared to quetiapine.

Pneumonia may be mediated via extrapyramidal effects,

sedation, impaired swallowing.

Pneumonia risk (quetiapine

as comparator)

Risperidone HRAdj = 1.14

(1.10–1.18)

Olanzapine HRAdj = 1.10

(1.04–1.16)

Ziprasidone HRAdj = 0.97

(0.81–1.16)

Aripiprazole HRAdj = 0.92

(0.84–1.00)

Parkinson’s disease

Systematic review and

meta-synthesis of

observational studies [41]

Persons aged�65 Conventional or atypical

APs

The risk of pneumonia among conventional APs may be

mediated by extrapyramidal effects, leading to pharyngeal

rigidity and dysphagia, and sedation, in turn leading to

suppression of the cough reflex and a higher risk of

aspiration.

APs may also modulate cytokine levels and immune

response but it is not clear how this may differ between

conventional and atypical agents.

Average pneumonia

relative risk and range

(atypical APs as comparator)

RR = 1.01 (0.84–1.28)

None specified

Retrospective cohort

study[9]

Long-term care

residents aged�65

Conventional or atypical

APs

Conventional APs may cause dysphagia. Their affinity to

dopaminergic receptors causes extrapyramidal adverse

effects that can lead to pneumonia. Both atypical and

conventional APs may have significant anticholinergic

effects which increase the risk of pneumonia.

Histamine H1 receptor blockade may lead to sedation,

which may be associated with dysphagia and possibly,

aspiration pneumonia.

Risk of pneumonia

(atypical APs as comparator)

HR = 1.24(0.94–1.64)

None specified

Nested case-control

study[6]

Persons aged�65 Any AP or APs by class Pneumonia may be due to aspiration, dysphagia and/or

impaired cough reflex.

Dopaminergic blockade may lead to dyskinesia of the oro-

pharyngeal muscles, rigidity and spasm of the pharyngeal

muscles which increases the risk of aspiration.

The blocking of dopamine receptors may also result in

hyperfunctional involuntary movements (dyskinesia) of the

oral pharyngeal musculature, rigidity, and spasm of the

pharyngeal musculature, which can result in aspiration.

Another mechanism involves dryness of the mouth that

leads to impaired oropharyngeal bolus transport.

Furthermore, sedation is also a well-known cause of

swallowing problems, in particular caused by histamine-

1-receptor blocking in the central nervous system. Some

APs are known to have direct or indirect effects on the

immune system. In less than 1% of treated patients

clozapine may cause agranulocytosis, which increases the

risk of infections.

Risk of pneumonia with any

AP use(non-use as

comparator)

Current use (0 to 7 days)

ORAdj = 1.6 (1.3–2.1)

Recent past use (8–30 days)

ORAdj = 0.89 (0.5–1.6)

Past use (>31 days) ORAdj =

0.69 (0.5–1.0)

Risk of pneumonia by AP

class

(non-use as comparator)

Use of atypical APs ORAdj =

3.1 (1.9–5.1)

Use of conventional APs

ORAdj = 1.5 (1.2–1.9)

Use of both classes ORAdj =

1.9 (0.5–7.4)

None specified

Nested case-control

study[26]

Persons with a

schizophrenia

diagnosis

Conventional APs by

class; atypical APs by

class and individually

Pneumonia may occur due to AP drugs binding to

histaminergic-1 (H1) receptors and muscarinic-1 (M1)

receptors. Atypical APs with a strong binding affinity for

histaminergic-1 (H1) receptors or with significant

cholinergic activity may increase the risk of pneumonia.

Risk of hospitalization for

pneumonia by drug class and

for individual class (non-use

as comparator)

RRAdj for any current use of

atypical APs = 1.69 (1.43–

2.01)

RRAdj for current clozapine

use = 3.18 (2.62–3.86)

RRAdjfor current olanzapine

use = 1.83 (1.48–2.28)

RRAdj for current quetiapine

use = 1.63 (1.31–2.04)

RRAdj for current zotepine

use = 1.48 (1.15–1.91)

RRAdj for current risperidone

use = 1.32 (1.12–1.56)

RRAdj for current amisulpride

use = 1.14 (0.79–1.65)

RRAdj for any current use of

conventional APs = 1.38

(0.92–2.07)

Persons prescribed clozapine

concomitantly with olanzapine,

quetiapine, risperidone,

quetiapine, zotepine or

amisulpride; persons

prescribed clozapine,

risperidone, quetiapine,

olanzapine or zotepine

concomitantly with other non-

clozapine APs

Systematic review and

meta-analysis[44]

Persons of all ages Any AP drug; meta-

analysis conducted for

conventional

antipsychotics or atypical

antipsychotics compared

to non-use

Extrapyramidal effect may mediate aspiration pneumonia. Risk of pneumonia

(non use as comparator)

OR for conventional AP

use = 1.68 (1.39–2.04)

OR for atypical AP use = 1.98

(1.67–2.35)

Chronic obstructive pulmonary

disease, asthma, diabetes

mellitus, congestive heart

failure, smoking, malnutrition
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Table 2. (Continued)

Type of study Study population Exposure Mechanisms hypothesized Outcome and risk estimate

(95% CI)

High risk groups

Case control study[8] Hospitalized

persons aged�65

Atypical

APs (clozapine,

olanzapine, quetiapine,

aripiprazole, ziprasidone,

and risperidone)

AP -associated esophageal dysfunction can cause

pneumonia. Sedation due to anticholinergic effects

decreases peristaltic function increasing the risk of

aspiration.

Risk of community acquired

pneumonia

(use of atypical APs in

persons who did not develop

pneumonia as comparator)

ORAdj = 2.26 (1.23–4.15)

Chronic obstructive

pulmonary disease, asthma,

diabetes

mellitus, congestive heart

failure, smoking

Nested case-control[4] Persons�65 years Atypical or conventional

AP use

Conventional APs may lead to extrapyramidal effects as

akinesia which increase the risk of aspiration. Pneumonia

may also be due to anticholinergic receptor blockade that

causes xerostomia and impaired peristalsis and

H1-receptor blockade that causes sedation.

Risk of fatal or non-fatal

pneumonia (past use as

comparator)

ORAdjfor current atypical

antipsychotic use = 2.61

(1.48–4.61)

ORAdj for current

conventional antipsychotic

use = 1.76 (1.22–2.53)

ORAdj for current

butyrophenone use = 1.57

(1.06–2.30)

ORAdj for current

phenothiazine use = 4.16

(1.46–11.87)

ORAdjforcurrent use of other

conventional

antipsychotics = 2.26 (1.21–

4.24)

ORAdjfor current risperidone

use = 3.51 (1.94–6.36)

ORAdjfor current olanzapine

use = 1.90 (0.61–5.90)

ORAdjfor current of

piamperidone = 1.55 (1.00–

2.43)

ORAdjfor current use of

haloperidol = 1.95 (1.20–

3.17)

ORAdjfor current use of

zuclopenthixol = 2.25 (1.00–

5.08)

Use of�0.15 defined daily

dose for both drug classes

Retrospective cohort

study[38]

Persons with

dementia aged�65

Conventional or atypical

APs

None specified Risk of pneumonia for

conventional APs (atypical

APs as comparator)

ORAdj = 1.57 (1.05–2.34)

None specified

Retrospective cohort

study[12]

Nursing home

residents aged

�65years

Psychotropic drugs:

antidepressants, atypical

APs, benzodiazepines,

conventional APs.

Anticholinergic effects may give rise to pneumonia Risk of pneumonia with

conventional APs (atypical

APs as comparator)

RRAdj = 0.94 (0.56–1.58)

None specified

Meta-analysis of 6

double-blind phase II and

III trials investigating the

use of risperidone in

Alzheimer’s disease

patients compared to

placebo[27]

Alzheimer’s

disease patients

Risperidone None specified Risk of pneumonia as cause

of death with risperidone

compared to placebo

% deaths = 1.0 (0.38–1.60)

None specified

Retrospective cohort

study[7]

Elderly persons

admitted to hospital

for pneumonia

Conventional or atypical

APs

None specified Risk of in-hospital death for

pneumonia patients (i.e. fatal

pneumonia)

(non-use as comparator)

Conventional AP ORAdj =

1.51 (1.04–2.19)

Atypical AP ORAdj = 1.20

(0.96–1.50)

None specified

(Continued)
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Table 2. (Continued)

Type of study Study population Exposure Mechanisms hypothesized Outcome and risk estimate

(95% CI)

High risk groups

Retrospective cohort

study[36]

Persons with a

diagnosis of bipolar

disease

Conventional or atypical

APs or single individual

APs

Olanzapine and clozapine may cause pneumonia through

an anticholinergic effect at M1 receptors, inducing dry

mouth, esophageal dysfunction and impaired peristalsis.

Both these drugs may also cause sedation through an

antihistaminergic effect. Haloperidol may increase the risk

of pneumonia through extrapyramidal symptoms mediated

by dopamine-2 receptors.

Risk of pneumonia

(non-current use as

comparator)

RRAdj for any atypical AP

= 2.07(1.58–2.71)

RRAdj for clozapine = 2.59

(1.90–4.66)

RRAdj for olanzapine = 2.97

(1.90–4.66)

RRAdj for quetiapine = 2.12

(1.48–3.03)

RRAdj for zotepine = 1.52

(0.98–2.38)

RRAdj for risperidone = 1.74

(1.21–2.50)

RRAdj for conventional

AP = 2.32 (1.76–3.05)

RRAdj for

chlorpromazine = 1.10 (0.68–

1.78)

RRAdj for haloperidol = 3.68

(2.66–5.09)

RRAdj for sulpiride = 1.29

(0.94–1.76)

None specified

Retrospective cohort

study[37]

Persons with a

diagnosis of

schizophrenia

Conventional or atypical

APs or single individual

APs

Clozapine may cause pneumonia through an M1 receptors

blockade, inducing dry mouth, esophageal and impaired

peristalsis; clozapine may paradoxically also cause

excessive salivation due to disrupted cholinergic function

which increases the risk of pneumonia

Risk of pneumonia

(non-current use of APs, i.e.

use > 30 days of the date of

pneumonia)

RRAdj for conventional

APs = 0.97 (0.75–1.25)

RRAdj for

chlorpromazine = 0.83 (0.48–

1.44)

RRAdj for haloperidol = 1.11

(0.80–1.52)

RRAdj for flupenthixol = 0.88

(0.43–1.44)

RRAdj for sulpiride = 0.96

(0.70–1.33)

RRAdj for atypical APs = 0.92

(0.72–1.18)

RRAdj for clozapine = 1.40

(1.05–1.88)

RRAdj for olanzapine = 1.09

(0.71–1.67)

RRAdj for quetiapine = 1.08

(0.73–1.59)

RRAdj for zotepine = 0.79

(0.46–1.37)

RRAdj for risperidone = 0.62

(0.46–0.84)

RRAdj for amisulpride = 1.11

(0.61–2.01)

RRAdj for aripiprazole = 0.71

(0.33–1.54)

Cancer, cardiovascular

disease, asthma, anti-

inflammatory medications

Self-controlled case

series[39]

Elderly persons

with pneumonia

Conventional or atypical

APs

None specified Risk of pneumonia within the

first week after AP initiation

(non-exposure as

comparator)

RRAdj for conventional

APs = 2.07 (1.45–2.95)

RRAdj for atypical APs = 1.92

(1.44–2.56)

None specified
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profile markedly different from the other APs in their preferred binding for muscarinic recep-

tors (Fig 2).

Among the off-targets identified, further analysis was carried out for the two potentially

novel proteins involved in AP-associated pneumonia, TBXA2R and PTAFR. Drug safety

events (including respiratory events) in CT-link are linked to data on the receptors potentially

associated with that safety event. Pneumonia in relation to the antipsychotics screened was

indeed found to be associated with TBXA2R and PTAFR.

Biological pathway construction

Findings on the potential role of TBXA2R and PTAFR in the increased risk of antipsychotic-

associated pneumonia derived from CT-link were further investigated using Cytoscape. Sev-

eral candidate genes encoding for proteins that physically interact with TBXA2R and PTAFR

were identified. The pathways involved in the function of the clustered genes are shown in

Figs 3 and 4. The identified AP off-targets, TBXA2R and PTAFR, in black, are linked, either

directly or indirectly, to a group of nodes, shown in blue, which likely contribute to the

increased risk of developing pneumonia-related symptoms after activation of TBXA2Ror

PTAFR. The molecular cascade highlighted in these analyses is involved in a wide range of bio-

logical functions. The biological processes (identified from the Gene Ontology Database -

http://geneontology.org/) related to the molecular cascade for both TBXA2R and PTAFR are

indicated in Fig 5, while S3 and S4 Tables report the details of biological processes and sub-

processes indicated in Fig 5. As shown by the supplementary files (S3–S6 Figs), several path-

ways were influenced by the function of the clustered nodes. While some of these clusters

point to biological functions which seem completely unrelated to pneumonia-related

Table 2. (Continued)

Type of study Study population Exposure Mechanisms hypothesized Outcome and risk estimate

(95% CI)

High risk groups

Retrospective cohort

study [28]

Elderly persons

who underwent a

coronary artery by-

pass graft

Conventional or atypical

APs; olanzapine,

quetiapine or risperidone

vs. haloperidol in

sensitivity analysis

Atypical APs can cause aspiration pneumonia by impairing

swallowing.

Risk of pneumonia after

cardiac surgery (conventional

AP as comparator)

RR for atypical APs after

propensity score

matching = 1.11 (0.89–1.38)

Risk of pneumonia after

cardiac surgery (haloperidol

as comparator)

RR for quetiapine after

propensity score

matching = 0.99 (0.76–1.29)

RR for risperidone after

propensity score

matching = 1.19 (0.91–1.56)

RR for olanzapine after

propensity score

matching = 1.11 (0.83–1.47)

None specified

Retrospective cohort

study [29]

Persons with

Alzheimer’s

disease and

persons with no

Alzheimer’s

disease

Any AP use; risperidone,

quetiapine and haloperidol

AP drugs can cause pneumonia as a result of

extrapyramidaleffects, swallowing impairment, and

sedation, caused by action on the dopaminergic,

cholinergic, and histaminergic systems.

Otherpossiblemechanismsmayoccurthrough the immune

system.

In persons with AD,

risk of pneumonia (non-use

as comparator)

HRAdj for any AP use = 3.43

(2.99–3.93)

HRAdj for quetiapine

(risperidone as comparator)

= 0.77 (0.58–1.03)

HRAdj for haloperidol

(risperidone as comparator)

= 1.90 (1.25–2.90)

Increasing dose, initial phases

of treatment

Abbreviations- AP: antipsychotic; Adj: adjusted; CI: confidence intervals; HR: hazard ratio; OR: odds ratio; RR: risk ratio.

https://doi.org/10.1371/journal.pone.0187034.t002
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symptoms, others are potentially related to pneumonia. Further detail on the web of biological

functions related to PTAFR and TBAX2R are shown in the supplementary files (S7–S9 Figs).

Discussion

Drug safety is an important public health concern, as can be seen by the continuous efforts in

pharmacovigilance to identify, quantify and minimize drug-related risks. Over the years, anti-

psychotic safety has been investigated using both spontaneous reporting system databases as

well as electronic medical records or claims databases. Whenever possible, the plausibility of

associations between adverse drug events and drug use is strengthened by confirming the bio-

logical plausibility of such events, especially in case of “type A” adverse drug reaction which

are dose-dependent and are based on pharmacological properties of the drug mechanism of

action effects.

Of the 41 articles identified in the systematic literature review, only 30 hypothesized a phar-

macological mechanism that could explain the antipsychotic-associated risk of pneumonia.

Furthermore, only one of these studies was designed in such a way that could reasonably asso-

ciate pneumonia to specific antipsychotic sub-groups, and therefore to a group of antipsychot-

ics with closely related physicochemical properties (e.g., butyrophenones and phenothiazines

among conventional antipsychotics)[4].

Fig 2. The polypharmacology of 7 commonly studied antipsychotics in the context of pneumonia,

across 34 proteins for which experimentally known pKi values are available. The affinities for the

receptors TRXA2R and PTAFR concern predicted, not experimentally known, values; these are presented

here for comparison purposes. Abbreviations: HTR- serotonin receptors; ADR: adrenergic receptors; DRDs-

dopamine receptors; HRHs: histamine receptors; CHRs- muscarinic receptors; KCNH2: hERG transporter,

SLC6A3: dopamine transporter, SLC6A4: serotonin transporter; TBXA2R- thromboxane A2 receptor;

PTAFR- platelet activating factor receptor. Color coding reflects the experimentally known pKi values, yellow

being inactive (pKi = 4; Ki = 100 nM), red being highly active (pKi = 9; Ki = 1 nM), and grey meaning that no

data is available for that interaction.

https://doi.org/10.1371/journal.pone.0187034.g002
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The approach underlying currently hypothesized mechanisms is limited because it is based

on the traditional view of ‘systems pharmacology’, thus excluding a priori any“off-target”

receptors and focusing on commonly known pharmacological systems, such as cholinergic,

histaminergic, serotonergic and dopaminergic classes. As a result, other targets potentially

mediating events of interest are not captured. A case in point is the identification of two novel

receptor targets which were not identifiable based on the major pharmacologic systems.

The main clinical implications of the study findings primarily illustrate that antipsychotics

of both classes have plausible mechanisms leading to pneumonia and/or lead to signs/symp-

toms that increase the risk of pneumonia. As a result, all APs should be used with caution and

sparingly in persons at risk of pneumonia, especially the elderly. Indeed, the finding of similar

risk of pneumonia across classes in the literature review conducted is consistent with a recently

published systematic review and meta-analysis [44]. Nevertheless, the very diverse target bind-

ing among single APs, as highlighted by the analysis of experimentally-known AP target-

Fig 3. Clusters identified for investigation for TBXA2R. TBXA2R is shown in black, associated nodes are represented in blue, primary interactors

of TBXA2 are shown in red and secondary interactors are shown in grey. The nodes are linked through physical interactions (data obtained from

geneMania database). Abbreviations- ADRB1: Adrenoceptor Beta 1; ARRB2: Arrestin Beta 2; ADRB1: Arrestin Beta 1;AGTR1: Angiotensin II

Receptor Type 1; AGTR1: Angiotensin II Receptor Type 1; ADRB2: Adrenoceptor Beta 2; TBXA2R: Thromboxane A2 Receptor; AGTRAP:

Angiotensin II Receptor Associated Protein;BDKRB2: Bradykinin Receptor B2;CAV3:Caveolin 3; CDH15: Cadherin 15; CDH2:Cadherin 2;EDNRA:

Endothelin Receptor Type A;G3BP2: G3BP Stress Granule Assembly Factor 2; GNA11: G Protein Subunit Alpha 11;GNAI2: G Protein Subunit

Alpha I2;GNA12: G Protein Subunit Alpha 12;GNA13: G Protein Subunit Alpha 13;GNAQ: G Protein Subunit Alpha Q;GNAS: GNAS Complex Locus;

GPRASP1: G Protein-Coupled Receptor Associated Sorting Protein 1;GRK5: G Protein-Coupled Receptor Kinase 5;HTR2B: 5-Hydroxytryptamine

Receptor 2B;HRH2: Histamine Receptor H2; ITGB1BP1: Integrin Subunit Beta 1 Binding Protein 1; KCNMA1: Potassium Calcium-Activated

Channel Subfamily M Alpha 1;NME1-MNE2: NME/NM23 nucleoside diphosphate kinase 1;OPRD1:Opioid Receptor Delta 1;OPRK1: Opioid

Receptor Kappa 1;OPRM1: Opioid Receptor Mu 1;PRKCA: Protein Kinase C Alpha; RAF1: Raf-1 Proto-Oncogene, Serine/Threonine Kinase;

WDR36: WD Repeat Domain 36; YWHAZ: Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Zeta.

https://doi.org/10.1371/journal.pone.0187034.g003
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binding, suggests that grouping antipsychotics into broad groups such as ‘atypical’ and ‘con-

ventional’ may not be helpful or accurate. This method of classifying antipsychotics is based

on the point in time when antipsychotics were marketed, with the older APs being termed

conventional or first generation and newer ones being referred to as atypical or second genera-

tion. In vitro findings presented in this study confirm that such a classification is misleading,

particularly concerning atypical APs, because there is a significant pharmacological heteroge-

neity among individual APs. Equally prone to being misleading are proposed mechanisms of

action for pneumonia, or other adverse outcomes, that assumed all AP drugs to have the same

or similar pharmacological action. The literature review conducted contains several such

examples of mechanisms of action which related to all APs. Researchers should not be content

with evaluating the risk of an outcome but should question the reason why such events occur,

considering that biological feasibility is one of the key criteria for causality. The present study

Fig 4. Clusters identified for PTAFR. PTAFR is shown in black, associated nodes from Table 1 are represented in blue, primary interactors of

TBXA2R are shown in red and secondary interactors are shown in grey.The nodes are linked through physical interactions (red edges) and

pathway interactions (blue edges). The data was obtained from geneMania software. Abbreviations- ADORA1: Adenosine A1 Receptor;

ADRB1:Adrenoceptor Beta 1; CCK: Cholecystokinin; CDC42:Cell Division Cycle 42; CNR2:Cannabinoid Receptor 2;ENG:Endoglin;GHR:

Growth Hormone Receptor; GLP1R: Glucagon Like Peptide 1 Receptor;GNAI3:G Protein Subunit Alpha I3;GNLY:Granulysin; HDAC5: Histone

Deacetylase 5; IKBKB: Inhibitor Of Nuclear Factor Kappa B Kinase Subunit Beta; IL13RA1: Interleukin 13 Receptor Subunit Alpha 1; LYN:LYN

Proto-Oncogene, Src Family Tyrosine Kinase; OXTR:Oxytocin Receptor;PTGDS: Prostaglandin D2 Synthase; PTAFR: platelet activating factor

receptor;PTGER3: Prostaglandin E Receptor 3;RELN:Reelin; RGS16: Regulator Of G-Protein Signaling 16; SLC40A1: Solute Carrier Family 40

Member 1; TACR1: Tachykinin Receptor 1.

https://doi.org/10.1371/journal.pone.0187034.g004
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suggests that off-target pharmacology can play an important role in substantiating known sig-

nals. The novel mechanisms concerning TBXA2R and PTAFR as potential mediators of pneu-

monia symptoms constitute an important finding of this study.

PTAFR has already been linked to an increased risk of pneumococcal disease in particular

by facilitating the adhesion of pneumococcal bacteria to endothelial cells in the respiratory

tract, according to a recently published narrative review on the link between PTAFR and pneu-

mococcal disease using in vitro and in vivodata[60]. Platelet-activating factor binds to PTAFR,

activating the enzyme GTPase, up-regulating phospholipase C, D and A2 pathways and acti-

vating protein kinase C as well as tyrosine kinases, leading to an overall increase in inflamma-

tory response[60]. TBXA2R appears to have been less extensively studied than PTAFR in the

context of pneumonia, but has nevertheless been implicated in bronchial hyper-responsiveness

Fig 5. Biological processes involved in AP-associated pneumonia related to TBXA2R (upper panel) and PTAFR (lower panel).

Abbreviation- TBXA2R: thromboxane A2 receptor; PTAFR:platelet activating factor receptor.

https://doi.org/10.1371/journal.pone.0187034.g005
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[61] as well as bronchial constriction [62] in animal models, both of which may be risk factors

for pneumonia. We hypothesize that the increased risk of pneumonia-like symptoms mediated

by PTAFR and TBXA2R may be exerted through the control of capillary permeability at the

alveolar level. Impaired control of permeability may increase the quantity of fluids in the alve-

oli, thus causing edema, a primary risk factor as well as symptom of pneumonia. In addition,

pathways involved with the gene/protein clusters identified in relation to pneumonia symp-

toms also have a role in maintaining the structure of blood vessels. Impairment of this function

may negatively impact circulatory system’s physical properties, leading to leaking of fluids in

the alveoli. Control of platelet and coagulation homeostasis may also play a role in the increase

of fluids within alveoli after TBXA2R and PTAFR activation. Future studies should aim to

quantify the affinity of APs and other drugs associated with a risk of pneumonia also to these

two receptors in vitro. From a clinical point of view, it is relevant to identify the drug receptor-

binding profiles related leading to a specific adverse effect, in this case, pneumonia, as this may

help prevent the concomitant use of drugs having a potentially synergistic or additive risk of

that adverse effect. Furthermore, future studies should focus more on the single drug safety

profile rather than grouping antipsychotic drugs by class, as this may help to identify high risk

drugs as well as high risk patient groups and better support individualized medicine.

This paper has several strengths. The literature review allowed us to screen published mate-

rial for hypothesized mechanisms underlying pneumonia and understand what importance is

given to this aspect of drug safety. In addition, the in silicoapproaches to drug safety substanti-

ation used in the present paper build on each other, first using off-target pharmacology to

identify relevant novel receptors associated with pneumonia and then using Cytoscape to con-

struct likely biological cascades connecting the novel receptors to pneumonia symptoms.

Indeed, similar approaches to better drug safety, such as “medication-wide association stud-

ies”[63] and systems pharmacology [64] have been proposed to augment the capacity of cur-

rently used pharmacovigilance systems. Findings from this study confirmed existing receptor

targets for AP drugs but also provided two novel off-targets that may lead to AP-associated

pneumonia, namely PTAFR and TBXA2R.

There are however some limitations that should be borne in mind. Some of the hypothe-

sized signal substantiation mechanisms suggested in the published literature were found to be

of limited value as they did not mention a specific drug but focused on an entire drug class

(conventional or atypical) or even on antipsychotics in general. This constituted a limitation in

the starting point of collecting hypotheses, as it is unlikely that such suggested mechanisms

underlying AP-associated pneumonia are completely reliable given the physicochemical differ-

ences between each drug. With regards to the safety predictions generated by CT-link and the

generation of molecular cascades with Cytoscape, there are at least two inherent limitations

associated with any approach relying on signals therein. On one hand, the experimentally

known in vitro affinity data for drugs may be incomplete [14], which can have an impact on

the list of proteins included in the target signatures linked to safety terms and thus, on the abil-

ity to identify protein targets likely to be responsible for the AP-associated pneumonia. Given

the data sources used to carry out this study, it was not possible to examine whether there are

some mechanisms that are more strongly associated with the occurrence of pneumonia than

others. Finally, this work focused on a set of seven antipsychotic drugs for which there is a con-

siderable amount of bibliographical information in the context of the risk of pneumonia [25–

29].Therefore, our results cannot be considered exhaustive with regards to the current portfo-

lio of over 50 antipsychotic medications but can certainly be taken as a reference from which

substantiation analyses of AP-associated pneumonia could be performed.
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Conclusion

The literature review identified several biological mechanisms that could lead to pneumonia

with AP use. In vitro pharmacology data confirmed receptor affinities identified in thelitera-

ture review. Two targets, thromboxane A2 receptor (TBXA2R) and plateletactivating factor

receptor (PTAFR) were found to be novel AP target receptorspotentially associated with pneu-

monia. Biological pathways constructed usingCytoscape identified plausible biological links

potentially leading to pneumoniadownstream of TBXA2R and PTAFR. Innovative approaches

for biologicalsubstantiation of drug-adverse event associations may strengthen evidence on

drugsafety profiles and help tailoring pharmacological therapies.
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jolo, Concetta Crisafulli, Jordi Mestres, Gianluca Trifirò’.

Writing – review & editing: Janet Sultana, Marco Calabró, Ricard Garcia-Serna, Carmen Fer-
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