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Abstract
Nonalcoholic steatohepatitis (NASH) is a widely prevalent disease, but approved pharmaceutical treatments are not avail-
able. As such, there is great activity within the pharmaceutical industry to accelerate drug development in this area and 
improve the quality of life and reduce mortality for NASH patients. The use of quantitative systems pharmacology (QSP) 
can help make this overall process more efficient. This mechanism-based mathematical modeling approach describes both 
the pathophysiology of a disease and how pharmacological interventions can modify pathophysiologic mechanisms. Multiple 
capabilities are provided by QSP modeling, including the use of model predictions to optimize clinical studies. The use of this 
approach has grown over the last 20 years, motivating discussions between modelers and regulators to agree upon methodo-
logic standards. These include model transparency, documentation, and inclusion of clinical pharmacodynamic biomarkers. 
Several QSP models have been developed that describe NASH pathophysiology to varying extents. One specific application 
of NAFLDsym, a QSP model of NASH, is described in this manuscript. Simulations were performed to help understand if 
patient behaviors could help explain the relatively high rate of fibrosis stage reductions in placebo cohorts. Simulated food 
intake and body weight fluctuated periodically over time. The relatively slow turnover of liver collagen allowed persistent 
reductions in predicted fibrosis stage despite return to baseline for liver fat, plasma ALT, and the NAFLD activity score. 
Mechanistic insights such as this that have been derived from QSP models can help expedite the development of safe and 
effective treatments for NASH patients.
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Non-alcoholic fatty liver disease (NAFLD) and non-alco-
holic steatohepatitis (NASH) are diseases of the liver that are 
largely the result of excessive lipid accumulation and par-
titioning (1, 2). The incidence of NAFLD and NASH have 
grown substantially over the last 20 years, with estimates 
of 20–40% of populations in various locations throughout 
the world having NAFLD or NASH (3). As such, the inter-
est in understanding and treating this disease has increased 
substantially. NASH is reasonably well-understood, with 
the overall understanding growing every year. The patho-
physiology includes contributions from alterations in lipid 

partitioning, lipotoxicity, inflammation, and fibrosis (1, 2). 
Data from clinical studies with the numerous potential treat-
ments have helped increase the overall understanding of the 
disease in addition to focused clinical studies.

NASH drug development efforts have increased sub-
stantially in the last 10 years. A considerable number of 
potential treatments are being developed across the pharma-
ceutical industry (4, 5). In addition to monotherapies, sev-
eral compounds are being developed as combination treat-
ments; complimentary mechanisms of action may provide 
additional clinical benefit. Unfortunately, the development 
of several compounds has been terminated (6). This has 
primarily been due to an insufficient ability to demonstrate 
favorable responses in treatment cohorts as compared with 
placebo cohorts.

Regulators want to ensure that NASH drugs being devel-
oped are both safe and effective. The United States’ Food and 
Drug Administration has provided definitions of endpoints 
that have the greatest chance of providing health benefits of 
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patients (7). Data are not yet available identifying ideal sur-
rogate endpoints for preventing adverse clinical outcomes. 
Measures derived from liver biopsies are currently employed 
to characterize resolution of NASH (based on specific histo-
logic endpoints related to pathophysiologic components) as 
well as improvements in hepatic fibrosis (8, 9).

Efficient drug development will benefit NASH patients 
by minimizing the period of time for them to gain access to 
safe and effective medicines. Application of mathematical 
modeling practices such as quantitative systems pharma-
cology (QSP) can expedite clinical drug development (10). 
QSP modeling is a mechanism-based mathematical mod-
eling approach that describes not only the pathophysiology 
of a disease, but also how pharmacological interventions 
can modify the mechanisms of pathophysiology (11–15). 
Simulated populations (aka virtual populations) provide a 
useful approach for capturing the pathophysiology of the 
disease inasmuch as they provide the ability to make predic-
tions that account for inter-patient variability in both disease 
pathophysiology and clinical status (13, 14, 16). Predicted 
pharmacologic effects on simulated patients result from pre-
dicting compound exposure and pharmacodynamics (PD). 
Compound exposure at the site of the target can be pre-
dicted by the use of physiologically-based, pharmacokinetic 
(PBPK) modeling; this is particularly valuable when simu-
lating pharmacologic intervention of intracellular targets. 
The PD and/or mechanism of action (MoA) of compounds 
can be simulated by translating laboratory and/or clinical 
data into equations that describe how existing pathophysi-
ologic processes are altered by the actions of the compound.

QSP is a relatively new approach that has historical ori-
gins (17). Technological advances in computer chip design 
provided the ability for simulations results to be generated 
in much shorter periods of time, enabling this modeling 
approach to be applied to pharmaceutical drug develop-
ment. The use of QSP modeling continues to grow (18, 19). 
Capabilities provided by QSP modeling include predicting 
efficacy, identifying responsive patient types, determining 
appropriate trial duration and measurement timing, delin-
eating placebo response from pharmacologic response, 
understanding the link between mechanisms and biomarker 
responses, and predicting the efficacy potential for combina-
tion treatments (12, 20, 21). Simulation results of these sorts 
can inform clinical trial protocol design.

NAFLD and NASH provide some unique considera-
tions with respect to QSP modeling. The pathophysiology 
includes several discrete, yet interactive areas: steatosis, 
lipotoxicity, inflammation, and fibrosis. QSP models of 
NAFLD and NASH should include representations of each 
of these areas, as the response to treatments usually invoke 
responses from each. Within the steatosis area, the uptake 
and/or de novo synthesis of fatty acids as well as esterifi-
cation into triacylglycerol (TG) are primary components. 

Lipotoxicity is characterized by an excess of lipids that 
ultimately leads to hepatocellular apoptosis. Inflammation 
in NASH includes the recruitment of additional immune 
cells to the liver as well as increased production of key 
immune mediators. Fibrosis is characterized both by the 
presence of excessive amounts of collagen as well as the 
activated hepatic stellate cells that produce the extracel-
lular matrix components. QSP models of NASH should 
include equations that describe these pathophysiologic 
mechanisms in addition to the primary biomarkers (e.g., 
plasma ALT) and histologic outputs that are used to deter-
mine efficacy.

QSP models of NASH also need to represent the various 
patient types that are recruited into NASH clinical studies. 
This includes overweight or obese individuals that have not 
had a diagnosis of NASH for Phase I studies; these patients 
may or may not have steatosis, and are unlikely to have 
much lipotoxicity, inflammation, and/or fibrosis. Phase IIa 
studies typically include patients with NASH and varying 
degrees of fibrosis. Phase IIb and Phase III studies typi-
cally recruit patients with stage 3 or 4 fibrosis in addition to 
NASH, as documented by liver histology. Simulated cohorts 
with each of these patient types will enable a NASH QSP 
model to support development throughout the lifecycle of 
the compound.

The awareness of QSP modeling within regulatory agen-
cies such as the FDA has grown as the modeling approach 
has been increasingly utilized. Currently, the FDA has not 
issued any direct guidance about NASH QSP modeling, 
but the agency has indicated that there are certain recom-
mendations that should be applied to all QSP modeling (18, 
22). Model transparency enables reviewers to have access 
to all equations and parameters used to generate simula-
tion results. Not only will it enable reviewers to recapitu-
late simulation results, model transparency will also allow 
reviewers to interpret simulation results. Similarly, docu-
mentation of the modeling rationale facilitates this process. 
Another recommendation from FDA about QSP modeling is 
for model developers to submit a minimum model. Reduc-
ing the complexity of the model further enables reviewers 
to better interpret simulation results. Similarly, prespecified 
quantitative or statistical criteria helps reviewers determine 
the validity of the predicted results. Finally, the FDA has 
recommended that there be maximal inclusion of clinical 
PD markers. Applying this recommendation to NASH indi-
cates that the ability for the QSP model to predict changes 
to the histological measurements, NAFLD Activity Score 
(NAS) and fibrosis stage, is crucial; these are the currently 
acceptable endpoints for efficacy for NASH treatments (7). 
Additional biomarkers such as liver fat, plasma ALT, and 
serum Pro-C3 biomarkers have been routinely employed 
in NASH clinical studies; their inclusion in a NASH QSP 
model further enhances its utility.
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An additional utility of a NASH QSP model would be the 
ability to reproduce the key results of clinical studies. This 
includes not only the response to the investigational treat-
ment but also the response of the placebo group. The lack 
of separation between the treatment and placebo cohorts has 
been a significant reason for the termination of a number of 
promising potential treatments for NASH (6). In particular 
the fraction of patients within the placebo cohorts that show 
improvement in fibrosis stage over 26, 48, or 72 week studies 
is surprisingly high (20–30%, (23)). There is some indication 
that operator variability in the reading of the histological 
liver biopsy samples may play a significant role (24), and 
there may be contributions from other factors as well.

Several useful QSP models of hepatic steatosis, hepatic 
fibrosis, and NAFLD/NASH have been reported. Ashworth 
et al. developed a QSP model of lipid partitioning and stea-
tosis, including zonal differences across the hepatic acinus 
(25). Liao et al. extended this model to include the effects of 
fructose on lipid partitioning and hepatic steatosis (26). Nei-
ther of these QSP models included representations of lipo-
toxicity, inflammation, fibrosis, or NASH biomarkers or the 
primary histologic endpoints of NAS and stage of fibrosis. 
Holzhutter and Berndt also developed a QSP model of zonal 
influences on hepatic steatosis (27); this model also includes 
hepatocellular death as a consequence of lipid accumulation. 
It does not, however, include representations of inflamma-
tion, fibrosis, or NASH biomarkers. Dutta-Moscato et al. 
developed an agent-based QSP model of hepatic fibrosis, 
but it is not specific to NASH (28).

A more comprehensive QSP model of NAFLD and 
NASH is NAFLDsym (29–33). This QSP model includes 
interactive sub-models of steatosis, lipotoxicity, inflam-
mation, and fibrosis. Several important sub-models, such 
a hepatocyte death and proliferation, meal administration 
and post-prandial metabolites, mechanistic representa-
tions of alanine aminotransferase (ALT) and aspartate ami-
notransferase (AST) amongst others, were replicated from 
the quantitative systems toxicology (QST) model, DILIsym 
(34, 35). Also replicated from DILIsym are discrete repre-
sentations of hepatocytes within the periportal, midlobular, 
and centrilobular sections of the hepatic acinus. NAFLDsym 
also includes representations of a variety of useful, NASH-
specific biomarkers, including histologic NAS and fibrosis 
stage outputs as well as serum pro-C3. Moreover, there are 
more than 1700 simulated patients, enabling focused explo-
ration of different subsets of NAFLD and NASH patients 
(e.g., fibrosis stage 3). These simulated patients have been 
validated by simultaneous comparison to many clinical data 
measurements that focus on specific aspects of the patho-
physiology. A variety of treatments in clinical development 
have been simulated with NAFLDsym, including cenicrivi-
roc and anti-FGFR1/KLB bispecific antibody (36, 37). Pre-
dictions of improvement with weight loss as well as disease 

progression with weight gain have also been reported with 
NAFLDsym (30), providing further validation of the model.

There are four sub-models within NAFLDsym that par-
ticularly address the major elements of NASH pathophysiol-
ogy: steatosis, lipotoxicity, inflammation, and fibrosis. Con-
cise descriptions of each submodel are given below. Figure 1 
also displays several simulation results that characterize 
some of the key outputs of these sub-models.

The steatosis sub-model within NAFLDsym includes 
multiple processes essential for the trafficking of fatty acids, 
diacylglycerols, and TG within hepatocytes. One of these 
key processes included in NAFLDsym is the uptake of cir-
culating fatty acids from the circulation in a concentration-
dependent manner following the release of fatty acids into 
the circulation by adipocytes (38, 39). Hepatic de novo lipo-
genesis of fatty acids is also represented within NAFLDsym, 
including contributions in the overnight-fasted as well as 
the post-prandial states (40–42); hepatocytes in NAFLDsym 
take up glucose from the circulation in the post-prandial 
period, when plasma glucose levels are elevated (43, 44). In 
NAFLDsym, hepatocytes can also use either intracellular 
fatty acids or pyruvate to as fuels support the production 
of ATP to meet bioenergetic demands. The representation 
of ATP production is quite similar to what has previously 
been modeled in DILIsym (34, 35). Fatty acid oxidation is 
regulated by both ATP levels as well as the relative avail-
ability of both fatty acids and pyruvate (45). Fatty acids can 
be esterifed to TG in NAFLDsym; lipolysis of hepatocellular 
TG is also represented (46). Finally, the export of intracel-
lular TG as part of very-low-density lipoprotein (VLDL-TG) 
is also represented (47, 48).

Lipotoxicity in NAFLDsym is primarily represented 
based on the mechanistic interactions between saturated 
fatty acids (SFA), oxidative stress, and hepatocellular apop-
tosis (49–51). A variety of clinical data were used to guide 
the optimization of parameter values within these processes 
(52–55). Both liver SFA and unsaturated fatty acids (UFA) 
are separately tracked within NAFLDsym. The accumulation 
of hepatocellular SFA elicits an increase in reactive oxygen 
species (49–51). The resultant cellular oxidative stress, in 
sufficient quantities, yields hepatocellular apoptosis; necro-
sis can occur at very high levels of oxidative stress. How-
ever, circulating biomarkers such as cleaved cytokeratin 19 
(cK18) and histological ballooning indicate that apoptosis 
predominates (55, 56). The magnitude of hepatocyte loss 
due to lipotoxicity can be estimated by computational meth-
ods (57), providing validation of the steady state numbers of 
viable hepatocytes in the simulated NASH patients. Apop-
totic hepatocytes release vesicles that contain cellular frag-
ments. These vesicles and the fragments within them can 
interact with Kupffer cells, macrophages, neutrophils, and 
other immune cells to provide a degree of activation of the 
immune system (58–60).
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Fig. 1  Simulation results and clinical data enabling characterization of sub-model behavior and several important aspects of NASH pathophysi-
ology as simulated by NAFLDsym. The relationship between liver fat and plasma ALT in the simulated patients is quite similar to the measured 
data from Maximos et al. (a); the simulated population retains a distribution of BMI that is comparable to the clinical data reported by Dudekala 
et al. (b); the relationship between fat mass and adipose fatty acid (FA) release rates is comparable between the simulated patients and the clini-
cal data reported by Mittendorfer et al. Note that there are few simulated patients with adipose FA release rates in excess of 50 mmol/h (c); the 
ranges of de novo lipogenesis (DNL) and liver fat are comparable between the simulated patients and the clinical data reported by Lambert et al. 
and Smith et al. (d); the number of lobular macrophages in NAFLD and NASH patients is consistent with the clinical data reported by Tajiri et 
al. Note that there are minimal differences between patients below or above NAS = 4. (e); the range of TGF-beta levels in simulated patients and 
clinical cohorts with varying plasma ALT levels, as reported by Dal et al. (f); synthesis rates and quantities of hepatic collagen type I in clini-
cal and simulated patients across a range of fibrosis scores. Clinical data were reported by Decaris et al. and Masugi et al. Clinical patients with 
fibrosis stage = 4 were excluded from figure, as data for only two patients were reported. (g,h). In each figure, black or grey symbols represent 
clinical data sets while red symbols represent simulated patients. In figures a, c-h, individual simulated patients are displayed.

1792 Pharmaceutical Research (2022) 39:1789–1802



1 3

The inflammation sub-model in NAFLDsym includes 
resident Kupffer cells as well as recruited macrophages and 
neutrophils. The numbers of each cell type in the simulated 
patients have been calibrated to be consistent with clinical 
data (61, 62). Interestingly, the numbers of macrophages 
and neutrophils do not vary much between NASH patients 
of differing severities (61, 62); the simulated patients within 
NAFLDsym are consistent with these reported data (Fig. 1). 
The Kupffer cells, macrophages and neutrophils generate a 
variety of mediators, depending on the various queues pre-
sented to them. Within NAFLDsym, these cells can pro-
duce TNF-alpha, IL-10, TGF-beta, PDGF, MMP, CCL3, and 
TIMP. Total mediator production is regulated by the number 
of viable cells, the ability of each cell type to make each 
mediator, as well as the cross-regulatory influence of media-
tors on each other’s production. The levels of each mediator 
across a range of disease severity in the simulated patients of 
NAFLDsym are consistent with a variety of different clinical 
data sets (63–68). Several mediators act on hepatocytes in 
addition to immune cells, while others participate in regulat-
ing fibrotic processes.

The fibrosis sub-model includes the activation and turno-
ver of hepatic stellate cells (HSC) as well as the synthesis 
and breakdown of collagen. Early in the disease sequelae, 
the loss of hepatocytes to lipotoxic influences initiates colla-
gen synthesis as part of the wound healing response. Chronic 
cell loss and ongoing activation of HSC lead to a fibrotic 
state in NASH patients, which is captured in a subset of the 
simulated patients of NAFLDsym. HSC are activated via 
stimulus from TGF-beta, transforming them to a myofibro-
blast-type state (69–72). The mediator PDGF encourages 
proliferation of HSC, regulating the number of activated 
HSC (73). Procollagen synthesis and collagen release by 
activated HSC are included in NAFLDsym as well as the 
release of the Pro-C3 fragment that can be used as a circulat-
ing biomarker of collagen synthesis rates (74, 75). Similar to 
the representation in the inflammation sub-model, the total 
amount of collagen synthesis reflects both the number of 
activated HSC as well as the propensity for HSC to produce 
collagen. Collagen synthesis rates are relatively slow (74, 
76), and the simulated patients with fibrosis in NAFLDsym 
are consistent with this observation (Fig. 1). Also partici-
pating in the turnover of collagen in the simulated patients 
with fibrosis are MMP. This group of mediators are respon-
sible for degrading collagen in a multi-step process (77). In 
addition to being released by macrophages and neutrophils, 
MMP are also released by activated HSC in the simulated 
patients (77).

NAFLDsym simulation outputs include representa-
tions of the currently-accepted histologic biomarkers of 
efficacy for NASH; the NAFLD activity score (NAS) and 
fibrosis stage (7). The representation of NAS includes the 
individual components, including steatosis, ballooning, 

and inflammation histologic (78, 79). These outputs have 
been validated by comparing with various types of clinical 

Fig. 2  Simulation results and clinical data describing the correspond-
ence between the simulated histologic components of NAS with 
related outputs. The range of cytokeratin-cleaved K18 (cK18) and 
histologic ballooning (a), liver fat measured by MRI-PDFF and his-
tologic steatosis (b), andCCL3 and histologic lobular inflammation 
scores. Red bars or symbols denote results from simulated patients 
while black symbols and black bars denote clinical data from Aida et 
al. (a), Middleton et al. (b), and du Plessis et al. (c).
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Table I  Summary of Parameters Included in NAFLD SimPops

Parameter Name in NAFLDsym Data Source for Distribution

Vmax for aHSC proliferation Assumed standard deviation of ± 20% and parameter range of 2.5 times the S.D. 
and validated with data from Abdeen 2009, El Gendi 2012, Washington 2000

ATP decrement necrosis Vmax Assumed standard deviation of ± 20% and parameter range of 2.5 times the S.D. 
and validated with outcome data

Basal fasting glucose Browning 2004, Maximos 2015, Copaci 2015, Dudekula 2014, Wong 2013, 
Stepnova 2010, Tanaka 2013, Zein 2012

Basal plasma triglycerides concentration Yki-Jarvinen 2014, Maximos 2015
Basal value of mito ETC flux Perez-Carreras 2003
Rate constant for FFA release from Peripheral storage Based on relationship between fat mass and adipose fatty acid release described 

by Mittendorfer 2009
Basal liver triglycerides Yki-Jarvinen 2014, Maximos 2015, Browning 2004
Body Mass Yki-Jarvinen 2014, Maximos 2015, Browning 2005
Caspase-mediated apoptosis scaling constant Bantel 2001
Liver macrophage CCL3 production Vmax Assumed standard deviation of ± 20% and parameter range of 2.5 times the S.D. 

and validated with data from DuPlessis 2015, DuPlessis 2016
CL activated HSC apoptosis scalar El-Gendi 2012, Abdeen 2012, Carpino 2004 (to provide steady state aHSC 

in accordance with the effects of the CL_aHSC crowding_scalar on aHSC 
proliferation)

CL activated HSC crowding scalar El-Gendi 2012, Abdeen 2012, Carpino 2004
CL fibrosis hepatocyte displacement scalar Carpino 2004, D’Ambrosio 2012
Collagen 1 baseline formation rate Decaris 2017, Masugi 2018
Collagen 1 formation rate Decaris 2017, Masugi 2018
Collagen 3 baseline formation rate Decaris 2017, Masugi 2018
Collagen 3 formation rate Decaris 2017, Masugi 2018
Extracellular vesicle release from apoptotic cells Povero 2016
Maximum LSEC HGF production rate per liver LSEC Assumed standard deviation of ± 20% and parameter range of 2.5 times the S.D. 

and validated with outcome data
Maximum macrophage HGF production rate per macrophage Dominguez-Perez 2016, Balaban 2006, Agrawal 2013
Maximum neutrophil HGF production rate per liver neutrophil Dominguez-Perez 2016, Balaban 2006, Agrawal 2013
HGF mediated regeneration Vmax Assumed standard deviation of ± 20% and parameter range of 2.5 times the S.D. 

and validated with outcome data
Vmax for HSC activation Assumed standard deviation of ± 20% and parameter range of 2.5 times the S.D. 

and validated with data from Abdeen 2009, El Gendi 2012, Washington 2000
Rate constant for DNL precursor production Lambert 2014, Donnely 2005, Lee 2015, Diraison 2003
Rate constant for lactate contribution to DNL Lambert 2014, Donnely 2005, Lee 2015, Diraison 2003
Conversion of mature to labile collagen rate constant Arima 2004, D’Ambrosio 2012
Rate constant for hepatic Chylo-TG uptake Tushuizen 2010, McQuaid 2011
Rate constant for hepatic glucose uptake McMahon 1989, Cersosimo 2011
Rate constant for hepatic VLDL-TG uptake Yki-Jarvinen 2014, Maximos 2015, Mittendorfer 2003, Sane 1988, Beil 1982
Km for FFA2DAG Required to have appropriate dynamics with TG Lipolysis mechanism activated
Km for triglyceride lipolysis Variability in this parameter provides variability in the liver TG-ALT relation-

ship described by Yki-Jarvinen 2014, Maximos 2015, Browning 2004
Rate constant for Chylo-TG uptake by peripheral tissues Tushuizen 2010, McQuaid 2011
Rate constant for VLDL-TG uptake by peripheral tissues Yki-Jarvinen 2014, Maximos 2015, Mittendorfer 2003, Sane 1988, Beil 1982
Vmax for LOX Assumed standard deviation of ± 20% and parameter range of 2.5 times the S.D. 

and validated with data from Mesarwi 2015
ML fibrosis hepatocyte displacement scalar Carpino 2004, D’Ambrosio 2012
Vmax for MMP Assumed standard deviation of ± 20% and parameter range of 2.5 times the S.D
Vmax for MMP (fragments) Assumed standard deviation of ± 20% and parameter range of 2.5 times the S.D
PP fibrosis hepatocyte displacement scalar Carpino 2004, D’Ambrosio 2012
Half-life for plasma Pro-C3 Assumed standard deviation of ± 50% and parameter range of 2.5 times the S.D. 

and validated with data reported by Levin 2017 (abstract)
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data (56, 80–85) (Fig. 2). Fibrosis stage is also simulated in 
NAFLDsym; this representation accounts for both the loca-
tion (centrilobular, midlobular, peripoportal) and quantity of 
collagen within the liver and is consistent with the histologic 
scoring paradigm for NASH patients (79, 86). Additional 
simulation outputs that align with commonly-measured 
NASH biomarkers include the relative amount of liver fat 
(consistent with MRI-PDFF measurements), body weight, 
BMI, plasma ALT, plasma AST, and plasma triglycerides. 
As mentioned above, the circulating biomarker Pro-C3 is 
also simulated as an indicator of collagen biosynthesis. It 
should additionally be pointed out that NAFLDsym does not 
include several additional combination NASH biomarkers 
that continue to undergo qualification such as FIB-4, NFS, 
and ELF (87). These biomarkers could be added in the future 
as they become qualified.

The substantial degree of inter-patient variability amongst 
NASH and NAFLD patients highlights the utility of the 
inclusion of > 1700 simulated patients within the NAFLD-
NASH SimPops in NAFLDsym. This SimPops includes 
both mechanistic and clinical between-patient variability. 
Mechanistic variability is imposed within key aspects of 
each submodel, including parameters from the following 
categories across NASH pathophysiology: body weight 
(55, 88, 89), adipose fatty acid release rates (39), hepatic de 

novo lipogenesis (40, 41, 90, 91), hepatic VLDL-TG export 
(47, 48), hepatocellular mitochondrial function (92), hepatic 
glucose uptake(43, 44), hepatic and extrahepatic plasma TG 
clearance (55, 89, 93–97), hepatic antioxidant status (52, 98, 
99), hepatocellular apoptotic sensitivity to oxidative stress 
(100), hepatocellular regeneration rates (101, 102), hepato-
cyte extracellular vesicle release rates (60), macrophage and 
neutrophil recruitment (80, 85), immune mediator produc-
tion rates, hepatic stellate cell activation and proliferation 
(70–72), collagen synthesis and proteolysis rates (32, 33, 
36). Parameters and references supporting the selection of 
these parameters are listed in Table I. Each simulated patient 
within the SimPops is validated by simultaneous compari-
son with clinical data across each of these axes. Simulated 
patients that produce simulation results within the reported 
ranges of these clinical data boundaries is considered 
acceptable. Some examples are given in Fig. 1. Inter-patient 
variability in key clinical measurements emerges from the 
parametrically-imposed mechanistic variability. Figure 3 
illustrates the wide range of variability across several key 
clinical outputs, including fibrosis stage, NAS, plasma ALT, 
liver fat, and BMI. The SimPops includes patients with a 
wide range of NASH patient characteristics (no NASH to 
severe NASH, no fibrosis to substantial fibrosis, no steatosis 
to high liver fat, normal plasma ALT to above upper limit 

Table I  (continued)

Parameter Name in NAFLDsym Data Source for Distribution

Procollagen 1 production rate Decaris 2017, Masugi 2018
Procollagen 1 baseline production rate Decaris 2017, Masugi 2018
Procollagen 3 production rate Decaris 2017, Masugi 2018
Procollagen 3 baseline production rate Decaris 2017, Masugi 2018
Scaling coeff. representing reserve mitochondria function Perez-Carreras 2003
Liver RNS/ROS baseline clearance Vmax Hardwick 2010, Videla 2004, Tanaka 2013
Serum adiponectin initial value Adiels 2006
Prior (weight) for liver TG % to steatosis Grade 0 model Randomized distribution of histologic steatosis to provide variability between 

the four grades
Prior (weight) for liver TG % to steatosis Grade 1 model Randomized distribution of histologic steatosis to provide variability between 

the four grades
Prior (weight) for liver TG % to steatosis Grade 2 model Randomized distribution of histologic steatosis to provide variability between 

the four grades
Prior (weight) for liver TG % to steatosis Grade 3 model Randomized distribution of histologic steatosis to provide variability between 

the four grades
Triglyceride lipolysis switch Required to ensure TG Lipolysis mechanism activated
Liver macrophage TGF-beta production Vmax Assumed standard deviation of ± 20% and parameter range of 2.5 times the S.D. 

and validated with data from Das 2011
Maximum inhibition of MMP by TIMPs Assumed standard deviation of ± 20% and parameter range of 2.5 times the S.D
Liver macrophage TIMP production Vmax Ando 2018, Miele 2009
Liver macrophage TNF-alpha production Vmax Assumed standard deviation of ± 20% and parameter range of 2.5 times the S.D. 

and validated with data from Das 2011, Zahran 2013, Hui 2004, Paredes-
Turrubiarte 2016

Vmax for FFA2DAG Required to ensure appropriate hepatocyte fatty acid and DAG dynamics
VLDL-triglyceride secretion rate Vmax Fabbrini 2008, Adiels 2006
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of normal). Simulated cohorts (SimCohorts) that include 
simulated patients with certain clinical characteristics can 
be selected from the larger SimPops to support simulations 
of clinical studies at various points in the clinical develop-
ment pipeline (103).

While there has been substantial activity towards devel-
oping pharmaceutical treatments for NASH patients, none 
are currently available. As such, the standard of care for 
NASH treatment remains weight loss (104–107). Weight 
loss has been shown to be an efficacious treatment approach, 
although patient compliance is challenging (107). Consistent 
with current QSP methodologies, we applied weight loss to 

our SimPops to further validate the simulated patients (13, 
14, 16). Included as a submodel within NAFLDsym is the 
QSP model of body weight developed by Hall et al. (108). 
As such, NAFLDsym is capable of accurately predicting 
weight loss and changes in body composition with reduced 
caloric intake. This submodel mechanistically interacts with 
the other NAFLDsym sub-models in the following ways: 
Reduced food intake acta to diminish substrate availability 
for hepatic de novo lipogenesis and adipose fatty acid release 
rates are reduced as fat mass is decreased (38, 42, 109). 
These mechanisms combine to reduce the lipid burden upon 
the liver, leading to further improvements in the downstream 

Fig. 3  Simulation results for 
untreated simulated patients 
within SimPops in NAFLDsym, 
including liver fat (a, units are 
%), plasma ALT (b, units are 
U/L), NAS (c), fibrosis stage 
(d), and BMI (e, units are kg/
m2). Note that each simulated 
patient retains the same position 
on each radial plot.
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pathophysiology of NASH as well. Figure 4 illustrates the 
simulation results for SimCohorts selected to align with clin-
ical cohorts for the given studies. Of note is the appropriate 
simulated reductions in liver fat, NAS (including individual 
components), and fibrosis stage with 5–10% weight loss via 
reduced caloric intake over 6–12 months. NAFLDsym has 
additionally been used to simulate several potential treat-
ments for NASH patients (e.g., anti-FGFR1/KLB bispe-
cific antibody, cenicriviroc), including those that elicited 

improvements in NASH and others that did not (36, 37). 
The accurate prediction of the responses to these treatments 
further validates NAFLDsym and the SimPops.

NAFLDsym has recently been used to identify potential 
mechanistic contributors to the relatively high response rate in 
improved fibrosis stage within placebo cohorts in clinical stud-
ies (23). Specifically, NAFLDsym was used to simulate sub-
tle adjustments in food intake over the course of a simulated 
52 week study that led to periodic weight loss and weight gain; 

Fig. 4  Simulation results and clinical data illustrating the appropriate degree of relief in simulated NASH patients in response to 5–10% weight 
loss achieved via restriction of caloric intake. Liver fat before and after six months of 10% weight loss, as compared with clinical data from 
Smith et al. Mean responses and individual simulated and clinical patient results displayed (a); absolute change in overall NAS and respec-
tive components after 5–7% weight loss over 12 months, as compared with clinical data from Vilar-Gomez et al. and Hameed et al. Note that 
a negative value indicates reduction relative to initial values (b); fraction of patients with worsened, stabilized, or regressed fibrosis stage after 
12 months of 5–7% weight loss, as compared with clinical data from Vilar-Gomez et al. (c). Clinical results are summarized in figure on left, 
while simulation results are in figure on right Red bars or symbols denote results from SimCohorts while black or gray symbols denote clinical 
data.

1797Pharmaceutical Research (2022) 39:1789–1802



1 3

body weight was not predicted to change appreciably by the 
end of the simulated study (Fig. 5a, 5b). A simulated cohort 
of 90 simulated NASH patients was subjected to this so-called 
yo-yo dieting protocol. The baseline characteristics of the simu-
lated cohort are given in Table II. Food intake was adjusted 
every four weeks to enable 1% weight gain and weight loss in 
repeated order. Figure 5 illustrates not only the small changes in 
body weight over the simulated study, but also the consequent 
predicted changes in liver fat, plasma ALT, and liver collagen. 
Both liver fat and plasma ALT are predicted to decline with the 

reduced food intake (and associated weight loss) and increase 
with the periodic rebound in body weight. The absolute amounts 
of body weight, liver fat, and plasma ALT at the conclusion of 
the 52 week simulated study are quite similar to the values at 
the beginning of the study. However, liver collagen levels did 
not follow the same pattern as the other biomarkers. Rather liver 
collagen was predicted to decline, leading to a predicted reduc-
tion in fibrosis stage in 10% of the simulated patients within 
the cohort (Table III). The notably slow turnover rate of liver 
collagen (74, 76) prevents liver collagen from having the same 

Fig. 5  Predicted relative 
changes (left) in and absolute 
levels (right) of body weight 
(a, b), liver fat (c, d), plasma 
ALT (e, f), and liver collagen 
(g,h) in NASH SimCohorts 
over time due to yo-yo dieting. 
Mean ± standard deviation plot-
ted for all figures.

Table II  Baseline Simulated Cohort Characteristics

Body 
weight
(kg)

Liver fat
(%)

Plasma 
ALT
(U/L)

NAS
(score)

Fibrosis
score = 2

Fibrosis
score = 3

89.1 ± 19.4 17 ± 5 50 ± 12 5.6 ± 3.2 39% 61%

Table III  Proportion of Simulated NASH Patients with Predicted His-
tologic Reductions Over time with Yo-Yo Dieting

13 weeks 26 weeks 39 weeks 52 weeks

Fibrosis 6% 10% 12% 10%
NAS 4% 0% 0% 0%
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periodicity that body weight, liver fat, and plasma ALT do in 
response to the cyclical adjustments in simulated food intake. 
These simulation results suggest that, within clinical studies, 
some proportion of NASH patients in placebo cohorts with 
reduced fibrosis stage could be experiencing the yo-yo dieting 
behavioral pattern. Confirmation of these simulation results with 
additional clinical studies and/or data collection during existing 
clinical studies could impact the interpretation of data from the 
placebo cohorts in these studies.

Conclusion

The increasing prevalence of NAFLD and NASH accentu-
ates the need for available treatments in this patient popu-
lations. Application of QSP modeling to the development 
of NASH drug development can help accelerate this pro-
cess. Moreover, such NASH QSP models should adhere 
to recommendations put forth by regulatory agencies such 
as the FDA. These include model transparency and doc-
umentation, minimizing complexity of the QSP model, 
utilizing predefined, quantitative criteria for model vali-
dation, as well as the inclusion of useful NASH clinical 
biomarkers such as NAS and fibrosis stage. Several useful 
QSP models are currently available to help support NASH 
drug development to varying extents, with NAFLDsym, in 
particular, providing the capability of simulating numer-
ous useful aspects of NASH. Ultimately, the partnership 
between clinical studies and QSP modeling should help 
provide safe and effective medicines for NASH patients 
in short order.
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