
Ferritin: A Promising Nanoreactor and Nanocarrier for
Bionanotechnology
Abhinav Mohanty, Akankshika Parida, Rohit Kumar Raut, and Rabindra K. Behera*

Cite This: ACS Bio Med Chem Au 2022, 2, 258−281 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: The essence of bionanotechnology lies in the application of nano-
technology/nanomaterials to solve the biological problems. Quantum dots and nano-
particles hold potential biomedical applications, but their inherent problems such as low
solubility and associated toxicity due to their interactions at nonspecific target sites is a
major concern. The self-assembled, thermostable, ferritin protein nanocages possessing
natural iron scavenging ability have emerged as a potential solution to all the above-
mentioned problems by acting as nanoreactor and nanocarrier. Ferritins, the cellular iron
repositories, are hollow, spherical, symmetric multimeric protein nanocages, which
sequester the excess of free Fe(II) and synthesize iron biominerals (Fe2O3·H2O) inside
their ∼5−8 nm central cavity. The electrostatics and dynamics of the pore residues not only
drives the natural substrate Fe2+ inside ferritin nanocages but also uptakes a set of other
metals ions/counterions during in vitro synthesis of nanomaterial. The current review aims
to report the recent developments/understanding on ferritin structure (self-assembly,
surface/pores electrostatics, metal ion binding sites) and chemistry occurring inside these
supramolecular protein cages (protein mediated metal ion uptake and mineralization/nanoparticle formation) along with its surface
modification to exploit them for various nanobiotechnological applications. Furthermore, a better understanding of ferritin self-
assembly would be highly useful for optimizing the incorporation of nanomaterials via the disassembly/reassembly approach. Several
studies have reported the successful engineering of these ferritin protein nanocages in order to utilize them as potential nanoreactor
for synthesizing/incorporating nanoparticles and as nanocarrier for delivering imaging agents/drugs at cell specific target sites.
Therefore, the combination of nanoscience (nanomaterials) and bioscience (ferritin protein) projects several benefits for various
applications ranging from electronics to medicine.
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1. INTRODUCTION

Bionanotechnology, derived from the fusion of basics of
biotechnology and nanotechnology, covers multidisciplinary
research related to the design and synthesis of biosensors,
nanomaterials, and nanodevices toward biomedical and
environmental applications.1,2 Bionanotechnology helps to
ease numerous challenges associated with life sciences by
incorporating the cutting-edge innovations of nanotechnology
into contemporary medical diagnostic issues.3 Implementation
of bionanotechnology in cellular imaging and drug delivery-
based applications implies that the design of products/tools
and the mechanism of actions should exhibit a high degree of
cell/tumor specificity.4,5

Since the advent of the industrial revolution, the
anthropogenic effect on the environment has expanded the
degree of harmful heavy metal ions.6−8 Heavy metals such as
mercury, cadmium, lead, the metalloid arsenic, etc., known to
pose serious threat to the living organisms, occur in different
levels and in various chemical forms, with differential health
consequences, thereby enhancing the rates of morbidity and

mortality.9 Thus, heavy metal toxicity stands as a global
problem, which needs to be solved either by sequestration or
by detoxification. Both conventional (chelation therapy) and
the emerging therapies (toxicogenomics and bioremediation)
exist for sequestration/detoxification and are also successful to
some extent but with some limitations.10−13 Challenges also
exist in the field of cancer diagnosis, in terms of limited
bioaccessibility of imaging agents/drugs to tumor sites owing
to their nonspecific targeting, thereby leading to inaccurate
detection, reduced drug efficacy, higher dose requirements, and
enhanced toxicity.14−16

Nanotechnology in the form of nanomaterials such as iron
oxides, zinc oxides, titanium oxides, cerium oxides, zirconium
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oxides, carbon and silica-based nanomaterials, etc. have
emerged as a feasible solution to these problems but are
commonly associated with the possibility of adverse health
impacts caused by exposure to such different nanomateri-
als.17−19 The potential risks include high toxicity, low
biocompatibility, penetration/interaction with biological mem-
branes/tissues, etc. Self-assembling proteins have emerged as a
novel methodology for the creation and design of program-
mable nanomaterials that have proved to be highly efficient
and effective by overcoming the limitations listed above.20,21

Therefore, proteins and peptides have been utilized as smart
building blocks and supramolecular templates for designing
bioinspired nanomaterials exhibiting enhanced solubility and
biocompatibility along with reduced toxicity, biodegradability,
stability, surface modification/bioconjugation, ease of particle
size control, targeted drug delivery, etc. Apart from providing
interior compartments with nanoscale dimensions for synthe-
sizing and incorporating nanomaterials (role as nanoreactor)
with tunable physicochemical properties, these biomimetic
materials act as nanocarriers by providing an efficient scaffold
for encapsulation, controlled release, and site-specific targeted
delivery of cargoes such as nanoparticles, enzymes, drugs,
etc.22−24

Ferritin, the self-assembled protein nanocage, naturally
stores iron and plays a crucial role in iron metabolism/
homeostasis.25−28 Cellular metabolism requires about micro-
molar to millimolar levels of iron for ATP/RBC/DNA
synthesis and various enzymatic organic transformations such
as oxidation and oxygenation reactions by tuning its redox
properties.26,29−32 However, the aerobic cellular environment
and neutral pH oxidizes the iron and decreases its solubility
(∼10−18 M) and bioavailability.26,27 Therefore, its redox
behavior is not only responsible for its essentiality but also
for its toxicity and solubility.33 To minimize its toxicity
(Fenton’s reaction) and enhance its solubility/bioavailability,
nature uses ferritins which rapidly sequester and store the free/
excess iron inside their inner cavity.26,34 These proteins are
ubiquitous in all tissues where their expression levels are
regulated by cellular iron levels and in response to infection/
inflammation (during oxidative stress). These proteins have a
hollow, spherical shaped nanocage architecture possessing an
external and internal diameter of ∼12 and ∼8 nm (in maxi-
ferritin) and ∼9 and ∼4.5−5 nm (in mini ferritin),
respectively.34−38 These nanocaged proteins formed from
spontaneous self-assembly of identical or almost identical
subunits (α-helical polypeptide chains) arranges into a highly
symmetrical structure containing multiple pores/channels
across its surface (Figure 1). Rapid sequestration (in a few
milliseconds to seconds) of the labile, highly toxic free Fe2+

ions takes place through its hydrophilic pores/channels and are
ferried to the ferroxidase centers (Fox), where the oxidor-
eduction reaction takes place.34,36,39−41 Finally, these ferric
mineral precursors migrate toward the ferritin protein
nanocavity for the formation of ferric (oxy)hydroxide
(Fe2O3·nH2O) mineral.34,36,39 This protein encapsulation
(cage) increases the solubility of these minerals and keeps
them in a safe/nontoxic form and releases iron in a controlled
fashion for cellular metabolism.29−31 Thus, these iron storage
and detoxification ferritin proteins play an important role
during iron metabolism and host−pathogen interactions.34,42

Moreover, some ferritins are exceptionally associated with
DNA protection against oxidative stress (antioxidative
activity).26,34

These protein cages are very stable, both thermally and
chemically, being able to withstand extreme conditions such as
high temperatures and excess concentration of denaturing
agents.27,37 Ferritin cages can reversibly disassemble (at low
pH/high concentration of urea/GdnHCl) and reassemble (at
high pH/low concentration of urea/GdnHCl). High stability,
nanosized cavity, metal ion scavenging ability, and the
reversible disassembly/reassembly behavior of ferritin cage
have been largely utilized for the synthesis of nanomaterials
and used in several biomedical applications in the form of
nanocarrier, nanoenzymes, nanotheranostics, etc.27,43−45

In this review article, the current progress, recent significant
developments, and ongoing efforts focusing on the self-
assembling ferritin protein nanocage based nanoreactors and
nanocarriers have been summarized. This review also high-
lights the prospects for future research on these natural,
versatile promising protein assemblies in several fields ranging
from catalysis to in vivo delivery systems.

2. STRUCTURE, FUNCTION, AND SELF-ASSEMBLY OF
FERRITINS

Ferritins are ∼450−500 kDa hollow nanocages capable of
incorporating up to ∼4500 Fe atoms inside its protein
nanocavity and store them in the form of ferric (oxy)hydroxide
mineral.26,39,41,44,46−53 The superfamily of ferritins is classified
in three different types: the nonheme binding ferritins (Ftn),
the heme-binding bacterioferritins (Bfr), and the Dps proteins
(DNA-binding proteins from starved cells). Ftn and Bfr are
maxi-ferritins (24-mers), whereas the Dps proteins are mini-
ferritins (12-mers).54−57 All the three subfamilies share the
characteristic folding of 4 α-helical bundles. All the three
domains of life (bacteria, archaea, and eukaryotes) synthesize
Ftn proteins; Bfr proteins are specific to bacteria. Both Ftn and
Bfr have identical quaternary structure, but the most significant
difference between them is the presence of heme groups (up to
12 heme groups per cage) at the subunit dimer interface of Bfrs
and the amino acid residues at/around the catalytic ferroxidase
centers.34,38,58−63

Figure 1. Structure and surface electrostatics of ferritin nanocage. A
hollow, spherical shaped self-assembled ferritin nanocage consisting of
24 subunits viewed through (A) one of its six C4 (4-fold) symmetry
axes; (B) a single polypeptide subunit with the catalytic di-iron
binding ferroxidase centers (Fox; represented as blue spheres in the
middle of the subunit); (C) ferritin nanocage viewed through one of
its eight C3 (3-fold) symmetry axes; (D) the corresponding surface
electrostatics of ferritin nanocage generated using PyMOL (PDB
ID:1MFR), where negative, positive, and neutral amino acid residues
are shown in red, blue, and white colors, respectively.
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Maxi-ferritins are hollow nanocage architectures formed
spontaneously by the self-assembly of 24 subunits where each
subunit is a polypeptide bundle made up of 4 α-helices and
possess a catalytic site (ferroxidase center; Fox) at the center
along with a short helix toward the C-terminal.64 These ferritin
subunits undergo self-assembly in a 4−3−2 symmetry thereby
creating eight 3-fold, six 4-fold, and twelve 2-fold pores/
channels. The residues at/around these junctions are possibly
crucial for the cooperativity in self-assembly, cage stability, and
Fe2+ uptake/oxidation. The incorporated iron is stored in the
internal cavity (∼8 nm) surrounded by a ∼2 nm thick protein
shell, along with variable amounts of phosphate which vary
among different organisms (Fe/Pi ∼1−2 in the case of plants/
bacteria and >10 in the case of mammals).27,36,65,66

Mammalian cytosolic ferritins are heteropolymers comprising
of L-chain (light chain, 19 kDa) and H-chain (heavy chain, 21
kDa), where their ratio is tissue specific.41,51,53,67−69 Although
both the subunits (H and L) share a similarity in terms of
sequence (∼55%) and folding, their functions are discrete. The
H-chain possesses the Fox center, which is crucial for rapid Fe

2+

uptake, whereas the L-chain facilitates iron mineralization and
stabilizes the iron mineral core inside the ferritin nano-
cavity.41,67 In humans, although ferritin occurs as a coassembly
of H- and L-chain subunits in a tissue-specific ratio, the
mitochondrial ferritins comprise of only the H-chain.
Although, serum ferritins are comprised of majorly L-chain
subunits, but their origins are not well understood.70 In
contrast, “M” type subunits (middle) are specifically found in
amphibians and closely resemble vertebrate H type (∼85%
sequence identity). Prokaryotic and plant ferritins are
composed of 24 identical/similar types of subunits, each
having the catalytic ferroxidase center. Furthermore, the
bacterial ferritins, along with 4−3−2 symmetry, comprise 24
asymmetrical pores called as B-pores, where one subunit dimer
meets another in a side-on fashion.
The 12-mer mini-ferritins also self-assemble to form a

cagelike architecture, similar to 24-mer maxi-ferritins, thereby
creating six dimer interfaces at 2-fold symmetry axes and four
3-fold pores centered at the 3-fold axes but lack the C4
symmetry axis (possibly due to the absence of the short fifth
helix).27,54−57,71 In addition, the ferroxidase sites are located at
the dimer interface (2-fold axes). The external diameter of
these Dps proteins is ∼8−9 nm with a central nanocavity of
∼4.5−5 nm, accounting to ∼20−25% of internal volume of
maxi-ferritins and are capable of accommodating ∼500 Fe.
Therefore, its primary function is iron detoxification (forms
stable complex with DNA and protects the bacteria against
oxidative damage) as opposed to iron storage in maxi-ferritins.
These proteins also fold into a 4-helix bundle in a fashion
similar to maxi-ferritins. Besides, Dps proteins have the
capability to bind DNA, unlike maxi-ferritins (exceptions are
some heme-binding Bfrs such as M. tuberculosis BfrA34).
The pores/channels formed from the self-assembly of

subunits create favorable electrostatics along the 3-fold pores
(in eukaryotic ferritins) and B-pores (in prokaryotic ferritins),
which facilitates Fe2+ uptake inside the ferritin protein
nanocage. Both the theoretical (electrostatics calculations)
and experimental (site-specific mutagenesis and structural
analysis by X-ray diffraction) studies of different ferritins
established the role of hydrophilic 3-fold pores as the major
Fe2+ uptake routes in eukaryotic ferritins. The inner cavity of
ferritins is lined with acidic amino acid residues, which serve as
iron nucleation sites and stabilize the iron mineral as well as

the non-natural metal oxide/hydroxide minerals.72,73 However,
the Fe2+ uptake routes in bacterial ferritins are less explored, in
comparison to the eukaryotic ferritins. In recent years, it has
been elucidated that the B-pore channels act as major Fe2+

entry pathways in E. coli Bfr (bacterioferritin), owing to the
presence of acidic residues. Nevertheless, many aspects of Fe2+

translocation in ferritins from all domains of life are not fully
comprehended, including the role of intrinsic self-assembly;
whose disruption leads to complete/partial inhibition of
catalytic activity in ferritins, despite having intact Fox centers.

3. SEQUESTRATION OF IRON AND OTHER METAL
IONS BY FERRITINS AND THEIR BINDING SITES

Synthesis of novel nanomaterials/particles inside the ferritin
nanocavity with controlled size and morphology requires some
prior information about the uptake of precursor metal ions (via
nanoreactor routes; discussed later) and their interactions with
ferritin protein. Similar to metal ion transport in trans-
membrane ion channels, the entry of various metal ions to the
ferritin cages also occurs via its ion channels/pores (discussed
in section 2). The favorable electrostatic gradient and
dynamics of pore residues enable the uptake of iron and
other non-native metal ions. The metal ion binding sites and
their accumulation at the internal surface can be explained by
geometrical preference of the corresponding metal ions,
electrostatics, and hard and soft acids and bases (HSAB)
theory. Similarly, these ferritin pores can uptake various metal
complexes and small organic molecules with relatively slower
rates as compared to the native (iron) and non-native (other)
metal ions. The binding sites of these non-native metal ions in
ferritin nanocage are briefly described in this review and the
details can be found in some classic articles/reviews from
various groups.47,74−81

This unique ability of ferritin protein has been exploited
both by nature and researchers for the synthesis of various size-
constrained nanoparticles (NPs), by using it as a nanosink,
which has multiple advantages such as altered morphology/
crystallinity and physicochemical (e.g., opto-electronic)
properties. Moreover, the NPs synthesized within the ferritin
nanocavity exhibit enhanced water solubility and biocompat-
ibility/bioavailability, which can be exploited for diverse set of
applications in nanotechnology, medicine, imaging, etc. For
example, these encapsulated iron oxide NPs are used in
magnetic resonance imaging (MRI), targeted drug delivery,
and cell imaging,82,83 whereas platinum NPs have mimicked
excellent nanoenzymatic behavior, such as catalase and
peroxidase activities.84

3.1. Fe2+ Uptake, Translocation, and Fe3+ Accumulation

Iron, being the natural substrate for ferritin, its uptake/
translocation, initial stages of mineralization, and mineral core
f o r m a t i o n a r e i n v e s t i g a t e d b y d i ff e r e n t
groups.34,36,39,40,48−53,69,85−87 For eukaryotic ferritins, site-
specific mutagenesis and X-ray diffraction studies have been
carried out with human and frog M ferritins (mostly by Theil,
Chasteen, and Harrison groups) and revealed the role of
hydrophilic 3-fold pores for the sequestration of Fe2+. The
carboxylate side chains of Asp and Glu residues (D127 and
E130) along the 3-fold pores are crucial for iron
uptake,39,40,67,85 while E136 and E57 (also called transit
sites) are involved in the transfer of Fe2+ from 3-fold pores to
the Fox center for rapid catalytic activity. Deletion of these
carboxylate residues resulted in inhibition of Fox activity.
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Moreover, the size of these 3-fold pores is also critical for rapid
Fe2+ uptake, as revealed by E130D modification.39,40 The role
of 3-fold pores in Fe2+ entry was indirectly revealed when frog
M ferritin was cocrystallized with redox inactive Mg2+ ions,
where a line of Mg2+ ions were observed in the 3-fold channel,
which was further linked to the Fox center.

47 This investigation
established the journey of Fe2+ inside the ferritin protein
nanocage. Later, these observations were directly proved via a
series of high-resolution X-ray diffraction data sets by freezing
frog M ferritin crystals at different time intervals after exposure
to Fe2+ salts.75,88 As discussed above, the 3-fold pores are the
potential gateway for the entry of many metal ions especially in
eukaryotic ferritins, which was further corroborated by
molecular dynamics simulations.89−91 After Fe2+ acquisition/
ferroxidase activity, mineral precursors undergo a series of
complex hydrolytic reactions to synthesize ferrihydrite mineral
inside the protein nanocavity, where a set of carboxylate
residues (Table 1) stabilize this ferric (oxy)hydroxide mineral
by electrostatic interactions25,41,51,92 and possibly regulate the
total iron accumulation.
Similarly, in case of bacterioferritins, MD simulation studies

suggested that the thermal fluctuations of 4-fold and B-pores
regulate the transport of monovalent cations via B-pores.93,94

In addition, site-specific substitutions at the B-pore residues
resulted in the inhibition of Fox activity in E. coli Bfr.58

However, further studies on the Fe2+ uptake pathways and
translocation mechanisms in bacterial ferritins need to be
carried out. Iron trafficking in mini-ferritins occurs via the
“ferritin-like” 3-fold pores.54−56

3.2. Accumulation of Non-Native Metal Ions

Similar to iron accumulation, the incorporation of other
divalent and non-natural metal ions inside the ferritin
nanocavity under in vitro conditions are also observed at/
along the ion channels/pores or at the internal surface in
addition to the ferroxidase centers (Table 1). This has raised a
fundamental question regarding the selectivity of ferritin
toward iron, in vivo. It has been previously established that

divalent metal ions, such as Cu2+, Co2+, Zn2+, and Mn2+, can
compete with Fe2+ and significantly reduce the ferroxidase
activity (solution kinetics)37 by binding either at the 3-fold
pores or at the ferroxidase centers (X-ray crystal struc-
tures).39,44,47,49,74,79 The extent of inhibition of ferroxidase
activity in the presence of these divalent metal ions can be
explained based on the Irving−William series; Cu2+ and Zn2+,
which are known to form stable complexes exhibited maximum
inhibition of Fox activity. Cu

2+ ions not only bind at the 4-fold
pores but also to a C126 residue along with His and Glu95

residues located at the 3-fold and is corroborated by the
appearance of a Cu−S charge transfer band in solution.39

Similarly, X-ray crystallographic studies on frog M and
human H ferritin indicated that the His residues near the 4-
fold pores bind to the metal ions, such as Zn2+, Cu2+, Co2+,
Mn2+, and Mg2+, forming an octahedral geometry95 (Table 1).
However, Ag2+ binds to M153 (soft site) at the 4-fold pore of
Pyrococcus furiosus ferritin also in a square planar geometry.95

In addition, it also binds to several other residues present
within the four helices such as M170, H53, D49, and E130.
Moreover, introduction of His residues at the C2 dimer
interface yields a tetrahedral Cu2+ coordination, which can
induce the metal-mediated ferritin self-assembly from its as-
isolated monomeric form.96 Further, the effective binding of
Tb3+ ions at the 3-fold pores and the ferroxidase sites have
been exploited for cell imaging and can be delivered into the
tumor cells.97 Moreover, these supramolecular ferritin
nanocages have been successfully utilized for detoxification of
heavy metal ions.98 The binding and accumulation of Pd2+ and
Au3+ in ferritin are discussed separately in the following
section. A recent article by Taher et al. also investigated the
impact of engineering the ferritin protein nanocages, where the
site-specific mutations of two polar residues (D38 and R52) by
His residues near the dominant Ir3+ binding sites (C48)
influenced the enhancement of IrCp* uptake inside the protein
nanocages to design hybrid biocatalysts for carrying out the
transfer hydrogenation reaction of various aromatic carbonyl
compounds.99

Table 1. Binding Sites of Iron and Other Non-Native Metal Ions in Ferritin Protein Nanocages

binding location

Mn+ ion ferritin (PDB ID) 3-fold pores
4-fold
pores other sites refs

Fe2+/Fe3+ frog M ferritin (3RGD/3RBC) E130 H169 ferroxidase center; E23, E58, H61, E103, Q137, D140 46, 75
others; H54

Mg2+ frog M ferritin (3KA3) T118, D127, E130,
S131

ferroxidase center; E23, E58, H61, Q137, D140, E103 39, 40, 47, 110
transit sites; E57, E136
others; H54

Zn2+/Ca2+ human H-ferritin (2CEI) E134, H118, C130 H173 ferroxidase center; E27, E62, H65, E107, Q141 74

Cu2+ frog M ferritin (3RE7) E130, H114, C126 H169 ferroxidase center; E23, E58, H61, E103 75
transit sites; E57, E136
others; H54

Co2+/Mg2+ frog M ferritin (3KA4) E130 H169 ferroxidase center; E23, E58, H61, E103 39, 47
transit sites; E57, E136
others; H54

Pd2+ horse spleen L-ferritin (2Z5P/
2Z5Q)

H114, C126, E130 internal surface of the cage; C48, H49, E45, R52 103

Au3+ human H-ferritin (3ES3) H118 H173 internal surface of the cage; H57, H60, H65, C140 108
Au3+ horse spleen L-ferritin (3H7G) C126, H114 internal surface of the cage; G45, C48, H49, R52, M96,

H147
104

Ag2+ Pyrococcus furiosus (2JD7) M153 within the 4 α-helix; M170, H53, D49, E130 81
Ir3+ recombinant horse liver L-ferritin internal surface of the cage; C48, H38/H52 99
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3.2.1. Pd2+ Accumulation. Palladium NPs have found
great attention in the field of catalysis, sensing, and hydrogen
storage, etc.100 In recent years, Pd NPs have been synthesized
inside the nanocavity of horse spleen L-ferritin and have been
used for catalytic applications.101,102 The advantage of growing
these nanoclusters within a confined space offers the ability to
tune the physicochemical properties by regulating the size.
Here, Pd2+ ions enter the ferritin cage possibly through the
nanoreactor route (3-fold pore) as these metal ions were
reported to interact with H114, C126, and E130 (Table 1 and
Figure 2A) but accumulate relatively less Pd2+, as compared to
iron, at the internal surface of the ferritin cage.103 Pd2+ ions
exhibited its preferred coordination geometry (i.e., square
planar) by binding with the C48/E45 residues, whereas the
metal ions like Cd2+, Fe2+/Fe3+, and Mn2+ form octahedral
geometry. Using these accumulation properties of Pd2+ ions,
bimetallic complexes of Au/Pd nanoparticles have been
synthesized, which exhibited enhanced catalytic hydrogenation
of acrylamide derivatives.104 The substitution of H114 with Ala
resulted in the construction of new metal binding sites
(dinuclear to trinuclear complex) indicating that multinuclear
complexes can be prepared by the deletion or introduction of
metal ion binding sites on the protein surface.103

3.2.2. Au3+ Accumulation. Apo-ferritin nanocages have
been used for the synthesis of water soluble and biocompatible
gold nanoparticles having applications in the field of catalysis,
biomedicine, and imaging.101,104−107 Advancements in the field
of Au nanoparticle were achieved by synthesizing them inside
the ferritin nanocavity and were investigated with the help of a
series of spectroscopic studies and have been used for in vivo
kidney targeting and biomedical imaging.107 Structural analysis
of Au3+ ions with human H-ferritin (ferritin crystals soaked in
solution of Au3+ ions) indicated its interaction with H65 and
generated Cys residues108 (Table 1 and Figure 2B, left). In
addition, Au3+ ions also bind to four His residues, forming a
square planar geometry, at the 4-fold pore. Further, the
immobilization of Au3+ ions in horse spleen L-ferritin was
investigated by Ueno and co-workers, where the Au atoms

were observed to bind selectively with sulfur containing amino
acids (soft sites) C126 at the 3-fold pores and C48 and M96 at
the internal surface of the cage76 (Table 1 and Figure 2B,
right). Further, site-specific mutagenesis was employed to
introduce Cys residues (E45C/R52C) in order to enhance the
accumulation of Au3+ ions.109 These studies on Au binding in
ferritin nanocage have potential in stabilizing small gold
nanoclusters in protein scaffolds.

4. BIOMEDICAL AND BIOTECHNOLOGICAL
APPLICATIONS OF FERRITINS: AS NANOREACTOR
AND NANOCARRIER

4.1. Biocompatible Quantum Dots Encapsulated within
Ferritin

4.1.1. Introduction to Quantum Dots. Quantum dots
(QDs), also termed as nanocrystals or zero dimensional (0-D)
nanoparticles (i.e., all the three dimensions are within the
nanoscale regime, typically <100 nm), have gained consid-
erable importance in recent times owing to their unique size
dependent optical and electronic properties.111−113 QDs can
be basically defined as the fluorescent semiconductor nano-
crystals which are composed of atoms of group IIB-VIA
elements (such as CdS, ZnSe, ZnS, etc.) or group IIIA-VA
elements (such as InP, GaAs, InAs, etc.) in the periodic
table.111,114,115 The name “quantum dots” is a combination of
two terms derived from the properties of such crystals: “dots”
referring to the nanoscale dimension (typical size ranges from
2 to 10 nm) of these particles while “quantum” term derives
from the fact that these nanomaterials can be considered as a
particle in a sphere (analogous to a particle in a box), which
obeys all of the quantum mechanical principles.113,116,117

The elemental composition of these nanocrystals accounts
for their semiconducting properties arising from the presence
of a filled valence band and an empty conduction band
generally with a band gap of less than ∼3.4 eV.111,113,118 Upon
absorption of photons/during the conduction of electric
currents by these semiconductor nanomaterials, the excita-

Figure 2. Binding sites for (A) Pd2+ and (B) Au3+ in ferritin protein nanocages.
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tion/promotion of electrons from the valence band to the
conduction band leads to the formation of holes in the valence
band, and this newly generated electron−hole pair constitutes
an exciton possessing an exciton Bohr radius (ab*), equivalent
to the average distance between the electron and hole, as
defined by eq 1:
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where εr = size dependent dielectric constant (relative
permittivity), m = mass of exciton, μ = reduced mass of
exciton, and ab = Bohr radius (0.53 Å). In analogy to the
quantum mechanical solution of particle in a 1-D box
model,117,119 the energy levels of the exciton, also known as
confinement energy, can be defined by eq 2, which depends on
the size of the QDs:
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where a = radius of the QDs, me = mass of free electron, mh =
mass of hole, μ = reduced mass. Furthermore, owing to the
columbic attractions between the negatively charged electrons
and the positively charged holes, the bound exciton energy
term arises, which is directly proportional to Rydberg’s energy
(Ry) and inversely proportional to the size dependent dielectric
constant, given by eq 3:
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Therefore, the total energy associated with the QDs is the total
of the band gap energy, confinement energy, and bound
exciton energy, which can be summarized as shown in eq 4:
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The phenomena of quantum confinement experienced by
these excitons can be categorized as strong, intermediate, and
weak confinement depending upon whether the radius of the
QDs is smaller than the exciton Bohr radius, smaller than the
Bohr radius of either the electron or hole and not both, or
greater than the Bohr radius of both electron and hole,
respectively.120,121 The emission properties of these nanoma-
terials are governed by their band gap which ultimately gets
affected by the dimensions of the QDs, as stated by the Brus
equation (eq 5),
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where Ebandgap = band gap energy of QDs, Ebulk = band gap
energy of bulk semiconductor, R = radius of the QD, me* =
effective mass of the electron, mh* = effective mass of the hole,
h = Planck’s constant, ε0= permittivity of the vacuum, and εr =
the relative permittivity. Band gap of the QDs increases with
the decrease in size of these nanocrystals leading to a red shift
in their emission spectral profiles, thus allowing one to fine-
tune their optical and electronic properties as per the
requirement of several applications in the field of nano-

technology, nanoelectronics, and nanobiotechnol-
ogy.112,114,122,123

4.1.2. Synthesis and Properties of Quantum Dots.
Earlier techniques of QDs synthesis mostly involved the
addition of stabilizing agents to the aqueous solutions of the
precursor salts resulting in low-quality QDs exhibiting poor
fluorescent properties and non-uniform size distribu-
tions.111,118 The modern procedures mostly utilized the
application of high temperature on organometallic precursors,
which only resulted in the formation of monodispersed
particles while no increase in the fluorescence efficiencies
were observed with lower quantum yields (∼10%).125
Enhancement in the quantum yield to nearly 40−50% was
achieved by the surface capping of QDs such as ZnS capped
CdSe QDs where an epitaxial growth of a layer of wider band
gap QDs such as ZnS was observed over the surface of
CdSe.126−128 Overall, the size and subsequently the optical and
electronic properties of these nanostructures can be controlled
by regulating the temperature and the amount of limiting
reagents.129,130 The size tunable optical property along with
the presence of multiple electronic states at higher energy
levels allow the simultaneous excitation of multicolor QDs
utilizing a single light source124,131,132 (Figure 3). The emission

wavelength can be tuned from blue to near-infrared regions of
the electromagnetic spectrum with CdS, ZnSe QDs absorbing
in the blue to near UV region, while InP, GaAs QDs absorb in
the far red to near-infrared regions.133,134 These optical
properties provide additional advantages to QDs over the
toxic organic dyes (such as Fluorescein, Rhodamine 6G, etc.)
which were used for several bioimaging processes in terms of
greater stability, significant brightness, and reduced rates of
photobleaching.135−137 Surface chemistry of such particles is
also highly interesting since the solubility of these nanocrystals
can be enhanced by surface coordination to various inorganic
as well as organic molecules.138−140

4.1.3. Applications and Limitations of Quantum Dots.
The prospects of bioconjugation is another highly useful aspect
of QDs in the field of biomedical applications since the protein
coated QDs (covalent conjugation with various biomolecules
owing to the presence of various functional group residues
such as carboxylates, amines, etc.) exhibits excellent spectral
widths, enhanced stability, and quantum yields.141−143 Thus all
such properties describe the reason behind the use of QDs in a
large number of applications such as solar cells,144 LEDs and
lasers,145,146 quantum computations,147 biosensors,148 in vivo
molecular imaging,149 DNA hybridization,150 screening of drug

Figure 3. Size dependent optical properties of CdSe@ZnS core−shell
QDs excited with a near UV lamp. (From left to right) A gradual
bathochromic shift in the emission maximum (443−655 nm) was
observed with the increase in size of QDs. Reproduced with
permission from ref 124. Copyright 2001 Springer Nature.
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molecules,151 real time tracking of growth of tumor cells,152,153

etc. QDs are promising candidates for several applications in
the field of biophotonics such as optical imaging,154 photo-
acoustic imaging,155 biosensing,156 optical tracking,157 photo-
thermal therapy,158 multimodal imaging,159 etc. and even in
the field of nanomedicine such as cancer nanotechnology,160 in
vitro diagnosis of infectious diseases,161 protein and peptide
delivery,162,163 drug delivery,164 imaging guided surgery,165

gene delivery,166 etc. (Figure 4).

Despite their advantages/applications, one cannot deny the
fact that most of these QDs are constituted from toxic
elements such as cadmium, lead, etc.167,168 Toxicity remains a
major concern while using such QDs in biological systems
since the stability gets affected to some extent by pH changes,
oxidizing/reducing environment, etc. leading to the leaching/
release of toxic metal ions that can harmfully interact with the
biomolecules to inhibit the normal cellular activities.169−171

4.1.4. Encapsulation of Quantum Dots by Ferritin. As
stated above, the poor biocompatibility and the possible
release/leakage of toxic ions into the biological system
constitutes a major limitation in the use of these highly
promising QDs for biomedical applications. The coating of
these QDs by ferritin protein nanocages have successfully
emerged as a possible solution to all the above-mentioned
problems.172−174 High thermostability, solubility, biocompat-
ibility, metal ion scavenging abilities, and reversible self-

assembly nature of ferritin protein nanocage makes them
highly suitable candidates to synthesize/load these nanoma-
terials (as nanoreactor) and to deliver them at the desired
target sites (as nanocarrier).26,27,43

4.1.4.1. Via Nanoreactor Route. Xing et al. have
successfully reduced the toxicity of CdSe QDs by encapsulat-
ing them within the apoferritin shell.175 Apoferritin (AFt), the
ferritin protein without the mineral core, are the protein shell
having an outer diameter of ∼12 nm dimension with an
internal cavity of ∼ 8 nm dimension and can serve as an
excellent coating material for nanodimensional QDs.27,37 The
work involved the synthesis of CdSe QDs inside the ferritin
cavity without disassembling the protein nanocage by
incubating the AFt with the precursor ions: Cd2+ and Se2−,
which flowed into the protein shell through the hydrophilic
channels followed by their quick reaction and formation of
CdSe QDs (Figure 5).175

EDTA was also used to slow down the reaction, to prevent
severe aggregation, and to remove excess of Cd2+ ions by
forming a Cd(II)-EDTA complex. The UV−vis spectrum of
the resulting AFt-CdSe QDs displayed absorption bands
consistent with the bare CdSe QDs while the TEM images
clearly confirmed the nanosize of QDs encapsulated by the
intact protein shell. The photoluminescence spectrum also was
in accordance with the bare QDs while the cytotoxicity studies
performed on human cancer cell lines and human
hepatocarcinoma cell lines demonstrated reduced toxic effects
due to the protein shielding. All these results are clearly stating
the fact that QDs retained all its optical properties, and the
protein shell just served as a protective coating that reduced
the toxic nature of CdSe QDs by preventing the possible
leakage/release of harmful Cd2+ ions.175

Similarly, Bradshaw et al. have utilized AFt shell as a
biotemplate for synthesizing PbS QDs, which not only
exhibited excellent photoluminescence but also provided
selective imaging and enhanced antitumor activity against
human colorectal carcinoma.176 Furthermore, the successful
size constrained one-pot synthesis of QDs such as CdS, ZnSe,
ZnS, etc. inside ferritin enhancing the biocompatibility,
solubility, and stability of these nanomaterials opened up a
wide range of possibilities for their utilization in nanomedicine,
nanoelectronics, and nanobiotechnology.177−181 Naito et al.
have employed a similar approach to synthesize CdS QDs
inside the shell of horse spleen ferritin.182 The presence of
patches of Glu/Asp residues at the interior surface of the
ferritin not only provides the favorable electrostatics to
promote the flow of precursor ions inside the protein cage

Figure 4. Potential applications of Cd-free QDs. Reproduced with
permission from ref 153. Copyright 2016 American Chemical Society.

Figure 5. Schematic representation for the synthesis of CdSe QDs inside the apoferritin cavity via the nanoreactor route.
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but also leads to the formation of CdS nanocrystals.182 The
hollow chiral protein served as a template for the synthesis of
chiral QDs exhibiting circularly polarized luminescence (CPL)
activity, which is highly useful for sensory biomedical
applications.182

The AFt shell acted as a nanoreactor by synthesizing size
constrained QDs inside its shell, mimicking the natural iron
biomineralization process inside it. Moreover, it also provides
the opportunity to conjugate other biomolecules on its surface,
to exploit them in bioimaging and targeted drug deliv-
ery.26,27,37,43 Furthermore, site directed mutagenesis could be
employed to modify both the external and internal surfaces of
ferritin depending upon the requirements/applications.27

4.1.4.2. Via the Disassembly/Reassembly Route. The
group IIB-VIA semiconducting QDs such as CdS, ZnSe, and
CdSe emit in the UV−visible regions of the spectrum (∼200−
800 nm).183 Therefore, applications of these QDs in deep
tissue imaging is mostly limited.184 On the other hand, group
IVA-VIA nanocrystals such as PbS QDs provide efficient
emissions at larger wavelengths (>1000 nm) but the problem
of toxicity and water solubility limits its usage.185,186

Therefore, to decrease the toxicity and enhance the
solubility, Hennequin et al. have synthesized near-infrared
(NIR) fluorescent nanocomposites of PbS QDs inside the
soluble horse spleen ferritin protein nanocage by adopting a
pH dependent unfolding/refolding technique (Figure 6).187

In addition to the nanoreactor route described in the earlier
section where the AFt was incubated with precursor Pb2+ and
S2− ions, which led to the formation of PbS QDs inside the
protein nanocage, an alternative route (disassembly/reassem-
bly of ferritin) was also used by Turyanska et al. to encapsulate
PbS QDs inside horse spleen ferritin.186 In this technique,
these QDs were first synthesized using reported methods and
then encapsulated within the protein nanocage. Horse spleen
ferritin protein nanocage was first demineralized (removal of
iron mineral) to form an AFt shell by thioglycolate treatment
followed by repeated dialysis against NaOAc buffer until the
ferritin solution got decolorized.187,188 The pre-synthesized
QDs were encapsulated by disassembling AFt protein
nanocages at pH 2 and then reassembling it at pH > 5 to
incorporate PbS QDs. The crystal structure and the optical
properties of encapsulated PbS QDs remained unaltered
during this pH dependent unfolding/refolding process. High-
resolution transmission electron microscopy (TEM) images
revealed the hexagonal closed packed structure of AFt-PbS
nanoparticles with EDX spectrum confirming the presence of

Pb and S inside the intact protein shell, which are also
supported by their native polyacrylamide gel electrophoresis
(PAGE) profile. Cytotoxicity studies (MTT assay) on
nontumorigenic and carcinoma cells illustrated that the toxicity
levels of protein encapsulated QDs were significantly lower as
compared to the bare ones. These results suggested that the
optical properties of encapsulated PbS QDs were hardly
affected by the protein shield, which ultimately enhances their
solubility and reduces their toxicity as compared to the
commercially available/synthesized bare QDs. Different
research groups have implemented the nanoreactor route
and/or disassembly/reassembly approach for incorporating
different QDs such as CdS, PbS, ZnSe, CdSe, and carbon
based QDs inside ferritin protein nanocages for various
bionanotechnological applications and are enlisted in Table
2. Apart from the two routes (nanoreactor and the
disassembly/reassembly approach) mentioned so far for the
encapsulation of QDs inside ferritin, Nasrollahi et al. have
utilized a unique metal (Fe) ion dependent self-assembly of
Archaeoglobus fulgidus ferritin to incorporate graphene QDs
along with the drug doxorubicin for dual utilization as a
bioimaging agent and drug nanocarrier for breast cancer
diagnosis.189

4.1.5. Synthesis of Apoferritins for Enhancing Photo-
luminescence of Ferritin Encapsulated Quantum Dots.
Owing to the toxicity of the conventional Cd/Pb-based
QDs,167,184 the need for cadmium/lead-free QDs have led to
the development of nontoxic QDs such as carbon dots (C-
dots),190 silicon dots (Si QDs),191 Ag2S/Ag2Se QDs,

192,193 etc.
Si QDs are highly biocompatible and have been successfully
utilized in various cancer-related bioimaging purposes.191

Similarly, carbon dots are an effective replacement for the
toxic QDs, since the biocompatibility and low toxicity are
additional assets apart from their excellent optical and
electronic properties.153,194

However, utmost care must be implemented while synthesiz-
ing/incorporating such fluorescent nanomaterials inside
ferritin, since the majority of the works involving ferritins
and QDs have utilized commercially available horse spleen
ferritin (Table 2), which are mostly mineralized (loaded with
∼2000 iron per cage). The presence of Fe3+ ions in the iron
mineral core of ferritins quenches the photoluminescence (PL)
of QDs via static electron transfer from the QDs to the vacant
d-orbitals of Fe3+ inside the protein nanocage, thereby
reducing the efficiency of QDs as fluorescent probes/
sensing/imaging agents.195 Bhattacharya et al. have reported
such PL quenching of C-dots by equine spleen ferritin, where
the PL of C-dots was quenched by nearly 2.7 times in the
presence of ferritins, whereas no such quenching was observed
in the case of apoferritin, clearly indicating the role of Fe3+ of
the mineral core in the quenching process.195

Although ferritins are demineralized in most of the reports
involving the synthesis/incorporation of QDs, even the traces
of Fe3+ present inside ferritin may affect the PL intensities.195

Therefore, these ferritin samples first need to be demineralized
thoroughly to remove all the iron content loaded inside them
in order to generate their apoforms. The demineralization of
ferritin protein is usually performed by treatment and/or
extensive dialysis of the mineralized ferritin samples with buffer
solutions containing reducing agents such as thioglycolic acid,
thioacetic acid, sodium dithionite, dithiothreitol, etc. to reduce
the iron mineral core, under a N2 environment, followed by the
chelation of iron(II) using suitable chelators such as ferrozine,

Figure 6. Scheme for formation of PbS@AFt composites via both the
nanoreactor route and the disassembly/reassembly route.
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2,2′-bipyridyl, etc.31,38,196 Therefore, the resultant apoferritin
samples can be utilized as a biotemplate for synthesizing/
incorporating a wide variety of QDs whose PL properties
would not get compromised.

4.2. Ferritin in Nanomaterial Synthesis and
Bionanotechnology

4.2.1. Synthesis and Applications of Nanoparticles.
The synthesis of nanoparticles, particularly superparamagnetic
iron oxide nanoparticles (SPION), hold crucial significance
owing to its various applications including hyperthermia-based
cancer treatment,198 gene therapy,199 targeted drug delivery,200

MRI contrast agents,201 among several others. However, the
critical size of such nanoparticles are required to be smaller
than 100 nm, typically as low as 10−20 nm or even of the
lower order for effective functioning/activity in majority of
these applications.202,203 Earlier reports have suggested the
origin of the superparamagnetic nature in iron oxide
nanoparticles to be the ultrasmall size and the narrow particle
size distribution responsible for the individual magnetic
domain behaving as “single super spin”.204,205 Such nano-
particles have been reported to exhibit high values of
magnetization and magnetic susceptibility, whereas their
retentivity and coercivity remain relatively low. Under the
influence of external magnetic field, these particles can be
utilized for the treatment of malignant tissues/organs owing to
their easy binding and bioconjugation to proteins, drugs, and
antibodies for targeted delivery applications.206,207 Never-
theless, the agglomeration of such nanoparticles owing to their
high surface area to volume ratio, which compels them to
reduce their energy via aggregation, emerges as one of the
major limitations in their usage and applicability. Therefore,
efforts have been made to stabilize the nanoparticles by
employing various protection strategies in the form of organic
or inorganic layer coatings,208,209 surfactant or polymer
coatings,210,211 or biomolecular templating,212,213 etc. Earlier
reports have suggested the use of biomolecule-based supra-

molecular templates which are both genetically and chemically
modified with metal binding ligands for the synthesis of stable,
monodispersed encapsulated nanoparticles. The risk of
aggregation gets considerably reduced in such functionalized
nanoparticles, thereby accounting for their availability in wide
range of applications ranging from catalysis to biosensing
applications204,205 (Figure.7). Among the commonly used
magnetic nanoparticles, both magnetite (Fe3O4) and maghe-
mite (γ-Fe2O3) exhibit a transition in their magnetic behavior
from ferromagnetic to superparamagnetic upon reduction in

Table 2. Encapsulation Routes and Applications of Ferritin-QDs Nanomaterials

type of ferritin
mineral core

(QDs)
core size
(nm)a encapsulation route applications and proposed applications refs

horse spleen
ferritin

CdS 2.5−4.0 nanoreactor tunable photochemical agents for cancer diagnosis, sensing of
heavy metal ions, and targeted drug delivery.

177

horse spleen
ferritin

PbS nanoreactor and pH-based
disassembly/reassembly

noninvasive fluorescence imaging and therapeutic tissue targeting 186

horse spleen
ferritin

CdSe 4.2 nanoreactor enhanced solubility and biocompatibility, reduced cellular toxicity 175

equine spleen
ferritin

carbon dots <2 size dependent penetration optoelectronic and bioimaging applications 195

horse spleen
ferritin

CdS 6.0−7.1 nanoreactor tunable circularly polarized fluorescence, chiroptical memory,
emitting devices

182

horse spleen
ferritin

PbS 6 ± 2 nanoreactor and pH-based
disassembly/reassembly

enhanced solubility and biocompatibility 187

horse spleen
ferritin

CdSe 6.0 ± 0.6 nanoreactor pathway to synthesize uniform II-VI semiconductor nanoparticles
for biomedical and nanoelectronics applications

178

horse spleen
ferritin

PbS nanoreactor and pH-based
disassembly/reassembly

antitumor activity against colorectal carcinoma cells 176

horse spleen
ferritin

PbS 6.0−6.7 nanoreactor photovoltaics 197

Archaeoglobus
fulgidus ferritin

graphene QDs
with ferrihydrite

2.8 ± 0.8 metal mediated self-assembly pH-responsive 189
fluorophore, MRI agent, and drug nanocarrier

horse spleen
ferritin

ZnSe 3−7 nanoreactor biotemplate for synthesis of semiconductor NPs 181

horse spleen
ferritin

CdS 4.7−7.1 nanoreactor nanoelectronic devices or fluorescent biomarker 180

aDetermined from TEM analysis.

Figure 7. Different sets of nanoparticles along with their architectures,
encapsulating scaffolds, and applications.
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their sizes (<20 nm) leading to a loss of their permanent
magnetism.214 Other metallic and metal hydroxide/oxyhydr-
oxide nanoparticles hold potential biomedical applications, but
problems such as solubility, toxicity, and harmful interactions
with membranes and tissues other than target sites is a cause of
major concern and often restricts their usage.215,216

In order to utilize the nanoparticles for various biomedical
applications, several synthetic strategies have been utilized for
the preparation of highly stable and monodispersed nano-
particles such as hydrothermal synthesis,217 the laser pyrolysis
technique,218 the coprecipitation method,219 thermal plasma
synthesis,220 the sol−gel method,221 etc. among several others.
Among all the listed chemical pathways for nanoparticle
synthesis, coprecipitation method can be termed as one of the
simplest and most effective routes which generally involves
chemical reaction between stoichiometric mixture of precursor
salts in aqueous/organic mediums, followed by the addition of
a base/alkali, at elevated or room temperature.219 The major
advantage of this approach is the high yield obtained as a result
of the production of large quantity of nanoparticles. Reaction
conditions such as pH of the medium and reaction
temperature plays a vital role in modulating the mean size of
the particles.222 However, the major disadvantage associated
with the coprecipitation technique is the inability to control
the particle size owing to extensive agglomeration. Another
synthetic approach involves the utilization of organic solvents
having high boiling points in combination with suitable
surfactants for carrying out the thermal decomposition of
organometallic precursors under high temperature conditions
leading to the formation of nanoparticles.223 Variation in the
experimental parameters such as ratios of starting materials,
reaction time duration, and temperature governs the size and
morphology of the synthesized nanoparticles.224 Moreover,
reduction in the chain length of fatty acids used as surfactant
has been reported to have a positive impact on the reaction
rate. On the other hand, the adsorption of surfactant on the
surface of the synthesized nanoparticles accounts for their
stability.225,226

Alternatively, a wet chemical synthetic approach known as
the sol−gel technique has proven to be highly beneficial owing
to high chemical homogeneity and low cost associated with the
preparation of metal oxide nanoparticles.221 These reactions
are generally carried out at room temperature but are
subsequently subjected to heat treatments at different phases
of the reaction to develop the nanocrystalline structure while
the size of such nanoparticles gets regulated by the annealing
temperature.227 Moreover, functionalization of the synthesized
nanoparticles can be carried out by further embedding them
into the silica matrix.228 Thermal plasma is another synthetic
route for the preparation of nanoparticles where vapors of
organometallic precursor compounds such as Fe(C5H5)2,
Fe(CO)5, Fe3(CO)12, etc. along with oxygen gets inserted
into an argon DC thermal plasma leading to their evaporation
and recondensation.229 As discussed earlier in the case of
previous synthetic routes, the size and morphologies of
nanoparticles get regulated with the oxygen flow rate during
the reaction.230 The iron oxide nanoparticles obtained via the
thermal plasma technique have been reported to exhibit high
saturation magnetization values.231

Another technique that has been reported to be highly useful
for the large-scale generation of nanoparticles is the spray
pyrolysis technique which exhibits high temperature-based
solvent evaporation and solute condensation during the course

of the reaction featuring the spraying of a solution of metal
precursor salts and a reducing agent into a series of
reactors.232,233 Similarly, laser pyrolysis technique makes use
of laser to heat a mixture of precursor compounds and gases
for generating ultrasmall sized nanoparticles.218 Reduction in
agglomeration and narrow particle size distribution are major
advantages of these pyrolysis routes. Iron oxide nanoparticles
with a uniform size distribution obtained via the laser pyrolysis
technique have gained considerable importance as MRI
contrast agents.234

One of the most important applications of magnetic
nanoparticles lies in the field of bimodal imaging.235 Among
the MRI contrast agents, the more common ones include
paramagnetic Gd3+-based complexes,236,237 which are generally
associated with problem such as rapid accumulation in the
liver, thereby limiting the efficiency of these species toward
imaging of specifically targeted tissues/organs. However,
functionalized magnetic nanoparticles coated with a hydro-
phobic layer are actively involved in longer circulation time
and assist in the generation of enhanced images in MRI by
shortening the T2 (transverse/spin−spin relaxation time) of
water protons in the absorbing tissues.238,239 Similarly, the lack
of specificity toward the preferential targeting and killing of
cancer cells has drawn considerable attention on the steps to
improve the conventional cancer therapeutic models that are
otherwise affecting the normal cells as well. Several reports
have suggested the high temperature sensitivity of the cancer
cells as compared to their normal analogues, which can be
incorporated as a strategy for cancer remediation.240 Hyper-
thermia-based heat treatment of cancer cells includes the
utilization of superparamagnetic nanoparticles absorbing
energy from an oscillating magnetic field and converting
them into desired heat energy.241 Additionally, several targeted
cell gene therapy strategies have been reported to be carried
out in the presence of multifunctional vectorized magnetic
nanoparticles cultured in a cell monolayer and applied during
in vitro magnetofection.242 Other applications of nanoparticles
involves (but not limited to) catalytic and photocatalytic
degradation of organic contaminants,243 mimicking enzymatic
activities in the biosystems244 and semiconductor based
applications in light harvesting techniques and photo-
voltaics,245,246 etc.

4.2.2. Encapsulation of Nanoparticles by Ferritin.
Obtaining a desired size of nanoparticles for carrying out a
specific function is highly essential for any kind of application.
The iron storage protein, named ferritin, is a possible solution
to the majority of the problems discussed above since it can
help in restricting the shape and size of nanoparticles when it is
synthesized inside the nanocage.26,27,37 Ferritin has been used
in the recent past as a nanoreactor for the synthesis of a wide
variety of nanoparticles by uptake of metal ions through the
hydrophilic pores/channels similar to the uptake of Fe2+

followed by the reduction of metal precursor salts by a
suitable reductant. On the other hand, preformed nanoparticles
have also been successfully incorporated inside the protein
nanocage by the pH/denaturant (GdnHCl or urea) dependent
unfolding and folding of ferritins. Such encapsulation improves
the stability, solubility, activity of those nanoparticles along
with opening up the possibility of bioconjugating to a large
number of biomolecules via ferritin’s external/internal surface
modification. The toxicity of such nanoparticles has been
greatly reduced since the protein coating prevents the
interaction of these nanoparticles with biological tissues and
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membranes. Moreover, the protein encapsulation enhances the
solubility of nanoparticles apart from preventing the unwanted
leaching of the toxic ions into the physiological system.
Therefore, the combination of nanoscience and bioscience can
be exploited for major potential applications that could prove
to be beneficial during the long run.
4.2.2.1. Via Nanoreactor Route. As described above,

inorganic nanoparticles are highly promising candidates in
the field of clinical applications but their interactions with the
biological system proves to be harmful and toxic for biological
membranes and proteins.247,248 The toxicity originates from
the reactive oxygen species (ROS) (such as superoxide,
hydroxyl radicals, hydrogen peroxide) generated by the
interactions of nanoparticles with the biological system leading
to oxidative damage of the cells.249,250

Among various inorganic nanomaterials, platinum (Pt)
nanoparticles have been found to mimic the activities of the
biological enzymes such as catalase and superoxide dismutase
in catalyzing the disproportionation reaction of hydrogen
peroxide and superoxide, respectively.251 However, Pt nano-
particles also serve as a source of toxicity owing to their ability
to interact and alter the integrity and activity of biomolecules/
membranes. Therefore, in order to reduce the negative impact
of Pt nanoparticles, efforts have been made to deliver these
nanoparticles by encapsulating them inside ferritin nanocages
via utilization of ferritin as a nanoreactor to synthesize Pt
nanoparticles inside them.252 Zhang et al. have successfully
synthesized platinum nanoparticles inside the ferritin cavity by
incubating horse spleen apoferritin with K2PtCl4 salt and then
removing the excess of salt using a desalt spin column which
was followed by the chemical reduction of Pt(II) precursor to
Pt(0) using NaBH4.

252 The synthesized Pt nanoparticles
encapsulated by apoferritin shell have been characterized by
TEM images, which indicated the formation of around 2 nm
sized particles inside the intact protein shell and by X-ray
photoelectron spectroscopy (XPS) spectra, where the Pt 4f
region appeared to be unaffected by the protein encapsulation.
The ROS scavenging activity of Pt-apo ferritin nanoparticles
were investigated on human intestinal carcinoma cell lines and
they were found to increase cell viability by reducing the
amount of hydrogen peroxide inside those cells. In addition to
that, these encapsulated nanoparticles displayed long-term
stability for around 2 weeks under water storage at 4 °C. Thus,
ferritin here not only served as a nanoreactor synthesizing
stable nanoparticles but also acted as an external surface
coating agent, which prevented the harmful interaction of
nanoparticle with other biological systems without inhibiting
the ROS quenching abilities of the Pt nanoparticles.252

Furthermore, Fan et al. have demonstrated the biomimetic
properties of such Pt-apoferritin nanoparticles, exhibiting
catalase and peroxidase activities,84 which can be exploited as
nontoxic biocatalysts against ROS induced oxidative stress
(Figure.8).
Klem et al. have employed a photochemical reduction

technique to successfully mineralize size constrained oxy-
hydroxide nanoparticles of Eu, Ti, and Fe inside the ferritin
nanocages.253 Irradiation of the xenon arc lamp on the higher
oxidation state metal citrate salts resulted in the reduced state
metal ions, which underwent further oxidation in the presence
of oxygen forming metal oxyhydroxide nanoparticles inside the
protein cages. TEM and dynamic light scattering (DLS)
studies confirmed the unchanged size of the nanocomposite
and intact nature of the protein shell after the mineralization

process. Similarly, Moglia et al. and Douglas et al. have been
able to produce highly monodispersed nanoparticles by
synthesizing Ag NPs and Co(O)OH NPs inside the ferritin
protein via the nanoreactor route, respectively.254,255 Thus,
ferritin nanocages not only provided a template for the size
selective synthesis of nanoparticles but also prevented the
aggregation and bulk precipitation of nanoparticles. Recently,
Wang et al. have successfully utilized ferritin nanocage as a
nanoreactor for synthesizing ∼8 nm sized CuS nanoparticles
having excellent biocompatibility and strong absorption in NIR
regions required for anticancer applications.256 Effective
mitigation and treatment of tumor cells have been verified
by injecting CuS-ferritin nanocomposites into U87 MG tumor
bearing mice. Cancer diagnosis/treatment by hyperthermia,
tumor chemo-photothermal combined therapy, MRI, and
fluorescence-based targeting/imaging of tumor cells etc. have
also been investigated using nanoparticles such as Fe3O4,

257

Co doped Fe3O4,
258 Prussian blue,259 Cu,260 EuPO4 and

LuPO4,
261 gallic acid,262 curcumin,262 Au-Ag alloy,263 etc.

synthesized within the hollow internal nanocavity of ferritin
protein nanocages. However, the major limitation of the
nanoreactor route is associated with the narrow size (∼3−4 Å)
of the ferritin pores/channels,27,39,110,264 which might impede
or restrict the diffusion/inflow of precursor salts/molecules/
ions into the central nanocavity required for the generation of
nanoparticles.

4.2.2.2. Via Disassembly/Reassembly Route. As discussed
earlier, another alternative approach of synthesizing ferritin-
encapsulated nanomaterial, which can possibly overcome the
limitation associated with the nanoreactor route, involves the
reversible disassembly and reassembly of ferritin protein
nanocages to incorporate the nanomaterials inside
them.27,37,265 Exploiting the inherent self-assembly behavior
of ferritin protein helps to engineer these multimeric nanocage
architectures for facilitating the encapsulation of nanomaterials
apart from overcoming limitations in terms of toxicity,
solubility, biocompatibility, etc. Therefore, understanding the
phenomena of ferritin self-assembly and finding the conserved
interaction among its subunits holds vital importance in terms
of optimization and enhancement of loading of nanomaterials
and drugs inside ferritin.37,265

Photodynamic therapy (PDT) used for cancer treatment is
largely dependent on three factor, namely, oxygen concen-
tration, light source (≥650 nm), and a photosensitizer.266,267

Visible light generally excites a photosensitizer molecule into a
higher energy state, and this energy of the excited state is
transferred to molecular oxygen leading to formation of singlet
oxygen species/•OH, which display a cytotoxic effect on cancer
cells inhibiting their growth. Methylene blue (MB) is one such
highly efficient photosensitizer owing to its reduced toxicity
and greater quantum yield in the production of singlet oxygen

Figure 8. Schematic representation for the synthesis of Pt NPs inside
ferritin protein nanocages via the nanoreactor route.
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species.268 However, MB is rapidly reduced to leuko-
methylene blue (LMB) by NADH/NAD(P)H inside the
biological systems inactivating its photodynamic activity.269

Therefore, in order to successfully utilize MB as a photo-
sensitizer, Yan et al. have encapsulated MB inside equine
spleen apoferritin shells by disassembling the protein
nanocages at pH 2.0 and then reassembled it around MB at
pH 7.5.270 MB molecules are retained within the nanocages
owing to their size (nearly 1 nm) being larger than the size of
the ferritin channels (∼3−4 Å). TEM images indicated that
the protein shell remained intact while fluorescence measure-
ments revealed the presence of MB molecules inside the
nanocages. The long-term stability of ferritin encapsulated MB
nanocomposites was confirmed by the unchanged fluorescence
intensity even after 3 weeks. The uptake of MB containing
apoferritin by MCF-7 human breast cancer cells was observed
to be rapid and was confirmed by confocal microscopic studies.
He-Ne diode laser irradiation resulted in the generation of
singlet oxygen species from apoferritin-MB nanocomposite
inhibiting the growth and subsequently resulting in the death
of human breast cancer cells.270 Similarly, Liu et al. have
exploited the self-assembly phenomena of ferritin to
encapsulate CeO2 nanoparticles (Figure.9) and introduced it

into the human liver carcinoma cells HepG2.271 These
biocompatible AFt-CeO2 nanoparticles behaved as an artificial
redox enzyme system exhibiting excellent ROS-scavenging
ability, mimicking SOD, in addition to its high cellular
internalization and reduced cytotoxicity.271

4.2.3. Applications of Ferritin Encapsulated Nano-
particles. 4.2.3.1. Targeted Drug Delivery. The use of
platinum anticancer drugs such as cisplatin, oxaliplatin, and
carboplatin has been a cause of major concern based on its
harmful interaction with the biological tissues leading to
several kinds of toxicities such as ototoxicity, neurotoxicity,
etc., and the inadequate cellular uptake of these drugs leads to
the development of drug resistant tumor cells.272 Poor water
solubility and the inability to reach target sites are additional
disadvantages associated with the use of these drugs.273 A
possible solution to this problem was explored by Xing et al.
where the delivery of Pt-based anticancer drugs to the target
site was achieved by encapsulation of these drugs inside ferritin
nanocages followed by the endocytosis of the resultant
apoferritin-drug complex inside the cancer cells which was
achieved by the overexpression of ferritin receptors on the
surface of those cells.274 The encapsulation procedure was very
similar to the one discussed above where, apoferritin was
added individually to the saturated solutions of each of the
above-mentioned anticancer drugs followed by dissociation of
the nanocage at pH 2.0 and subsequent reassembly at pH 7.4,
while the removal of drug molecules which remained outside
the protein shell after the pH dependent folding-unfolding

process of ferritin was carried out using dialysis. UV−vis
absorption spectra at 280 nm were comparable for AFt and
AFt-drug complexes while circular dichroism (CD) spectra
confirmed the unchanged secondary structure and properties
of apoferritin after incorporating drug molecules. Inductively
coupled plasma-mass spectrometry (ICP-MS) results sug-
gested higher but different loading capacity for the distinct Pt-
based drugs. Cytotoxicity of these apoferritin-drug complexes
were tested against rat cancer cells, which overexpressed
ferritin receptors facilitating the targeted drug delivery at
specific sites and the results indicated greater uptake of
anticancer drugs by cancer cells due to reduction in the drug
resistant capacity of the tumor cells.274 Nanoparticles and drug
molecules encapsulated by ferritin have been successfully
bioconjugated to iron transfer protein, transferrin, as well as to
folic acid which is recognized by most of the cancer cell.275,276

The overexpression of folate receptors on the surface of cancer
cells has facilitated the receptor mediated endocytosis of the
ferritin encapsulated nanoparticles/drug molecules leading to
the delivery of drug molecules at the specific targeted site.45,277

4.2.3.2. MRI Contrast Agents. Magnetic resonance imaging
(MRI) is a universal technique used in radiology for imaging
the physiological processes and for detecting the micro-
structures inside the body.278 Several compounds such as
gadolinium (GdIII) chelates, superparamagnetic iron oxide
nanoparticles, etc. are used as MRI contrast agents based on
their magnetic properties, but their toxicity remains an issue of
serious concern.279,280 Ultrasmall superparamagnetic iron
oxide nanoparticles are promising MRI contrast agents for
the detection of macrophages in plaques which can cause
coronary artery diseases, but the uptake of these contrast
agents by macrophages have been found to be low.281,282

Uchida et al. have mineralized iron oxide nanoparticles inside
recombinant human H chain ferritin using ammonium iron(II)
sulfate hexahydrate as the iron precursor and hydrogen
peroxide as the oxidant.257 The resultant mineralized protein
cages exhibited enhanced macrophage uptake, stronger T2*
(transverse relaxation) contrast, and higher relaxivity. Ferritin
nanocage helped in controlling the size of iron oxide
nanoparticles apart from providing an additional advantage
in the form of surface modification, which is highly useful for
cell-specific targeted imaging.257 Similarly, Cai et al. have
achieved active targeting and long-term imaging by utilizing
the ferritins with ultrasmall maghemite/hematite cores, as a
successful replacement for Gd-based T1 contrasting agents.283

Ferritin itself has been proposed as a natural contrast agent,
and Charlton et al. have investigated the potential toxicity of
horse spleen ferritin (HSF) used as an MRI contrast agent in
adult male mice.284 Neither any damaging effects nor any
differences in the weight of organs were observed in cases of
animals injected with HSF at doses detectable by MRI. Aime et
al. have used ferritin nanocages for encapsulating GdIII-
chelates, which have resulted in reduced toxicity and higher
relaxivity of the specified MRI contrast agent.285

4.2.3.3. Nanoelectronics. Biomineralization phenomena in
the case of ferritins are a highly useful technique for protein
serving as a template for the formation of inorganic materials in
the core and have been utilized as a nanoblock for fabrication
of nanostructures.43,286 The process, more popularly known as
the Bio-Nano process, involves the synthesis of inorganic
nanocomposites within the biological protein nanocage.286

Yamashita et al. have synthesized several metals, metal oxides,
and metal hydroxide nanoparticles such as Fe3O4, Co3O4,

Figure 9. Schematic representation for encapsulating CeO2 nano-
particles within apoferritin shell via pH dependent unfolding/
refolding route.
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Ni(OH)2, etc. inside the horse spleen apoferritin cavity, which
holds potential usage in the field of nanodevices.287−289

Semiconductor nanoparticles, referred to as quantum dots
(QDs), have also been synthesized and/or encapsulated by an
apoferritin shell, and several of its applications have been
discussed in the quantum dots section of this review article.
The surface negative charge of ferritin containing different
nanoparticles in the form of its mineral core was utilized to
selectively place a single ferritin on the surface of the silicon
substrate using a nanosized disk of 3-aminopropyl-triethox-
ysilane (APTES) on the Si surface.288 The protein shell was
later selectively removed leading to the deposition of the
nanoparticle core on the desired location on the Si surface
leading to nanofabrication.
Functionalization at ferritin surface by modification of

surface amino acids improves the binding efficiency of ferritin
to other inorganic materials as well as to proteins. Larger two-
dimensional crystals of ferritin with In2O3 cores based on
protein−protein interactions were successfully adsorbed and
nucleated on the surface of the Si substrate.290 Heat or UV
treatment have been utilized for the selective removal of
titanium binding ferritin protein shell which have led to the
formation and deposition of hexagonal closed packed arrays of
Ti nanoparticles which are employed in nanoelectronic
devices.291,292 Growth of carbon nanotubes, metal induced
lateral crystallization, and fabrication of the Si nanodisk was
carried out using similar technique of selective adsorption of
ferritin containing metal nanoparticles core on the surface of
the substrate followed by removal of the protein shell leading
to deposition of metal nanoparticle on the substrate.293,294 Use
of highly pure protein, controlled adsorption, and selective
placement of protein on the surface of the substrate holds the
key in the design of highly efficient nanodevices for
nanoelectronics and catalytic purposes288 (Figure.10).

Furthermore, Colton et al. and Smith et al. have investigated
the ability to synthesize non-naturally occurring minerals inside
ferritin (by co-deposition of iron with different oxo-anions),
which generates a wide range of possibilities to design a library
of ferritin containing nanoparticles with altered as well as
tunable band gaps for their utilization in multijunction
photovoltaic applications.295,296 Such alterations in mineral
structure could also prove to be useful to potentially exploit the
ferritin protein nanocages with novel iron-oxo-anion based
mixed mineral structures having differences in their size,

structure, color, crystallinity/morphology, optical, magnetic,
electronic properties, etc. for light harvesting and photo-
catalytic applications.295,296

4.2.3.4. Catalysis and Photocatalysis. Ferritin has been
successfully employed as a template/scaffold for the synthesis
of a large number of nanoparticles in the recent past
accounting for its role as a nanoreactor.43,286 Pd, Ir, and Rh
nanoparticles synthesized within the ferritin protein shell
exhibited enhanced catalytic activity toward the catalytic
discoloration of congo red dye,297 as investigated by Pekarik
et al. Similarly, Kumari et al. and Peskova et al. have also
reported such improvement in catalytic efficiency toward the
degradation of azo dyes as observed in the case of Au, Ag, and
Pd nanoparticles upon encapsulation by ferritin biotem-
plate.298,299

Apart from its role as a nanoreactor, an interesting result
have been reported by Keyes et al. where the ferrihydrite
mineral core of ferritin acted as a photocatalyst for the
synthesis of gold nanoparticles.300 In general, the photo-
chemical synthesis of gold nanoparticles can serve as an
alternative to the conventional synthetic strategies involving
the reduction of gold salts using harmful chemicals and
reducing agents. Generation of an electron−hole pair in the
ferrihydrite mineral core upon light irradiation is believed to be
the driving force in the photochemical reduction of gold
precursor salt based on its interaction with electron donors and
acceptors. The synthesis was carried out in the presence of a
Hg lamp, ferritin solution, electron donor citrate, and gold
chloride salt. Experiments were also performed in the absence
of citrate where 3-(N-morpholino)propanesulfonic acid
(MOPS) buffer emerged as an alternative to citrate as an
electron donor. The proposed mechanism suggested the entry
of Au3+ ions into the protein nanocages through the channels
on the surface of ferritin while the mineral core acted as the
nucleation site for the photochemical reduction of Au(III) to
Au(0).300 The mineral core upon expose to light produced an
electron to reduce the gold salt while the hole generated was
refilled by the electron donor citrate/MOPS buffer. UV−vis
spectra demonstrated the formation of Au nanoparticles by the
appearance of a characteristic surface plasmon resonance peak
at 530 nm while TEM images indicated the formation of ∼6
nm sized particles. The formation of Au nanoparticles inside
the ferritin cavity was further confirmed by size exclusion
chromatography (SEC), where the eluted sample displayed
strong peaks at 530 nm (for Au nanoparticles) and at 280 nm
(for protein). A metal nucleation site was even reported at the
external surface of ferritin due to presence of “gold binding”
cysteine residues located at 3-fold channels which accounts for
the formation of Au nanoparticles at the exterior surface of
ferritin. The formation of gold nanoparticles both on the
external and internal surfaces of ferritin was reported, and the
proposed mechanism can serve as a model system for the
delivery of Au nanoparticles into the biological systems.300 A
similar mechanism of photocatalytic activity of horse spleen
ferritin has been reported by Saenz et al. where the excited
electron of the core produced upon light irradiation reduces
the mineral core itself releasing Fe2+ ions which either reduces
any electron acceptor or is grabbed by any chelator, if
present.301

5. CONCLUSIONS AND PERSPECTIVES
The current review highlights recent developments toward the
accumulation of different metal ions inside the ferritin cage for

Figure 10. Schematic representation for synthesis and nanoelectronic
applications of ferritin encapsulated Co3O4 nanoparticles.
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the synthesis of nanomaterials for biomedical applications.
Understanding the metal-protein interactions and their trans-
location/binding mechanisms would assist in the synthesis of
novel bionanomaterials. Construction of new functionalized
bionanomaterials can be performed by creating new metal ion
binding sites via site-specific mutagenesis, thereby utilizing
ferritin cage as a template/nanosink. Song et al. have recently

highlighted the importance of various cargo-loaded human
ferritins for biomedical applications and design of nano-
medicine by essentially focusing on the physicochemical
characteristics and intrinsic tumor-targeting properties of
such ferritin-based formulations.308

QDs are promising materials for utilization in nano-
technology and biomedical applications based on their size

Table 3. Synthetic Routes and Applications of Ferritin Encapsulated Nanoparticles

ferritin type mineral core
core size
(nm)a synthetic route applications and proposed applications refs

horse spleen ferritin Pt 2 nanoreactor
(reduction)

antioxidant against ROS-mediated diseases 252

mammalian ferritin Eu(O)OH, Ti(O)OH,
Fe(O)OH

5.7 ± 1 nanoreactor
(photochemical
reduction)

size-constrained synthesis of unattainable oxyhydroxide
nanomaterials

253

recombinant rat ferritin CuS 8 nanoreactor cancer theranostics 256
recombinant human H
ferritin

Fe3O4 3.6−5.9 nanoreactor MRI contrast agents 257

PEGylated recombinant
human H ferritin

Co doped Fe3O4 6.0−6.8 nanoreactor hyperthermia treatment for melanoma 258

mammalian ferritin CeO2 4.5 pH-based
disassembly/
reassembly

artificial redox enzyme mimicking SOD activity. 271

recombinant human H
ferritin

α-Fe2O3 (or) γ-Fe2O3 1.6−4.7 nanoreactor MRI contrast agents 283

horse spleen ferritin Pt 1.9 ± 0.4 nanoreactor
(reduction)

enzymatic (catalase and peroxidase) activities 84

horse spleen ferritin ferrihydrite nFe2O3·
xH2O

native (commercially
purchased)

MRI contrast agents 284

E. coli Dps mini ferritin Au nanoreactor high throughput screening of protein libraries 302
equine spleen ferritin ferrihydrite (Fe2O3·

xH2O)
6−8 nanoreactor tunable band gap for semiconductor-based applications 295

equine spleen ferritin Au 3.8 ± 0.1 nanoreactor catalytic activity during nitro reduction reactions 298
horse spleen ferritin Prussian blue

Fe4[Fe(CN)6]3
nanoreactor photothermal cancer therapy 259

recombinant human H
ferritin

Fe3O4 4.7 nanoreactor targeting and visualizing tumor cells 83

recombinant human H
and L ferritin

Ag 5.3−5.4 nanoreactor
(reduction)

size constrained nanomaterial synthesis for biomedical
applications

254

horse spleen ferritin Co(O)OH 7.0 nanoreactor size constrained nanomaterial synthesis 255
recombinant human
ferritin

Cu nanoreactor improving the therapeutic efficacy of disulfiram in tumor
therapy

260

recombinant Pyrococcus
furiosus ferritin

Pd, Rh, Ir nanoreactor catalytic degradation of azo dyes 297

horse spleen ferritin Co nanoreactor electrochemical biosensor to determine ascorbic acid 303
recombinant human H
ferritin

Fe3O4 (or) γ-Fe2O3 3.8−6.0 nanoreactor targeting of cancer cells 82

horse spleen ferritin ferrihydrite doped with
halides/oxo-anions

8.3−9.1 nanoreactor light harvesting and photocatalytic applications 296

recombinant human H
ferritin

Cu nanoreactor enhancing the pharmacological effect of ascorbate in cancer
therapy

304

horse spleen ferritin EuPO4, LuPO4 8.0 nanoreactor simultaneous determination of two phosphorylated p53
proteins in SCC-7 cells for early diagnosis of cancer

261

recombinant human
mitochondrial ferritin

Au <2 nanoreactor potentially exploited for the generation of a variety of
fluorescent hybrid nanomaterials

305

recombinant human H
ferritin

gallic acid, curcumin 7.3 ± 0.2 pH-based
disassembly/
reassembly

fabricating nanomaterials in the emerging field of
nanomedicine and tumor imaging

262

recombinant human H
ferritin

CoxFe3−xO4 5.4−5.8 nanoreactor enhanced peroxidase activity and tumor tissue visualization 306

horse spleen ferritin Au-Ag alloy nanoreactor cryoprotection against ROS induced oxidative stress 263
recombinant Pyrococcus
furiosus ferritin

Ag, Pd 4.2−4.7 nanoreactor catalytic activity toward reduction of azo dyes 299

equine spleen ferritin methylene blue pH-based
disassembly/
reassembly

targeted imaging and cancer therapy 270

recombinant horse
spleen ferritin

In2O3 6.6 ± 0.5 nanoreactor semiconductor based applications in electronic devices 307

aDetermined from TEM analysis.
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dependent tunable opto-electronic properties.115,141 However,
its severe toxicity, poor solubility, reduced quantum yield, and
unwanted side reactions inside biological system restricted
their usage in various biomedical applications. Encapsulation of
QDs by ferritin nanocages either via the nanoreactor route
(where intact hydrophilic pores/channels of ferritins serve as
the entry route for various ions during the synthesis of
nanomaterials) or via the disassembly/reassembly process has
resolved the above-mentioned problems to a greater extent
leading to their utilization in applications ranging from
photovoltaics to targeted drug delivery (Table 2). Thus,
ferritin nanocages have emerged as a potential nanoreactor for
the synthesis of QDs and as protective coating agents for QDs
to prevent the release of toxic metal ions into the biological
system. It enhanced the biocompatibility of QDs as well as its
solubility. Dps protein, also known as mini ferritins,26,27,44,286

having an internal diameter of ∼5 nm, can prove to be highly
useful in tuning the optical properties and enhancing the
fluorescence quantum yields of QDs by the size selective
synthesis/incorporation of smaller sized QDs (<5 nm).
Further functionalization over the surface of ferritin encapsu-
lated QDs can be used for various applications such as targeted
delivery of QDs at the specific site, fluorescence imaging of
tissue sections/bioimaging agents for tracking tumor growth,
gene analysis, etc. Problems similar to QDs arise in the case of
nanoparticles which also have resemblance in the usage of
ferritin as a capping agent. The concept of self-assembly of
ferritin can be utilized in the design of hybrid ferritin by
disassembling two different kinds of ferritin and then
reassembling them with the incorporation of nanoparticles
inside their nanocavity.37

With the advent of nanotechnology in the recent past, the
process of nanomaterial synthesis along with the ability to
tailor their functional properties (as per targeted biomedical
applications) has witnessed significant improvements.43

However, the generation of uniform, stable, and highly
monodispersed superparamagnetic nanoparticles remains a
critical demand for biomedical research, and therefore, future
efforts should be directed toward overcoming the challenges in
the design and development of safer, biocompatible nano-
medicines. Ferritin encapsulation of nanoparticles helps in
eliminating major hindrances associated with the use of
nanoparticles in biomedical applications such as toxicity,
poor solubility, imitation of harmful side reactions with
biological systems, etc. (Table 3). A better understanding of
ferritin self-assembly would be highly useful for the
incorporation of nanoparticles via the unfolding/refolding
process.27,37 The formation of hybrid ferritin containing
multiple nanoparticles would also open up a wide range of
possibilities for conjugation with a large number of
biomolecules.35,43,277
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