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Abstract

The Morris water maze test (MWM) is a useful tool to evaluate rodents’ spatial learning and

memory, but the outcome is susceptible to various experimental conditions. Thigmotaxis is a

commonly observed behavioral pattern which is thought to be related to anxiety or fear. This

behavior is associated with prolonged escape latency, but the impact of its frequency in the

early stage on the final outcome is not clearly understood. We analyzed swim path trajecto-

ries in male C57BL/6 mice with or without bilateral common carotid artery stenosis (BCAS)

treatment. There was no significant difference in the frequencies of particular types of trajec-

tories according to ischemic brain surgery. The mouse groups with thigmotaxis showed sig-

nificantly prolonged escape latency and lower cognitive score on day 5 compared to those

without thigmotaxis. As the next step, we made a convolutional neural network (CNN) model

to recognize the swim path trajectories. Our model could distinguish thigmotaxis from other

trajectories with 96% accuracy and specificity as high as 0.98. These results suggest that

thigmotaxis in the early training stage is a predictive factor for impaired performance in

MWM, and machine learning can detect such behavior easily and automatically.

Introduction

The Morris water maze test (MWM), which was originally invented by Richard G. Morris in

1983, is one of the most popular and established behavioral tests to evaluate rodents’ spatial

learning and memory [1–2].

Although this is a useful behavioral test, the results are susceptible to various test condi-

tions. For example, it is reported that the performance in MWM is impaired under stressful

situations such as a bright light condition, and the percentage of thigmotaxis increases [3].

Thigmotaxis refers to an animal’s propensity to move along the edge of its environment. This

behavior is used as a marker of stress for rodents in open-field situations including MWM

tasks [4]. If the subject shows thigmotaxis, the mean escape latency is prolonged, since the
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subject has difficulty in finding the platform location. As a result, spatial learning ability cannot

be appropriately evaluated [5–6]. Therefore, the early detection of thigmotaxis is important for

optimal analysis. However, there are few reports discussing the ideal timing of thigmotaxis

detection in MWM.

In order to determine the strongest influencing factor, we classified swim path trajectories

into six types and assessed which type seen in the early stage of training was associated with

impaired performance on the final day. In addition, we made an automatic image recognition

model and evaluated the accuracy of swim path trajectory detection.

Previously, there were some attempts for identifying mouse’s swim strategies in MWM. In

2000, Dalm S et al reported that image analysis system could enable the quantification of swim

patterns. They used cumulative distance to platform to characterize the mouse’s exploration

[7]. Though thigmotaxis is not mentioned in the paper, this method should be also applicable

to detect the specific trajectory. However, this parameter can be obtained only with the specific

image analysis system, EthoVision 1.7 and cannot be used for detailed classification.

In the same year, Wolfer D et al proposed a novel method to apply principal component

analysis (PCA) for MWM to detect the cofounding factor among the determinants of cognitive

function [8]. This study should be the epochal one that first employed the machine learning

method in MWM analysis.

Later on, Graziano A et al put forward the automatic recognition of explorative strategies

with linear discriminant analysis (LDA). They defined four regions of interest (ROI) inside the

arena and set twenty-eight dependent variables in order to classify seven different trajectories.

They used discriminant function (DF) which is a sort of linear regression and achieved high

classification accuracy for each strategy [9]. They did not use the image data itself but the

extracted twenty-eight feature quantities which were selected or defined by human researcher.

Illouz T et al also used a supervised machine learning method, support vector machine (SVM).

In their model, they did not use the pixel data itself but used manually determined eleven fea-

tures as input data [10].

Although these previous methods are efficient in recognition accuracy, they require expert

knowledge for the model construction and sometimes not practical in ordinary laboratory.

Therefore, we decided to employ artificial neural network (ANN) model for image recognition in

this study. Since ANN is a useful data-driven model, we do not need to manually select the fea-

ture quantities. In this study, we just gave raw image data to ANN model and conducted super-

vised machine learning. Considering its advantage in image recognition, we used convolutional

neural network (CNN) to detect swim trajectories among several kinds of ANN architectures.

Materials and methods

This study was performed in accordance with the National Institutes of Health guidelines for

the use of experimental animals. All animal studies were reviewed and approved by the Animal

Studies Committee of Ehime University. Minimal dataset required to replicate our study find-

ings are available from the online repository (https://figshare.com/s/90d7b2d038551efe08ec).

Animals

Fifty male C57B1/6 mice (wild type, WT) which underwent MWM from July 2014 to July

2017 were enrolled in this analysis. Twenty eight mice were treated to produce bilateral com-

mon carotid artery stenosis (BCAS) at the age of 10 weeks.

The animals were housed in a room with a 12-hour light/dark cycle with a temperature of

25±1˚C. They were given standard laboratory chow (MF; Oriental Yeast Co., Ltd., Tokyo,

Japan) and water ad libitum.

Neural network can detect thigmotaxis in water maze test
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Bilateral common carotid artery stenosis (BCAS)

In order to assess the influence of cerebral ischemia on behavioral pattern, we employed vascu-

lar dementia mouse model in addition to the control mouse.

Among all fifty mice enrolled in this study, twenty-eight mice underwent BCAS surgery at

10 weeks old. Micro-coils with an inner diameter of 0.18 mm, pitch 0.5 mm and total length

2.5 mm were used to create artificial stenosis in the bilateral common carotid arteries (CCAs).

Before the procedure, mice were anesthetized with sodium pentobarbital (50 mg/kg intraperi-

toneal). Through a midline cervical incision, both CCAs were exposed and freed from their

sheaths. The artery was gently lifted with a silk suture and then placed between the loops of a

micro-coil. The micro-coil was twined around by rotating it around the CCA. Then another

micro-coil was applied to the other CCA. After placing the coils, the incision was closed with

sutures. More detailed procedural information is available in a previous report [11].

Morris water maze test

MWM was performed at 16 weeks of age as described previously [12]. Mice were trained 5

times a day at 20-min intervals for 5 consecutive days. In each trial, mice were given 120 sec to

find the platform. Swimming was video-tracked (AnyMaze; Stoelting Co., Wood Dale, IL),

and the mean escape latency was recorded. Swim path trajectories were obtained as image files

and manually labelled according to the six classes described in the previous report [13]. Each

strategy was defined as follows: Thigmotaxis: Swimming in the outer 10% close to walls.

Mouse swims almost exclusively in the periphery; Rotating: Swim with a rotation waking a

many small circles or twisting paths. This trajectory reflects the mouse’s trial and error in lim-

ited area; Focal search: Swim within two quadrants of the arena. The trajectory is consisted of

mainly linear trajectories; Scanning: Swimming consists of wide and repeated foraging around

the pool. The trajectories are not circular but jagged with sudden changes in direction and

velocity; Circling: Moves away from the wall to explore the pool, usually drawing circular tra-

jectory; Direct swim: swim fast and straight from the starting point to the platform. Animal

adjusts its swimming trajectory while approaching the platform. If some traits were mixed

within one trial, most prominent trajectory was adopted as a class label. Representative trajec-

tories are shown in Fig 1.

Fig 1. Representative trajectories in swim path classification and converted images. Swim path trajectories were classified into the following six classes: A)

Thigmotaxis, B) Rotating, C) Focal search, D) Scanning, E) Circling, and F) Direct swim. Class labeling was conducted by a human researcher before use in the neural

network model. Converted grayscale images are shown just below the original images.

https://doi.org/10.1371/journal.pone.0197003.g001
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In addition, we scored the cognitive performance of each training trial in reference to a pre-

vious study [10] according to the following scale: Thigmotaxis: 0, Scanning: 1, Circling: 2,

Focal search: 3, Rotating: 4, Direct swim: 5. Average cognitive score for a day in each mouse

was calculated and used for the analysis.

We defined the day 1 to day 2 as ‘early training stage’ and day 4 to day 5 as ‘late training

stage’ and assessed the frequency of exploratory strategy in each period. In this method, one

mouse could be classified into multiple groups, because mouse swims five times within a day.

Dataset preparation

For the construction of image recognition model, all swim path images on early training stage

(n = 500) were collected. The original format was a Microsoft Windows Bitmap Image (BMP)

file with 140x120 pixel size and 32-bit color data. All image data were converted to grayscale

pictures of reduced pixel size using a free image processing tool of Python interpreter (Pillow;

Alex Clark and Contributors). We tested the model performance for the following three sizes:

72x72, 48x48, and 24x24.

The dataset was divided into two sub-datasets; 80% of the data were used for the training stage

and the other 20% were used for validation. Whole image files were randomly rearranged before

being assigned to each sub-dataset. Pixel values derived from each image file were divided by 255

for standardization and passed to the following neural network model as input data.

Convolutional neural network system

A convolutional neural network (CNN) with two convolution layers and two fully connected

layers were used to classify the swim path trajectories in the MWM. The structure of the CNN

for 48x48 is shown in Fig 2. At the first convolution layer, 20 kernels with 9x9 pixel size were

Fig 2. Schema of convolutional neural network model for 48x48. The two left layers are for the convolution process and the two right layers are for linear connections.

Values in parentheses are input and output data size in each layer. ReLU: rectified linear unit.

https://doi.org/10.1371/journal.pone.0197003.g002
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used. Fifty kernels with 5x5 pixel size were used in the following convolution layer. Down sam-

pling was performed by max pooling with stride of 1 in each process. A rectified linear unit

was also used in this process as an activation function. As for 72x72 pictures, the kernel sizes

were set to 13x13 and 7x7 so as to fix the convolution ratio. Similarly, 5x5 and 3x3 kernels

were used for 24x24 pictures.

The middle layer in the fully connected layer had 500 nodes, and drop out method was

used to avoid the overfitting phenomenon. Values were finally passed to the output node as a

multidimensional vector according to the number of classes in the classification (2, 3 or 6).

Loss function was defined by the cross entropy method, and adaptive moment estimation

(Adam) was selected as the optimization algorithm to minimize the loss function. Necessary

gradients were calculated by backward propagation method (backpropagation). After optimi-

zation 50 times with the training dataset, we obtained an updated model to use in the valida-

tion stage.

The accuracy of the CNN was determined by a cross validation method. As described

above, 20% of the whole data were used for validation. Repeated holdout cross-validation was

performed 10 times for each randomly rearranged dataset, and the average score was

employed as the valid outcome. Sensitivity and specificity were also calculated if applicable.

All these modeling processes were provided by Chainer, an open source framework for

deep learning [14]. We used an ordinary laptop computer with CPU of Intel Core i7-3517U

1.9GHz and 4GB DDR3-SDRAM (Dell System XPS L322X, Dell Inc., TX).

Statistical analysis

All data are presented as mean ± SEM. Data were analyzed with F-test followed by Student’s or

Welch’s t-test to assess the difference between two groups. One way ANOVA was used for mul-

tiple comparison analysis. A value of P<0.05 was considered statistically significant. SciPy mod-

ule, the open source scientific tools for Python was used for statistical analysis. Statcel 3 (OMS

Inc., Japan), add-in software for Microsoft Excel was also used for supplemental analysis.

Results

Swim path characteristics in each stage of training

Thigmotaxis was seen in 8.8% of all trajectories in early training stage (Table 1). In both

groups, ‘Scanning’ was most frequently observed in early training stage and the frequency of

‘Direct swim’ became the highest in late training stage (Table 2).

In early training stage, there was no significant difference in the frequencies of particular

trajectories between mouse groups. In late training stage, control mice tended to show more

‘Direct swim’ compared to the BCAS groups (p = 0.06). In contrast, BCAS treated mice

showed significantly more ‘Scanning’ and ‘Circling’ than control group and the mean escape

latency was significantly prolonged.

There was no significant difference in the average swim speed (m/sec) between control and

BCAS group (0.117±0.014 vs 0.112±0.003, p = 0.77).

Effect of dominating trajectory class on final outcome

In order to determine the predictive factor for the poor performance, we identified the mouse

which showed a specific exploratory strategy at least once in the early trials.

We compared the mean escape latency on day 5 according to the existence of particular

swim path trajectories. Of all the six classes, only thigmotaxis and direct swim affected the final

outcome significantly. The group with thigmotaxis in the early training stage showed

Neural network can detect thigmotaxis in water maze test
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significantly longer escape latency compared to mice without thigmotaxis (67.8±7.9 vs 38.6±5,

p = 0.03). In contrast, the group with direct swim in the early training stage showed significantly

shorter escape latency than that in the other groups (38.4±5.2 vs 68.1±8.2, p = 0.002). This trend

was also true in the case when the trajectories were only observed on day 1 or day 2 (Fig 3).

Transition of cognitive scores and its relation to early stage strategy

As shown in Fig 4A, average cognitive score increased as the training proceeded in both con-

trol and BCAS group. However, the cognitive score at day 5 was significantly lower in BCAS

group (3.65±0.20 vs 3.06±0.17, p = 0.03). The cognitive score was significantly lower in the

group with thigmotaxis than the other group (2.7±0.2 vs 3.7±0.1, p = 0.001) (Fig 4B).

Accuracy of convolutional neural network model for image recognition

First, we compared the accuracy of two-label (thigmotaxis and others) classification model

(2-class model) among three different picture sizes; 72x72, 48x48 and 24x24. As shown in

Table 3, the sensitivity gradually increased as the picture size increased. However, these differ-

ences were not statistically significant. From the viewpoint of processing time, we employed

48x48 pictures for the further analysis.

2-class model showed significantly higher recognition accuracy compared to six-group clas-

sification. The sensitivity of the two-class model was 0.72 and specificity was 0.98 (Table 4).

6-class model showed significantly lower performance compared to other models.

Detailed analysis for misclassification in 6-class model

Among all the misclassification through the validation process in 6-class model, the major clas-

sification error occurred between ‘Scanning’ and ‘Circling’. Misclassification of ‘Scanning’ to

‘Circling’ accounted for 17.1% and the opposite was 16.8% as shown in Table 5. ‘Thigmotaxis’

accounted for only 9% of the total errors and the most frequent counterpart was ‘Cirlcing’

(5.8%).

Table 1. Mouse characteristics in early training stage.

Trials

(number)

Thigmotaxis

(%)

Rotating

(%)

Focal search

(%)

Scanning

(%)

Circling

(%)

Direct swim

(%)

Escape latency

(sec)

All mice 500 (50) 44 (8.8) 85 (17.0) 87 (17.4) 145 (29.0) 84 (18.8) 55 (11.0) 77.1 ± 4.7

Control 220 (22) 15 (6.8) 41 (18.6) 41 (18.6) 68 (30.9) 31 (14.1) 24 (10.9) 70.1 ± 7.7

BCAS 280 (28) 30 (10.7) 44 (15.7) 49 (17.5) 73 (26.1) 54 (19.3) 30 (10.7) 82.5 ± 5.9

There was no significant difference in the frequencies of swim path trajectories. Escape latency refers to the mean time to reach the platform on day 2.

https://doi.org/10.1371/journal.pone.0197003.t001

Table 2. Mouse characteristics in late training stage.

Trials

(number)

Thigmotaxis

(%)

Rotating

(%)

Focal search

(%)

Scanning

(%)

Circling

(%)

Direct swim

(%)

Escape latency

(sec)

All mice 500 (50) 34 (6.8) 109 (21.8) 103 (20.6) 53 (10.6) 48 (9.6) 153 (30.6) 45.3 ± 4.3

Control 220 (22) 10 (4.5) 51 (23.2) 49 (22.3) 18 (8.2) 14 (6.4) 78 (35.5) 35.8 ± 8.2

BCAS 280 (28) 16 (5.7) 57 (20.4) 53 (18.9) 40 (14.3)�� 37 (13.2)� 77 (27.5) 52.7 ± 5.5�

The frequency of ‘Scanning’ and ‘Circling’ were significantly higher in BCAS group. Escape latency refers to the mean time to reach the platform on day 5.

�p<0.05

��p<0.01 vs Control.

https://doi.org/10.1371/journal.pone.0197003.t002
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Discussion

Thigmotaxis is one of the most common traits that rodents show in open field behavioral tests

including the water maze test. Thigmotaxis is generally thought to be an indicator of anxiety

or fear, and is reported to be associated with an elevated level of corticosteroid [3–4]. When

thigmotaxis occurs, rodents can seldom find the platform since the exploration process is dis-

turbed. As a result, the mean escape latency is prolonged. Therefore, the frequency of this

behavior is an important factor in assessment of an animal’s spatial learning ability. Some

reports state that anxiety or emotional stress can impair spatial learning and memory [15–16].

However, it is not clear whether increased anxiety is induced by impaired cognitive function.

We previously reported that chronic cerebral hypo-perfusion with BCAS impaired the per-

formance in MWM [17]. As the locomotor activity is not impaired with BCAS at 30 days after

the treatment [18], the prolonged escape latency in MWM is now attributed to the impairment

of hippocampal function [19]. However, the effect of chronic ischemia on the frequency of

thigmotaxis is not fully examined before.

In our study, about half of the subjects were vascular dementia model mice, and there was

no significant difference in the frequency of thigmotaxis in the early training stage. We also

demonstrated that the existence of thigmotaxis in the early training stage was significantly

associated with longer escape latency on day 5 of the trial.

Besides the escape latency, we assessed the cognitive scores in each trial. The average score

in day 5 was significantly lower in BCAS group than control and this should reflect the cogni-

tive dysfunction induced by chronic cerebral hypoperfusion.

Interestingly, the group with thigmotaxis in early training stage showed significantly low

cognitive score in day 5. This result suggests the mouse’s behavioral strategy is affected by the

state of anxiety. On the other hand, the existence of direct swim did not significantly affect the

Fig 3. Effect of dominating trajectory on final outcome. Each group was defined as a certain trajectory being seen at least once during the observational days. Presence

of certain trajectory is indicated by + symbol. When mouse showed thigmotaxis or direct swim in the early stage, the final outcome was significantly affected.

https://doi.org/10.1371/journal.pone.0197003.g003
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final cognitive score. We think the frequency of this trajectory do not necessarily mean mouse’s

cognitive functions, because direct swim in early training stage includes the incidental landing.

These results suggest that thigmotaxis could affect the cognitive dysfunction but it could be

also a potential factor causing underestimation of spatial learning ability. Therefore, we think

it is important to identify thigmotaxis in the early stage of training in MWM.

In this study, we employed an ANN model to detect the swim path trajectories.

ANN is recognized as a useful data-driven empirical model inspired by a biological neural

network. Since the invention of the backward propagation technique in 1989, ANN has

become a major approach in the field of machine learning [20].

CNN is a technique to improve the accuracy of image recognition of ANN [21]. A set of

learnable filters (called kernels) is used to extract the feature quantity from the original image

Fig 4. Transition of cognitive scores and its relation to the early stage swim strategy. Average cognitive score increased as the training proceeds in both control and

BCAS groups (A). The existence of thigmotaxis in early training stage significantly affected the cognitive score in day 5 (B). �p<0.05 vs control group.

https://doi.org/10.1371/journal.pone.0197003.g004

Table 3. Model performance according to the picture sizes.

Image size for input Accuracy

(%)

Sensitivity Specificity Processing time

(sec)

72x72 94.7 ± 9.9 0.76 ± 0.04 0.96 ± 0.00 639.9 ± 9.9

48x48 95.6 ± 0.6 0.72 ± 0.03 0.98 ± 0.00 175.4 ± 0.5��

24x24 93.9 ± 0.8 0.66 ± 0.04 0.97 ± 0.00 30.1 ± 0.4††

Two-class recognition refers to distinguishing mice with thigmotaxis from others. Sensitivity for thigmotaxis detection decreases along with the reduced picture size, but

there is no significant difference. Processing time is significantly longer in big image processing.

��p<0.01 vs 72x72

††p<0.01 vs 48x48.

https://doi.org/10.1371/journal.pone.0197003.t003

Neural network can detect thigmotaxis in water maze test

PLOS ONE | https://doi.org/10.1371/journal.pone.0197003 May 3, 2018 8 / 11

https://doi.org/10.1371/journal.pone.0197003.g004
https://doi.org/10.1371/journal.pone.0197003.t003
https://doi.org/10.1371/journal.pone.0197003


data. With these filters, the input data are converted into smaller pixel size with marked feature

quantities. CNN simulates neural connections in the human visual cortex and enables more

effective learning compared to a conventional ANN. This method is applied for a variety of

tasks such as diagnostic imaging in clinical fields [22].

In this study, we made three models with different levels of classification. As expected, the

two-class recognition model showed the highest accuracy among all the models. However, we

have to admit that this high level of accuracy was due to its high specificity, and the sensitivity

was relatively low. Although we think our model is acceptable for the purpose of screening,

some improvement should be required.

To begin with, we converted the original bitmap files into small grayscale pixel images so

that we could handle the data with an ordinary laptop computer. So, we assessed the relation

between the image resolution and model’s performance. In our study, the image resolution did

not affect the recognition accuracy and the sensitivity. Therefore, we suppose the reason of low

sensitivity for thigmotaxis is due to the relatively small sample number for the validation data

(8.8% of the whole trajectories). This problem can be solved by the accumulation of thigmo-

taxis images in the future.

We tried to apply the CNN model for the other levels of classification, but failed to obtain

high accuracy in 6-class model. Therefore, we assessed the content of misclassifications.

Among all the classification errors, ‘Scanning’ and ‘Circling’ were most frequently confused

with each other and the proportion was about 35% in total. That is, if we combine these two

classes into one class, the accuracy improves to the acceptable level. Since both ‘Scanning’ and

‘Circling’ correspond to low cognitive score, this may be a compromise plan for practical use.

Of course, increasing sample number should be a most promising way to improve the model

performance. More technically, using ‘binary choice tree’ for distinguishing ‘Circling’ from

Table 4. Accuracy, sensitivity and specificity of recognition model.

Number of classes in classification Accuracy

(%)

Sensitivity Specificity Processing time

(sec)

2-class 95.6 ± 0.6 0.72 ± 0.03 0.98 ± 0.00 175.4 ± 0.5

6-class 65.2 ± 1.6�� N/A N/A 176.6 ± 1.1

3-class 91.7 ± 0.8 N/A N/A 180.6 ± 1.5

This table shows the details of the efficacy of the CNN models. Two-class recognition refers to distinguishing mice with thigmotaxis from others. For three-class

recognition, the direct swim label was added to two-class recognition. Six-class recognition classifies image data into all six classes.

��p<0.01 vs 2-class and 3-class.

https://doi.org/10.1371/journal.pone.0197003.t004

Table 5. Misclassification matrix in 6-class model.

Labels Thigmotaxis Rotating Focal search Scanning Circling Direct swim

Thigmotaxis N/A 0.0 2.6 0.3 5.8 0.3

Rotating 0.3 N/A 1.7 1.4 1.2 2.0

Focal search 0.6 3.2 N/A 4.0 3.5 0.9

Scanning 0.3 1.2 9.2 N/A 17.1 1.4

Circling 5.2 2.6 8.1 16.8 N/A 0.0

Direct swim 0.6 4.9 4.0 0.3 0.6 N/A

Rows indicate the class label and the columns refer to the predicted labels. Percentage to the whole misclassification was shown in each cell. Misclassification between

‘Circling’ and ‘Scanning’ was most frequently observed.

https://doi.org/10.1371/journal.pone.0197003.t005
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‘Scanning’ in combination to the supervised learning is a possible option as proposed in the

previous study [10].

Apart from these issues, there is some study limitations. As the initial class labeling was con-

ducted by one person, the decision was susceptible to one’s subject. This could influence the

classification accuracy in this study.

In contrast to our model, a recent study proposed a detailed classification of swim paths in

MWM [23]. The authors constructed a semi-automated classification method that divides a

single swim path into segments and classifies them into eight different types of behavior. This

method enables the detection of subtle and novel behavioral differences in rodent groups

within a single trial. We think the convolutional neural network could be applied for this

detailed classification within single trial in the future.

In summary, our study suggests that a particular swim path trajectory in the early training

stage is significantly associated with the final outcome, and this pattern could be automatically

detected by a CNN model with high accuracy. We think this study will stimulate discussion on

the interpretation of thigmotaxis in the MWM test and promote the application of ANN to

various behavioral tests.

Conclusions

A convolutional neural network could recognize thigmotaxis from swim path images in the

early training stage, and this was associated with the final outcome in MWM.
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