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The regulatory mechanism
of LncRNA-mediated ceRNA
network in osteosarcoma

Chengsen Lin%%5, Jifeng Miao'*, Juliang He?, Wenyu Feng?, Xianxiang Chen?,
Xiaohong Jiang¥*, Jianhong Liu?, Boxiang Li**, Qian Huang?, Shijie Liao®** & Yun Liu%**

Aberrantly expressed IncRNAs have been reported to be closely related to the oncogenesis and
development of osteosarcoma. However, the role of a dysregulated IncRNA-miRNA-mRNA network
in osteosarcoma in the same individual needs to be further investigated. Whole transcriptome
sequencing was performed on the tumour tissues and matched paratumour tissues of three patients
with confirmed osteosarcoma. Two divergent IncRNA-miRNA-mRNA regulatory networks were
constructed in accordance with their biological significance. The GO and KEGG analysis results of
the mRNAs in the two networks revealed that the aberrantly expressed IncRNAs were involved

in regulating bone growth and development, epithelial cell proliferation, cell cycle arrest and the
N-terminal acetylation of proteins. The survival analysis results of the two networks showed that
patients with high expression of GALNT3, FAM91A1, STC2 and SLC7A1 end in poorer prognosis.
Likewise, patients with low expression of IGF2, BLCAP, ZBTB47, THRB, PKIA and MITF also had poor
prognosis. A subnetwork was then constructed to demonstrate the key genes regulated by aberrantly
expressed INcRNAs at the posttranscriptional level via the ceRNA network. Aberrantly expressed
IncRNAs in osteosarcoma tissues regulate genes involved in cellular proliferation, differentiation,
angiogenesis and the cell cycle via the ceRNA network.

Osteosarcoma, the most common malignant primary bone tumour in adolescents, is characterized by immature
osteoid formation, abnormal osteoblastic differentiation, early lung metastasis, high recurrence, and a high
mortality rate!. The application of neoadjuvant chemotherapy has improved the prognosis of patients with
osteosarcoma and has therefore become a widely recognized standard of osteosarcoma treatment. However,
recent studies have reported a bottleneck in the clinical application of these regimens, as the 5-year survival
rate of patients with osteosarcoma has not improved in the past 20-30 years and has hovered at approximately
55-75%> Tumorigenesis is often accompanied by abnormal gene expression, which has provided a novel thera-
peutic strategy for targeting abnormally expressed genes in various malignant tumours, such as lung cancer?,
breast cancer?, gastric cancer®, and kidney cancer®, and produced remarkable results. Although many studies have
explored targeted therapies for osteosarcoma, most are based on clinical experience and have not provided clear
and effective therapeutic targets or ideal therapeutic drugs that can remarkably improve prognosis’. Therefore,
further studies on the regulatory mechanism of osteosarcoma-related genes are needed to provide a basis for the
development of novel therapeutic plans.

Noncoding RNAs (ncRNAs) play important roles in the regulation of gene expression at multiple levels and
are thus involved in the occurrence and progression of malignant tumours®. Among them, the proposal of the
ceRNA theory in 2011 illustrated the precise regulation of oncogenes and tumour suppressor genes by various
ncRNAs from the entire transcriptome at the posttranscriptional level. In this system, miRNAs bind to mRNAs
through compensatory sequences, called miRNA response elements (MREs), to prohibit them from translating
into proteins, which results in the suppression of the target gene. NcRNAs, such as long noncoding RNAs (IncR-
NAs), circRNAs, and pseudogenes, can competitively bind to miRNAs via shared MREs. As a result, the miRNAs
blocked by these ncRNAs were not able to inhibit mRNAs since their MRE binding sites were occupied. In total,
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these ncRNAs could weaken the inhibitory effect of miRNAs on targeted genes and eventually recover target
gene function. These ncRNAs were defined as endogenous competitive RNAs (ceRNAs)*'’. As a result, these
ncRNAs, miRNAs, and mRNAs constitute the ceRNA-miRNA-mRNA network. The ccRNA-miRNA-mRNA
network is a large-scale and complex posttranscriptional regulatory network because many miRNAs share the
same MREs with multitude ncRNAs, as well as with multitude mRNA'. LncRNA, an important kind of ceRNA,
regulates gene expression at multiple levels and is also involved in the regulation of various biological charac-
teristics, such as cellular proliferation, apoptosis, and tumour metastasis''. Recently, they have attracted much
interest, especially in predicting their potential functions by their unique sequence!?. Studies have reported that
IncRNAs exhibit evidently abnormal expression in various kinds of tumours, leading to an abnormal ratio of
miRNAs/IncRNAs affecting the protein coding process of mRNAs. If these mRNAs are involved in tumorigen-
esis, tumours may occur'?!?. Therefore, it is extremely crucial to unveil the aberrant IncRNA-miRNA-mRNA
network in osteosarcoma.

Previous studies have confirmed that multiple IncRNAs as ceRNAs can regulate the biological characteristics
of osteosarcoma cells. For example, LINC00588 can inhibit the migration, invasion, endothelial cell function,
and epithelial-mesenchymal transition (EMT) of osteosarcoma cells through the LINC00588/miR-1072/TP53
axis'. GAS5 also inhibits the proliferation and migration of osteosarcoma cells via the GAS5/miR-663a/MYL9
axis'. In contrast, LINC00839 promotes the proliferation, migration, and invasion of osteosarcoma cells via the
LINC00839/miR-454-3p/c-met axis'®. LINC01128 can also promote the proliferation, migration, and invasion
of osteosarcoma cells via the LINC01128/miR-299-3p/MMP2 axis'”. UCA1 mediates EMT and activates the
PI3K/Akt/mTOR pathway via the UCA1/miR-582/CREB1 axis to promote osteosarcoma metastasis'®. In addi-
tion, MEG3 participates in the development of drug resistance in osteosarcoma through the MEG3/hsa-miR-
200b-3p/AKT?2 axis". Moreover, several dysregulated IncRNAs could affect multiple key signalling pathways in
osteosarcoma cells that are closely related to osteosarcoma recurrence®. These reports suggest that aberrantly
expressed IncRNAs play important roles in the development of osteosarcomas through a ceRNA mechanism.

However, from these results, it is difficult to systematically explain the dysregulation of the IncRNA-miRNA-
mRNA network in osteosarcoma because most of the studies integrated IncRNA, miRNA, and mRNA expres-
sion profiles from different tumour specimens or only performed RNA sequencing on osteosarcoma cell lines.
In addition, the majority of ceRNA studies on osteosarcoma are limited to individual ceRNA axes. A ceRNA
network is large-scale and complex; therefore, the inhibitory effects on osteosarcoma cell lines are difficult to
realize from a single ceRNA axis. In-depth RNA sequencing conducted by Lin Xie et al. by building a IncRNA-
miRNA-mRNA network using primary lesions, lung metastases, and normal tissue samples from a patient with
osteosarcoma revealed the genes and pathways responsible for the occurrence and metastasis of osteosarcoma?'.
However, the samples they obtained from different individuals resulted in some degree of individual variation.
Thus, the systemic regulatory effects of the IncRNA-miRNA-mRNA network on osteosarcoma-related genes
need further exploration.

Thus, we performed whole transcriptome sequencing on the tumour tissues and matched paratumour tissues
of three patients with osteosarcoma and then extracted differentially expressed IncRNAs, miRNAs, and mRNAs
to construct IncRNA-miRNA-mRNA networks to reveal the regulation of abnormally regulated IncRNAs on
osteosarcoma-related genes. GO and KEGG analyses of the mRNAs in the network were also performed to reveal
the aberrantly expressed IncRNAs that regulate the functions of osteosarcoma-related genes. Kaplan-Meier
survival analysis of mRNAs in the network was also performed using the survival data of 85 patients with con-
firmed osteosarcoma from the TARGET database. The key osteosarcoma-related genes that could potentially be
regulated by aberrantly expressed IncRNAs and have a potential impact on survival were screened and then used
to construct a ceRNA subnetwork to investigate the regulatory mechanism of abnormal IncRNAs as ceRNAs.
The flowchart of the whole procedure is shown in supplementary Fig. 1.

Methods

Sample preparation. This study was conducted in accordance with the 1964 revised Helsinki Declara-
tion and was approved by the Ethics Committee of The First Affiliated Hospital of Guangxi Medical Univer-
sity (approval no. 2019KY-E-097). Written informed consent was obtained from the patients prior to tissue
acquisition. Tumour and matched paratumour tissue samples were obtained from three patients with confirmed
osteosarcoma who underwent surgery at the First Affiliated Hospital of Guangxi Medical University (Nanning,
P. R China). RNAfollow® Tissue Stabilization Solution (NCM Biotech, China) was immediately added to the
acquired tissue at a temperature of 4 °C overnight before being transferred for storage at—80 °C.

For RNA extraction, 30 mg tissue was added to liquid nitrogen and then ground using OMEGA E.Z.N. A
Total RNA Kit I (OMEGA BIO-TEK, USA). After RNA extraction, nondenaturing agarose gel electrophoresis
and spectrophotometry (NanoDrop™ One/One®, Thermo Fisher Scientific, Inc., USA) were used to measure the
total amount of RNA, and RNA integrity was assessed using an Agilent 2100 bioanalyser (Agilent Technologies,
Inc., Germany). Follow-up tests were carried out when the sample quality met the requirements of the sequenc-
ing quality for database construction.

LncRNA and mRNA library construction, sequencing, and raw data processing. Ribosomal
RNA was removed from the total RNA, and the remaining RNA was broken into short fragments at random.
First-strand cDNA was synthesized using random hexamers with six base pairs and RNA fragments as tem-
plates. Second-strand cDNA was synthesized by adding buffer solution, ANTPs, RNase H, and DNA polymerase
I. Then, the second-strand cDNA was purified with a QIAquick polymerase chain reaction (PCR) purification kit
(QIAGEN, Germany), eluted with EB buffer solution, and repaired with terminal, base A, and sequencing joints.
The second cDNA chain was then degraded using uracil-N-glycosylase (R&D Systems, USA). Then, fragment
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size was selected by agarose gel electrophoresis, and PCR amplification and cDNA library construction were fin-
ished. Finally, the library was sequenced on an Illumina X Ten/Nova™ (Illumina, Inc., USA) platform according
to the manufacturer’s instructions to obtain the raw data.

The raw data were filtered to obtain clean data with ActivePerl (Version 5.24.1, Perl Foundation) scripts. The
transcriptome data-matching software TopHat2 was then used to compare the filtered ribosome reads to the
reference genome to obtain an alignment file of BAM format. The Cufflinks reference annotation-based tran-
scripts were then used to assemble the transcripts. We measured the number of exons, length, annotation and
expression from the assembled transcripts to obtain candidate IncRNAs and their characteristics. The identified
sequences of IncRNAs, mRNAs, and transcripts of unknown coding potential were then quantified, and output
the counts data matrix in ENST ID.

Small RNA library construction, sequencing, and raw data proceeding. A 3 pg sample from the
Small RNA Sample Pre-Kit (Illumina, Inc., USA) was employed to construct a library in accordance with the
manufacturer’s instructions. Connectors were then added to the 5’ and 3’ ends of small RNAs to synthesize
cDNA via reverse transcription. Afterwards, PCR amplification, separation of the target DNA fragments using
polyacrylamide gel electrophoresis, and the construction of a small RNA cDNA library via gel cutting and recov-
ery were performed.

Qubit2.0 was employed for preliminary quantification, and the library was diluted to 1 ng/ul. The INSERT
size of the library was then spotted using an Agilent 2100. Once the INSERT size met the expectations, gPCR
analysis was employed to quantify the effective concentrations of the library accurately to meet the requirements
of the library machine. After the library qualified our inspections, clustering of the index-coded samples was
processed using the TruSeq SR Cluster Kit v3-cBot-HS (Illumina, Inc., USA) of the cBot Cluster Generation
System (Illumina, Inc., USA) in accordance with the instructions of the manufacturer. After the clusters were
generated, the library preparations were sequenced using the Illumina HiSeq 2500™ platform (Illumina, Inc.,
USA), and two 50 bp single-end reads were generated.

Raw fastq format data were then performed using made-to-order ActivePerl and Python (Version 3.8, Python
Software Foundation) scripts for clean reads. Small RNA tags were then mapped to reference sequences as
described by Bowtie?2. The mapped small RNA tags were employed for searching and identifying known miRNAs
with the reference from miRBase20.0. The modified software miRDeep2 was used to quantify the known miRNA
counts®. miREvo?* and miRDeep2 were then integrated to predict potential novel miRNAs.

Differential expression analysis. Use perl script to convert ENST ID to gene name based on Ensembl
database (version GRCh38.89, updated 2020-03), and then separate IncRNA and mRNA data. Combine data
with the same gene name. The EdgeR package of the R programming language was then used for normaliza-
tion and differential expression analysis according to the edgeR user guide. Genes with a fold change >2 and an
adjusted false discovery rate (FDR) using the Benjamini-Hochberg method of p <0.05 were defined as differen-
tially expressed genes (DEGs). All types of transcripts (IncRNAs, miRNAs, mRNAs) were used for the overall
differential analysis, and the differentially expressed transcripts were plotted in a volcano plot with log2(fold
change) as the abscisic coordinate and —1ogl0(FDR) as the ordinate. The expression heatmaps of all differen-
tial transcripts were drawn using the gplots package. The abscissa is the sample name; the ordinate is the gene
symbol; the expression is expressed by logl0 (normalizedData+0.001), and the colour key and histogram are
attached.

Construction of the ceRNA regulatory network and functional analysis. LncRNA-miRNA regu-
latory pairs were selected after the screening of DEIncRNAs from the associations in ENCORI (http://starbase.
sysu.edu.cn/). Additionally, miRNA-mRNA regulatory relationships were investigated based on the regulatory
relation in TargetScan (Release 7.2, http://www.targetscan.org/vert_72/), miRTarBase (http://mirtarbase.cuhk.
edu.cn/), and miRDB (http://mirdb.org/). Then, Cytoscape (version 3.8.2, Cytoscape Consortium) was used to
integrate the IncRNA-miRNA regulatory pairs and miRNA-mRNA regulatory pairs and finally construct the
IncRNA-miRNA-mRNA network. The genes in the constructed ceRNA regulatory network were then used for
further GO and KEGG analyses using clusterprofile in R.

Survival analysis. The expression profile data of mRNAs in osteosarcoma tissues were compared with the
clinical data from the downloaded GDC TARGET-OS database (https://gdc.xenahubs.net) to screen the key
mRNAs regulated by the ceRNA network. Kaplan-Meier curves in R software were used for overall survival
analysis. Statistical analysis was processed using the log-rank test. The threshold for survival prognosis signifi-
cance was confirmed if p <0.05. The final subnetworks were constructed based on these mRNAs.

Results

Clinical data. The clinical information of three patients with osteosarcoma is listed in Table 1. All of them
were diagnosed by pathological analysis. The patients were 7-16 years old. Tumour and paratumour tissues were
obtained for RNA-seq when conducting the biopsy. X-rays of the primary tumour and chest and pathological
images are shown in Fig. 1.

Screening of differentially expressed mRNAs, miRNAs, and IncRNAs.  We sequenced the whole
transcriptomes of three osteosarcoma and three paratumour tissues by RNA-seq and identified 79,768 mRNAs,
3834 IncRNAs, and 1960 miRNAs. Subsequently, 414 DEIncRNAs, 184 DEmiRNAs, and 3275 DEmRNAs were
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P1 P2 P3
Gender Female | Female | Female
Age (years old) 7 12 16
Enneking stage | IIb IIb 1Ib
Metastasis No No No

Table 1. Patient baseline data.
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Figure 1. X Ray and the pathological result. X Ray of tibia (A) and chest (D) and the pathology (G) of P1. X
Ray of proximate tibia (B) and chest (E) and the pathology (H) of P2. X Ray of knee (C) and chest (F) and the
pathology (I) of P3.

screened under fold change>2 and p <0.05. Among them, 220 IncRNAs, 104 miRNAs, and 1849 mRNAs were
upregulated, while 194 IncRNAs, 80 miRNAs, and 1426 mRNAs were downregulated (Figs. 2 and 3). Supple-
mentary Tables S1, S2, and S3 list the 20 IncRNAs, miRNAs, and mRNAs with the largest expression differences,
respectively (up- and down-regulation).

LncRNA-miRNA-mRNA ceRNA network. Sixty-three target DEmiRNAs of DEIncRNAs were pre-
dicted by ENCORI. Next, 1703 target mRNAs of these 63 DEmiRNAs were predicted in TargetScan, miRDB, and
miRTarBase. A total of 275 target DEmRNAs were obtained for network construction by using the intersection
of the predicted target mRNAs with DEmRNAs. We divided the network into high-low-high and low-high-low
networks according to the direction of differential expression to obtain the network with biological significance.
There were 114 nodes, 169 edges and 15 hubs (interactions>5) in the high-low-high network, including 40
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Figure 2. Volcano Plot of DEmRNAs, DEIncRNAs and DEmiRNAs. (A) DEmRNAs. (B) DEIncRNAs. (C)
DEmiRNAs. Upregulated genes are marked in light red; downregulated genes are marked in light green.
(DEmRNASs, DEIncRNAs and DEmiRNAs were selected with thresholds of fold change >2 and p <0.05).
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Figure 3. Heatmaps of DEmRNAs, DEIncRNAs and DEmiRNAs. (A) DEmRNAs. (B) DEIncRNAs. (C)
DEmiRNAs. Upregulated genes are marked in light red; downregulated genes are marked in light green.
(DEmRNAs, DEIncRNAs and DEmiRNAs were selected with thresholds of fold change>2 and p <0.05).

IncRNAs, 20 miRNAs, and 54 mRNAs (Fig. 4A), and 163 nodes and 310 edges and 24 hubs (interactions > 5) in
the low-high-low network, including 40 IncRNAs, 37 miRNAs, and 86 mRNAs (Fig. 4B).

Function of the mRNAs regulated by the ceRNA network. We performed Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of the mRNAs in the network to elucidate
the role of IncRNA-miRNA-mRNA in the development of osteosarcoma. The 54 genes in the high-low-high

» «

network were involved in ten biological processes (BPs), namely, “bone development”, “regulation of develop-

» < » <«

mental growth’, “regulation of epithelial cell proliferation”, “amino acid transport’, “acidic amino acid transport’,

“dicarboxylic acid transport”, “regulation of attachment of spindle microtubules to kinetochore”, “chondrocyte
development”, “attachment of spindle microtubules to kinetochore”, and “maternal placenta development”. Six
cellular components (CCs) included “secretory granule lumen’, “cytoplasmic vesicle lumen’, “vesicle lumen
endoplasmic reticulum lumen’, “platelet alpha granule”, and “platelet alpha granule lumen”. Ten molecular func-
tions (MFs) were “growth factor activity”, “cadherin binding involved in cell-cell adhesion’, “cell-cell adhesion
mediator activity”, “L-amino acid transmembrane transporter activity”, “cell adhesion mediator activity”, “col-
lagen binding”, “amino acid transmembrane transporter activity”, “L-glutamate transmembrane transporter
activity”, “acidic amino acid transmembrane transporter activity”, and “modified amino acid transmembrane
transporter activity” (p<0.05, Fig. 5A,B). KEGG analysis revealed that these genes were associated with two
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Figure 4. The IncRNA-miRNA-mRNA competing endogenous RNA network. (A) ceRNA network with high-
low-high trend. (B) ceRNA network with low-high-low trend. Rhombus indicates IncRNAs, rectangle indicates
miRNAs, and oval indicates mRNAs. Orange-red indicates high expression, and blue indicates low expression.
The darker the color, the higher or lower expression.

pathways, namely, the “P13K-Akt signalling pathway” and “Ras signalling pathway” (p <0.05, Fig. 6A). In addi-
tion, the 86 genes in the low-high-low network were involved in six BPs, namely, “cell cycle arrest”, “pros-
taglandin secretion”, “N-terminal protein amino acid acetylation’, “prostaglandin transport”, “lung epithelial
cell differentiation”, and “lung cell differentiation”. Six CCs included “sarcomere”, “myofibril”, “contractile fibre”,

“protein acetyltransferase complex”, “acetyltransferase complex”, “microtubule plus-end”, “microtubule end”, and

“N-terminal protein acetyltransferase complex”. Three MFs were “microtubule plus-end binding”, “transcription
coactivator binding”, and “protein serine/threonine kinase inhibitor activity” (p<0.05, Fig. 5C,D). However,

these genes were not substantially enriched in any KEGG pathway (p >0.05, Fig. 6B).

Survival analysis and subnetwork of survival-associated mRNAs. We performed Kaplan-Meier
survival analysis on the mRNAs in the network using the data of 85 patients with osteosarcoma from the TAR-
GET database to obtain the key genes and the corresponding IncRNA-miRNA-mRNA subnetworks. We found
that the high expression of GALNT3, FAM91A1, STC2, and SLC7A1 (Fig. 7A) and the low expression of IGF2,
BLCARB ZBTB47, THRB, PKIA, and MITF (Fig. 7B) may result in the poor prognosis of patients. For further
study, we constructed a subnetwork using the survival-associated mRNAs (Fig. 8A and B).

Discussion
Osteosarcoma is a highly malignant tumour of the bone. However, the prognosis of patients with advanced
osteosarcoma has not shown recent improvements. Therefore, searching for the regulatory mechanisms of osteo-
sarcoma cells to unveil and provide a theoretical basis for the development of novel therapeutic strategies that
could improve the prognosis of patients is important*?*. MiRNAs are known to silence gene expression, while
IncRNAs, which can be used as miRNA sponges, can reverse the inhibitory effects of miRNAs on mRNAs and
have a great influence on tumour progression and biological features?®?”. However, most of the previous studies
of IncRNA-miRNA-mRNA regulatory mechanisms in osteosarcoma were based on IncRNAs, which play a key
role in other malignant tumours. These studies further confirmed the abnormal expression of IncRNAs in osteo-
sarcoma tissues and verified their effect on the level of osteosarcoma cells and animal models?. To systemati-
cally uncover the IncRNA-miRNA-mRNA regulatory mechanism, we conducted high-throughput sequencing of
IncRNAs, mRNAs, and miRNAs in three pairs of osteosarcoma and matched paratumour tissues and constructed
ceRNA networks to identify the key genes regulated by IncRNAs and systematically elaborate the regulation
of osteosarcoma-related genes by the IncRNA-miRNA-mRNA network. A total of 414 differential IncRNAs,
184 differential miRNAs, and 3275 differential mRNAs were screened. According to the biological features of
ceRNAs, we constructed two ceRNA networks for the differentially expressed RNAs with different abnormal
expression trends. The high-low-high trend network included 37 IncRNAs, 20 miRNAs, and 54 mRNAs, and
the low-high-low trend network included 40 IncRNAs, 20 miRNAs, and 54 mRNAs.

LncRNAs exert regulatory effects by affecting mRNAs encoding proteins; hence, survival-related mRNAs
are crucial in the ceRNA network. We performed GO and KEGG analyses using the mRNAs in the network to
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Figure 5. GO enrichment analysis of DEmRNAs in the ceRNA network. The GO enrichment bubble plot (A)
and GO chord plot (B) of DEmRNAs in the high-low-high trending ceRNA network. The GO enrichment
bubble plot (C) and GO chord plot (D) of DEmRNASs in the low-high-low trending ceRNA network (BP:
biological processes. CC: cellular components. MF: molecular functions. A P <0.05 was considered to indicate a
statistically significant difference).
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Figure 6. KEGG enrichment analysis of DEmRNAs in the ceRNA network. (A) The KEGG enrichment bubble
plot of DEmRNAs in the high-low-high trending ceRNA network. (B) The KEGG enrichment bubble plot of
DEmRNAs in the low-high-low trending ceRNA network (A P <0.05 was considered to indicate a statistically
significant difference).
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Figure 7. Kaplan-Meier survival analysis of the DEmRNASs in the ceRNA network. The TARGET database was
used to analyse the survival prognosis of 85 mRNAs in osteosarcoma patients. (A) Increased expression levels

of GALNT3, FAM91A1, STC2 and SLC7A1 were associated with poor prognosis. (B) Lower expression levels of
IGF2, BLCAP, ZBTB47, THRB, PKIA and MITF were associated with poor prognosis (A P <0.05 was considered
to indicate a statistically significant difference).

clarify the functions played by IncRNAs in the ceRNA network. GO analysis indicated that the upregulated genes
in the network were involved in the regulation of bone development, growth, and epithelial cell proliferation.
The pathological features of abnormal osteogenic differentiation in osteosarcomas support the results. Genes
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Figure 8. Construction of the IncRNA-miRNA-mRNA subnetwork based on mRNAs with survival prognostic
potential. (A) ceRNA network with high-low-high trend. (B) ceRNA network with low-high-low trend.
Rhombus indicates IncRNAs, rectangle indicates miRNAs, and oval indicates mRNAs. Orange-red indicates
high expression, and blue indicates low expression. The darker the color, the higher or lower expression.

involved in epithelial cell proliferation, such as BCL11B, NRAS, THBS1, and VEGFC, promote angiogenesis and
tumorigenesis, reflecting the heterogeneity of osteosarcoma-related genes. In comparison, the downregulated
genes in the network were involved in cell cycle arrest and N-terminal amino acid acetylation. The inhibition of
genes involved in cell cycle arrest corresponds to the abnormally increased proliferation of osteosarcoma cells.
In addition, N-terminal acetylation has a catalytic role in cancers®. However, no studies have reported on its
mechanism. The results of our KEGG analysis revealed that the main upregulated genes in the network were
involved in the PI3K-Akt and RAS signalling pathways, both of which are involved in the growth and metas-
tasis of osteosarcoma®~*. Thus, our results suggest that the IncRNAs in the network play an important role in
regulating the occurrence and progression of osteosarcomas.

We performed a survival analysis using the mRNA expression profiles and survival data of 85 confirmed
cases of osteosarcoma from the TARGET database to screen the key genes regulated by IncRNAs. We found that
patients with high expression of GALNT3, FAM91A1, STC2, and SLC7A1 had poor prognosis, whereas patients
with low expression of IGF2, BLCAP, ZBTB47, THRB, PKIA, and MITF had poor prognosis. Subnetworks were
therefore constructed based on these key genes to demonstrate the regulatory mechanism of the aberrantly
expressed IncRNAs.

Twenty-one IncRNAs (CDKN2B-AS1, AC011468.1, AC022150.4, MIR181A1HG, AC16717.2, AC011503.2,
AC021092.1, HAGLR, FAM225A, FAM225B, LINC01139, ZNF571-AS1, LINC00261, FAM198B-AS1,
AC092828.1, CYTOR, AC026356.1, CO50RF71, LINC00205, TSPEAR-AS2, LINC02568) and 5 miRNAs (hsa-
miR-122-5p, hsa-miR-320b-3p, hsa-miR-206, hsa-miR-1-3p, and hsa-miR-30d-5p) comprised the high-low-high
subnetwork. The mRNAs regulated by the ceRNA network included SLC7A1, GALNT3, FAM91A1, and STC2.
SLC7A1 mediates the uptake of arginine by cancer cells and improves the survival of cancer cells by inhibiting
apoptosis®***. GALNT3 can glycosylate MUCI, which further activates the PI3K/Akt pathway and promotes
tumour proliferation and invasion®. STC2, a member of the glycoprotein hormone-secreting family, promotes the
differentiation and mineralization of osteoblasts®**; inhibits apoptosis; promotes resistance to oxidative damage;
promotes the proliferation, survival, and migration of tumour cells; and thus promotes tumour progression’®.
Whether FAM91A1 is related to tumours has not yet been reported. However, we found that FAM9I1A1 is a risk
factor for osteosarcoma; thus, its functions need to be further studied. Above all, the aberrantly upregulated
IncRNAs regulate the genes involved in key biological characteristics, such as apoptosis inhibition, survival,
migration, invasion, and proliferation of tumour cells.

The low-high-low subnetwork consisted of 13 IncRNAs (SNHG14, LINC02035, IL6R-AS1, PRKCQ-
AS1, H19, LINC01091, MBNL1-AS1, AP000547.3, AL354920.1, AC016831.1, LINC-PINT, AC005034.3, and
AP001486.2) and 12 miRNAs (hsa-miR-9-3p, has-miR-18a-5p, has-miR-372-3p, has-miR-373-3p, has-miR-
301b-3p, has-miR-520d-3p, has-miR-520f-3p, has-miR-520f-3p, has-miR-520f-3p, has-miR-155-5p, has-miR-
454-3p, and has-miR-425-5p). The mRNAs regulated by these IncRNAs via the ceRNA network include MITE
THRB, BLCAB, ZBTB47, PKIA, and IGF2. Among them, MITF is an inhibitor of hypoxia-inducible factor, which
can promote angiogenesis. Therefore, the loss of MITF function may result in the angiogenesis of malignant
tumours®. THRB is a nuclear hormone receptor for triiodothyronine and thus, could promote the biological
activities of thyroid hormone (T3), such as the differentiation, growth, development, and maintenance of meta-
bolic homeostasis. THRB reduces the abundance of VEGF in tumour cells; thus, its abnormal downregulation
may lead to enhanced tumour angiogenesis®. At the posttranscriptional level, the upregulation of hsa-miR-425
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inhibits the translation of THRB mRNA*", which is consistent with our results. BLCAP inhibits the cell cycle,
induces apoptosis as an apoptotic inducer, and acts as a tumour suppressor gene*>*, ZBTB47 encodes a tran-
scription factor with a zinc finger domain, which plays a role in inhibiting transcription®. Its homologous tran-
scription factor is the tumour suppressor gene of breast cancer; thus, ZBTB47 may be a tumour suppressor*.
IGF2*-5! and PKIA®? are highly expressed in tumour cells and promote tumour progression. However, our results
suggest that these two genes are downregulated in osteosarcoma tissues and can be inhibited by the upregula-
tion of hsa-miR-9-3p and hsa-miR-155-5p. These results suggest that IGF2 and PKIA may not be involved in
the progression of osteosarcoma. Moreover, aberrantly downregulated IncRNAs regulate key genes involved in
angiogenesis, apoptosis inhibition, and transcription.

In this study, RNA sequencing of osteosarcoma tissues and matched paratumour tissues was performed to
systematically explore aberrantly expressed IncRNAs in osteosarcoma tissues and their role in regulating key
genes via the ceRNA network. Some bias exists because of the small sample size. In addition, further clinical
trials may be needed to verify the results.

Conclusion
Aberrantly expressed IncRNAs in osteosarcoma tissues regulate genes involved in cellular proliferation, differ-
entiation, angiogenesis, and the cell cycle via the ceRNA network.
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