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Preclinical validation of therapeutic 
targets predicted by tensor 
factorization on heterogeneous 
graphs
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Incorrect drug target identification is a major obstacle in drug discovery. Only 15% of drugs advance 
from Phase II to approval, with ineffective targets accounting for over 50% of these failures1–3. 
Advances in data fusion and computational modeling have independently progressed towards 
addressing this issue. Here, we capitalize on both these approaches with Rosalind, a comprehensive 
gene prioritization method that combines heterogeneous knowledge graph construction with 
relational inference via tensor factorization to accurately predict disease-gene links. Rosalind 
demonstrates an increase in performance of 18%-50% over five comparable state-of-the-art 
algorithms. On historical data, Rosalind prospectively identifies 1 in 4 therapeutic relationships 
eventually proven true. Beyond efficacy, Rosalind is able to accurately predict clinical trial successes 
(75% recall at rank 200) and distinguish likely failures (74% recall at rank 200). Lastly, Rosalind 
predictions were experimentally tested in a patient-derived in-vitro assay for Rheumatoid arthritis 
(RA), which yielded 5 promising genes, one of which is unexplored in RA.

The majority of Phase II and Phase III clinical trials fail due to lack of efficacy4. From 2013 to 2015, efficacy 
failures accounted for the termination of 48% of Phase II and 55% of Phase III clinical trials, with stoppages 
attributed largely to incorrect drug target identification2. Over the past 200 years, only about 1,500 drugs cleared 
clinical trial and reached approval, leaving the majority of nearly 9,000 diseases without the possibility of treat-
ment options5. These failure rates incur a huge financial and societal cost, and highlight a need for improved 
approaches to selecting more effective drug targets at the early development stage, a process known as gene prior-
itization6. Gene prioritization algorithms aim to extract signals of disease relevance from varied data sources, so 
that fewer, higher quality targets can be tested7–9. By using large-scale data fusion and inference, these methods 
harness the power of an exponentially growing body of scientific literature, in addition to integrating a wide 
range of experimental data sets10,11.

Most current methods for gene prioritization are based on “guilt-by-association,” or the principle that similar-
ity to known drug targets of a disease can help identify valuable new gene-disease relationships. While guilt-by-
association can produce reliable predictions8, similarity-based algorithms typically struggle to make predictions 
for diseases with few known associated genes10, and have difficulty combining and resolving conflicting evidence. 
As more advanced computational methods with the ability to model complex networks develop, the value of inte-
grating heterogeneous data sources increases. The most promising computational approach to gene prioritization 
has been matrix factorization, in which entities (e.g. diseases, genes) and their association types (e.g. therapeutic 
relationships) are represented as an incomplete matrix, with the goal of filling in missing links, a process known 
as relational inference10, 12, 13. Tensor factorization, an enhancement of matrix factorization, provides two main 
advantages. First, the explicit representation of multiple entity relations, afforded by the 3-dimensional nature of 
tensor factorization, enables easy aggregation across heterogeneous data sets. For example, each data source can 
be modelled as a different relationship type between entities, allowing for the integration of confirmatory and 
conflicting evidence and thereby decreasing the false positive rate. Second, tensor factorization extends matrix 
factorization by allowing latent representations of these entity relations, resulting in greater generalizability, 
particularly for diseases with little data.

In this paper, we introduce a novel method for gene prioritization, Rosalind, that combines relational infer-
ence via tensor factorization with graph-based data integration to predict disease genes. Rosalind’s knowledge 
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graph extracts data from heterogeneous sources, including literature evidence, differential expression, and clinical 
trial data, and consists of entities connected through relationships (such as ’therapeutic relationship’ or ’biologi-
cal association’). In Rosalind, a tensor factorization model is trained on this heterogeneous knowledge graph to 
produce a ranked list of genes for every disease. Rosalind uses a state-of-the-art scoring function (ComplEx14) 
that enables the modelling of asymmetric relationships between entities. To the best of our knowledge, this is 
the first application of graph inference via tensor factorization with ComplEx for gene prioritization. Rosalind 
out-performs five comparable approaches in identifying those drug targets most likely to be therapeutically 
linked to a disease. Rosalind is able to make prospective predictions using time-sliced data15 as well as predict 
those genes that have a high probability of efficacy in a clinical trial16.

As an experimental validation, a ranked set of drug targets produced by Rosalind for Rheumatoid Arthritis 
(RA) was tested in a patient-derived assay. In RA, Fibroblast-like synoviocytes (FLSs) that proliferate in the 
joints of patients produce cytokines that recruit pro-inflammatory cells. Approximately 40% of patients do not 
respond to the current best treatment, anti-TNF drugs17; for those patients who do respond, FLSs can re-initiate 
disease upon cessation of anti-TNF treatment. Therefore, drugs inactivating FLSs could produce longer, more 
sustained responses than anti-TNF alone. 55 of the top Rosalind-scored targets for RA were tested for their abil-
ity to inactivate FLSs. Several promising targets were identified, including one drug target currently unexplored 
in the context of RA, MYLK, and four drug targets with few prior links to RA. Additionally, genes tested in the 
assay showed an efficacy comparable to that of an assay run by Jones et al. using similar conditions18 but test-
ing well-established genes for FLS inactivation in RA. Taken together, these findings demonstrate the ability of 
Rosalind to predict therapeutic targets that show efficacy in a patient-derived in vitro screen.

Results
Performance of Rosalind.  Rosalind was trained on a biomedical knowledge graph consisting of 5 entities 
(Disease, GeneProtein, Compound, Mechanism and Pathway) connected by biologically meaningful relations 
indicating biological associations, literature evidence, and therapeutic relationships. In order to condition the 
model to learn to predict those drug targets most likely to be therapeutically linked to a disease, Rosalind used a 
subgraph consisting of Disease-GeneProtein links with relation ‘Therapeutic Relationship’ as a benchmark. The 
model was trained on the full knowledge graph, and was evaluated (via a validation and test set) on this Thera-
peutic Relationship benchmark. Disease-Disease and Compound-Compound relationships were not included, 
as the former were not available across enough of our diseases of interest, while the latter were not available for 
measures of functional similarity at sufficient resolution.

The state-of-the-art comparison was done in two stages. For the first stage, the performance of the scoring 
function used by Rosalind, ComplEx, was compared with three comparable scoring functions used in matrix 
factorization methods: DistMult, canonical polyadic factorization (CP), and holographic embeddings (HolE). 
These functions, or decoders, combine latent embedding representations of entities and relations into a score 
that relates to the probability of that edge existing. The output of the decoder is then used to determine the rank 
assigned to a gene for a particular disease.

In the second stage, Rosalind as a whole (data and model) was compared to similar gene prioritization meth-
ods. For this comparison, the benchmark dataset was refined using the procedure outlined in Zakeri et al. 201810 
by first limiting our diseases to the 314 used by Zakeri et al., 2018, and then further constraining to only diseases 
with a GeneProtein-Disease node degree in our Biomedical Literature Database of 30 or greater, resulting in 
198 final diseases and a total of 4,613 GeneProtein-Disease Therapeutic Relationship edges. In order to evaluate 
Rosalind’s performance against comparable algorithms, we compared performance on this 198-disease test set.

In the first comparison to the state of the art, the performance of Rosalind’s ComplEx decoder was measured 
against three alternative decoders: CP, DistMult, and HolE (see Methods for description). The choice of the 
ComplEx decoder contributed slightly to performance (ComplEx recall@200 was 65.30% compared to CP at 64%, 
DistMult at 59.63% and HolE at 57.46%), with the largest difference in performance occurring approximately 
between rank 100 and 200 (Fig.  1A). Including or excluding dropout had the greatest impact on performance 
(65.62% recall@200 with dropout versus 49.08% recall@200 without; Fig. 1B). Performance was measured across 
the full test set.

In the second stage of this analysis, Rosalind performance (that of the combination of dataset and model) 
was compared with alternative published gene prioritization algorithms. A detailed description of the methods 
of comparison can be found in the Supplementary Information. Overall, Rosalind outperformed other state-of-
the-art methods (Fig. 1C), with a recall@200 of 61.5%, followed by OpenTargets (42.96% recall@200), SCUBA 
(21.66% recall@200), MACAU (21.87% recall@200), CATAPULT (14.56% recall@200) and PGCN (10.55% 
recall@200). Evaluation using a different metric, mean average precision at rank 500 (mAP@500) also suggests 
Rosalind outperforms these five existing methods (Supplementary Table 5). Due to disease name grounding 
and data alignment issues, recall across algorithms was scaled with a multiplier, shown in the legend of Fig. 1C. 
This could result in an advantage for the externally-derived models. The same performance order is observed 
when comparing performance on the 40 diseases we were able to ground in all models (Supplementary Figure 2, 
Supplementary Table 6), as well as RA alone (Fig. 1D). A full description of all algorithms and multipliers can 
be found in the Methods section.

Time‑sliced performance.  To test Rosalind’s ability to make future predictions, each edge in the knowl-
edge graph was assigned a year using the earliest publication year of relevant papers in our Biomedical Literature 
Database. Using this year tag, the knowledge graph was "time-sliced," meaning that Rosalind was trained on data 
up to and including a particular year threshold and evaluated on a test set containing edges after that year. In 
order to compare performance of Rosalind using different year thresholds, a "time-bound" test set was created 
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for each model, constructed using benchmark edges that fell within a 5-year window after the year threshold 
and used in Fig. 2 plots C and D. For performance of the full model (Fig. 2E), the full test set containing years 
from 2005 to 2019 was used.

To test time-sliced performance over different thresholds, six versions of the Rosalind training data were 
generated using year thresholds in 5 year increments between 1990 and 2015, inclusive. Rosalind performance on 
these time-bound test sets peaked at 3.54% mAP using a year threshold of 2010 (Fig. 2C), and recall@200 peaks 
at 14.7% in 2005 (Fig. 2D). Rosalind achieves 23.9% recall@200 using a year threshold of 2005 on a temporally 
unbounded test set (i.e. all benchmark edges with years greater than 2005), implying that Rosalind successfully 
identifies approximately 1 out of every 4 correct therapeutic edges in the top 200 predictions (Fig. 2E). Rosalind 
demonstrated an expected decay in predictive power on test set edges for each subsequent year beyond the year 
threshold (Fig. 2E). Recall@200 on a sliding, 5-year window starting from 2005 and progressing forward in 2-year 
increments drops 50% after the first five years post-year threshold, showing that Rosalind is more successful at 
predicting imminent discoveries than those in the distant future, as expected from a model trained on the cur-
rent scientific literature (Fig. 2F).

BA

DC

Figure 1.   Comparison with link prediction methods. (A) Performance comparison of decoders. The curves 
plot the mean recall on a held-out test set of gene proteins across the benchmark diseases for four widely-used 
tensor factorization algorithms. Shaded areas indicate +/- 1 standard deviation across 3 random seeds. As rank 
is increased, recall of the correct predictions monotonically increases, resulting in the characteristic curves 
seen here. (B) Performance both with and without dropout’s regularizing effects on the entity embeddings, 
indicating mean and +/- 1 standard deviation of recall on the held-out test set gene proteins. (C) Performance 
of Rosalind against other state-of-the-art gene prioritization methods for 198 diseases. As not all algorithms 
support predictions for all of the test diseases, a score multiplier shown here in parentheses is applied based on 
the number of correctly-grounded diseases to account for the missing recall values of unsupported diseases (e.g. 
if only half of all diseases could be mapped, a 2x multiplier was applied to recall). (D) Performance of Rosalind 
against other gene prioritization algorithms for the specific disease of Rheumatoid Arthritis. The discretized 
nature of the plot is due to recalling individual gene proteins at particular positions; unlike previous plots, this is 
not averaged across multiple diseases.
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Using RA as a case study, Rosalind’s future predictions (full model with year threshold 2005, 2006-2010 time-
banded test) are inspected (Fig. 2G). Rosalind correctly identifies 8 of the 73 time-banded benchmark targets 
(between 2005 and 2010) within the top 500 predictions (12% recall at 500). Here, we use recall at 500 as opposed 
to 200 to allow us to explore the quality of our forward predictions despite the small number of year-labelled 
edges we have in the test set. These targets, in order of rank, are NFE2L2, PML, DKK1, SIRT1, NAMPT, IRF5, 
LGALS9, and PRDM1. 7 of these 8 targets have no literature evidence of a relationship with RA prior to 2005, 
supporting the quality of the time tagging. Inspecting these targets further: since 2005, DKK1 has been shown to 
modulate bone fragility in RA patients19, PML has been shown to inhibit Fas-mediated apoptosis of FLSs from 
RA patients20, and SIRT1 over-expression promotes pro-inflammatory cytokine production in FLSs21. Finally, 
a genome-wide association (GWAS) study conducted by Rayachaudhuri et al.22 demonstrated a relationship 
between PRDM1 and RA, and Seki et al.23 demonstrated the role of LGALS9 in inducing apoptosis in patient 
RA FLSs. The quality of these targets demonstrates Rosalind’s ability to predict promising future targets using 
only past data.

Clinical trial success and failure.  In order to demonstrate the impact of Rosalind at a later stage of 
the drug discovery process, Rosalind was trained on Clinical Trial Successes and Clinical Trial Failure edges 
extracted from Shih et  al.24 (more detail in Supplementary Information). After training, Rosalind produced 
predictions on three relations: Clinical Trial Success, Clinical Trial Failure, and Therapeutic Relationship (the 
benchmark relation). For Clinical Trial Failure predictions, the test set contained 265 edges, with 155 unique 
diseases, and Rosalind achieved recall@200 of 75% across these 155 diseases, with a a mAP of 9.7%. For Clinical 
Trial Success predictions, the test set contained 542 edges with 338 diseases, and Rosalind achieved a recall@200 
of 75% across these 338 diseases, with a mAP of 22.5%.

When predicting on the relation Clinical Trial Failure, a two-sided MWW test revealed that the Rosalind 
score distribution across true failures (median=0.01) was significantly greater than the score distribution for true 
successes (median=0) (U=89474.5, p <0.001) (Fig. 3A). When predicting on Clinical Trial Success, a two-sided 
MWW test showed that the Rosalind score distribution of true successes (median=0.05) was significantly greater 
than the Rosalind score distribution of true failures (median=0.02) (U=113294.5, p <0.001) (Fig. 3B). No signifi-
cant difference was found between the scores of true successes and true failures when predicting on the relation 
Therapeutic Relationship (U=123170.0, p=0.03) (Fig. 3C). MWW tests were Bonferroni corrected for multiple 
comparisons, resulting in a significance threshold of α=0.017. In order to test whether one disease area was the 
main driver of these statistical differences, diseases were grouped using the Medical Subject Headings (MeSH) 
disease tree and the average score of true success and failure was examined for each group. Figure 3D and 3E 
reveal that no single type of disease dominates the score distribution differences shown in plots A and B of Fig. 3.

As a case study, the top 5 clinical success predictions for RA from Rosalind (filtering out train, validation, 
and test data), TNFAIP3, PDE4A, EDN1, FCGR2A and GMEB1, were examined. Note that train/validation/
test data for the relation Clinical Trial Success only includes edges up to April 2016, due our use of the dataset 
from Shih et al.24. TNFAIP3 was shown in 2019 to be therapeutically linked to arthritis25. Similarly, a PDE4A 
inhibitor, apremilast, was already on the market for psoriatic arthritis in 2014 and is currently being explored 
as a treatment for RA, with initial success in a mouse model26. EDN1 is highly expressed in RA patients and is 
linked to the excess cardiovascular mortality seen in those patients through its ability to modulate hypertension27. 
FCGR2A shows clinical relevance to RA based on its inhibition modulating treatment response to anti-TNfα 
drugs28. Finally, there was no literature evidence of a link between GMEB1 and RA. Overall, 4 of the 5 top pre-
dicted targets have strong mechanistic links to RA.

Experimental validation of target predictions for Rheumatoid Arthritis.  To experimentally vali-
date Rosalind’s predictions, GeneProtein-Disease hypotheses were tested in a patient-derived assay for RA. In 
this assay, stimulated FLSs from one RA patient were tested for secretion levels of six key cytokines implicated in 
the disease, identified by Jones et al.18, after stimulation with TNFα or Poly(I:C) and treatment with compounds 
associated with Rosalind predicted targets. The top 600 Rosalind target predictions for RA were selected and 

Figure 2.   Time-slicing results. (A) Schematic of the split between training and test data. (B) Histogram of 
Therapeutic Relationship Benchmark edges per year in the full training and test sets. Note that each data point 
denotes the first literature mention of each edge. (C) Rosalind mAP on a time-bound benchmark. The year 
thresholds used to separate training data from test data are shown on the x-axis. Time-bound test sets were 
limited to a 5-year window after but not including the year threshold (i.e. training data for Rosalind time-sliced 
at 2010 contains edges up to and including 2010, and test data includes edges from 2011 to 2015 inclusive). 
Rosalind was trained separately on each training dataset, and evaluated on each corresponding test set. 
Recall@200 for these splits is shown in (D). (E) Histogram of year-tagged Therapeutic Relationship Benchmark 
edges with 2005 year threshold indicated. In light blue are the edges that were in the training data, in dark blue 
is the test set. Benchmark targets correctly predicted by the time-sliced model are shown in red. Here, the time-
bound benchmark is not used, rather, all benchmark edges beyond the year threshold are used for evaluation. 
(F) Drop in recall for a sliding window of 5-years, starting at 2005. Each time window is exclusive of the first 
year and inclusive of the last (i.e. a 2005-2010 time window includes all dates from 2006-2010 inclusive). (G) 
Shown in light blue is the therapeutic benchmark relation training data for RA. Shown in dark blue is the 
therapeutic benchmark relation test set for RA. The test set here is time bound to a 5 year time band (i.e. 2006-
2010 inclusive). Genes highlighted here are the correctly identified benchmark targets in the top 500 Rosalind 
predictions for RA.
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filtered using the triage procedure described in the Methods. Briefly, the 600 target cutoff was chosen based on 
observing a depletion of biologically plausible targets beyond this point. This list was reduced to the final set 
using characteristics linked to target progressability, including druggability and safety risk, in order to select 

A B

D E

C
*** ***

Predicting clinical failure Predicting clinical success Predicting therapeutic 
benchmark

Figure 3.   Clinical trial success and failure prediction. (A) Distribution of Rosalind scores for true failure 
versus true success when predicting on the relation Clinical Trial Failure, (B) when predicting on the relation 
Clinical Trial Success, and (C) when predicting on the benchmark relation, Therapeutic Relationship. For 
boxplots, white horizontal lines indicate the median of the distributions. The box extends between the first and 
third quartile (and show the interquartile range). Whiskers extend to the ends of the distribution. Plots do not 
show outliers. Shown below A, B and C are the histograms of the scores for clinical success and failure when 
predicting on the relation shown in the boxplot above. Significance was tested using an MWW test. P-values are 
Bonferroni-corrected for multiple comparisons, resulting in a significance threshold of α=0.017. ***p <0.001. 
(D) Clinical success and failure scores across the MeSH disease tree when predicting on clinical failure. (E) 
Clinical success and failure scores across the MeSH disease tree when predicting on clinical success.
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targets with the highest chance of clinical trial success. A set of 55 compounds associated with the resulting list of 
55 targets was sent to assay and tested at three concentrations, 10µ M, 1 µ M and 0.1µ M. A post-hoc MWW test 
of Rosalind scores for those targets prioritized for assay (median=0.74) relative to the score distribution of the 
original 600 targets (median=0.69) revealed that scores of genes prioritized for testing were significantly higher 
compared to the top 600 Rosalind scores (U=24965, p <0.001) (Fig. 4A), demonstrating that the higher scoring 
Rosalind predictions were selected for assay.

From the assay results for these 55 compounds, 25 showed signs of toxicity at 10µ M and were filtered out, 
leaving 30 remaining (shown in heatmaps in Fig. 4B and C, along with SB202190 and DMSO). Of the remaining 
30 compounds, initial "hits" were identified as those drug targets that produced a >50% inhibition of at least two 
cytokine endpoints by corresponding compounds at any concentration (10µ M, 1 µ M or 0.1µ M) under either 
TNFα or Poly(I:C) stimulation. Final “hits" were identified as drug targets that produced a >50% inhibition under 
both TNFα and Poly(I:C) of at least two cytokine endpoints by any corresponding compound at concentrations 
1 µ M and 0.1µ M. 14 of the 30 targets were identified as initial hits (shown in red in Figs. 4B and C). The fol-
lowing 5 of these 14 initial hits were identified as final “hits": MYLK, BDKRB2, AGTR2, FGFR2 and RPS6KA3. 
Of these five final “hits", MYLK was judged to be significantly unexplored, based on there being no available 

D
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Figure 4.   Efficacy of top-scoring drug targets in inhibiting cytokine induction in patient-derived FLSs. (A) 
Distribution of Rosalind scores for targets of compounds tested in FLSs (dark blue), and of all targets (light 
blue). White horizontal lines indicate the median of the distributions. The box extends between the first and 
third quartile (the interquartile range). Whiskers extend to the ends of the distribution, excluding outliers. 
Significance was tested using a MWW test; ***p <0.001. (B) and (C) Heatmap of the percent inhibition 
by immunotoxic compounds for predicted targets, showing degree of inhibition of 6 cytokines at two 
concentrations (1µ M and 0.1µM), in cells stimulated with TNFα (B) and Poly(I:C) (C). In green is the positive 
control, SB202190, and in purple is the vehicle control, DMSO. In red are the top 14 initial hits, and the yellow 
squares indicate the 5 final hits of these 14 initial hits that show efficacy at 1 and 0.1µ M. (D) and (E) Percent 
reduction in 6 cytokines of interest of the 5 final hits (colored circles) for TNFα and Poly(I:C) stimulation 
respectively at a compound concentration of 1 µ M. Percent reduction induced by the positive control, SB202190, 
is indicated by the solid black lines. The vehicle control, DMSO, is indicated by dashed black lines. Shaded gray 
areas indicate the dynamic range, or assay window. Unexpectedly, there was no effect of the positive control on 
RANTES; for this reason, our assay window excludes RANTES in (C) and (D).
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published data showing it to impact phenotypes in RA in in vitro assays. Shown in 4D and E are the percent 
reduction observed by these 5 final “hit" at a compound concentration of 1 µ M, compared to the positive control 
(SB202190) and vehicle control (DMSO).

The experiment presented here was designed based on the assay presented in Jones et al.; assay conditions 
were modeled on those of Jones et al., with stimuli re-optimized to the effective concentration with 90% maximal 
response (EC90) in our system18. While there are caveats to a direct, one-to-one comparison of assay results 
from different laboratories, efficacy information across the GeneProtein-Compound pairs with high drug target 
selectivity from Jones et al., (JNKi-JNK-IN-8, p38i-PH797804, IKKi-IKK16, JAKi-tofacitinib; data obtained from 
the Supplementary Information provided by Jones et al.) was tested for statistical differences with the efficacy 
across Rosalind’s final hits, across all 6 cytokine endpoints (shown in Supplementary Figure 1 plots B and D). 
Importantly, no significant differences were found in the distribution of efficacy of Rosalind hits (median=21.65) 
versus those of Jones et al., (median=28.49) under TNFα stimulation (MWW U=295.0, p=0.131) or Rosalind effi-
cacy (median=37.90) versus Jones et al., efficacy (median=33.40) under Poly(I:C) stimulation (MWW U=356.0, 
p=0.475). MWW tests are Bonferroni corrected for multiple comparisons, resulting in a significance threshold of 
α=0.025. Our efficacy in identifying unexplored targets is similar to the efficacy reported by Jones et al. in their 
screen for explored targets in RA. This is remarkable given the traits of drug and apoptosis resistance displayed 
by FLS cells29,30. This drug resistance is thought to come from epigenetic imprinting and the over-expression of 
P-glycoprotein, underscoring the multi-drug resistance phenotype characteristic of targeting this cell type30,31. 
Additionally, in the context of drug discovery, a 9% success rate (5 promising targets of 55 screened) is particu-
larly encouraging, when compared to drug repositioning studies for RA (e.g. Hu et al., who report a 1% success 
rate, identifying 9 promising compounds of 888 screened32) or target identification in RA using experimental 
data (e.g. Zhu et al., who cite a 1% success rate, identifying 3 promising targets of 313 analyzed33).

Several lines of evidence support the potential value of these 5 "hit" genes for therapeutic development in 
RA. MYLK plays proinflammatory roles in other contexts34, including fibroblasts35. A non-peptide BDKRB2 
inhibitor, fasitibant, was shown to be effective in decreasing the effect of bradykinins in human FLSs, suggesting 
a prominent role for BDKRB2 in FLS inflammatory responses36. AGTR2 inhibitors have been shown to amelio-
rate disease in a rodent model of arthritis as well as in ex vivo FLS cultures37. RPS6KA3 has also been shown to 
control hyperplasia of FLSs, and to impact the course of inflammatory arthritis in mice38. Each of these targets 
had been functionally validated in RA models in fewer than 3 papers and/or later than 2016, supporting the 
ability of Rosalind to identify under-explored yet promising opportunities.

Discussion
Using disease-relevant biological assays is imperative if results are to translate to the clinic39; however, such assays 
can be costly and technically challenging to use for high-throughput screening. Machine learning and, more 
broadly, computational approaches to gene prioritization and target identification, can allow for more directed 
screens of likely candidates by learning from large quantities of data. While the combination of aggregated, 
heterogeneous data and tensor factorization allows Rosalind to be a flexible, powerful inference engine, there 
are also downsides to knowledge-graph-based computational approaches to gene prioritization. One common 
issue with biological knowledge graphs is the presence of noisy (i.e. erroneous) data, limiting the power of rela-
tional inference algorithms. While Rosalind uses established biomedical databases and expert-validated text-
extracted data for knowledge graph construction, these sources are noisy: biological data is often ambiguous or 
even contradictory. Time-tagging for the retrospective results and assignment of phase II success or failure are 
also imperfect sources. In fact, inspecting the targets for RA, we find one incorrect year tag for a target in the 
benchmark. Additionally, all unknown Disease-GeneProtein links are considered "negative", however, true nega-
tive data (i.e. edges that are plausible but false) could improve the ability of Rosalind to distinguish therapeutic 
targets. Unfortunately, such data in biology is difficult to come by, and since the absence of results does not 
necessarily indicate negative results due to experimental factors, experts are typically reluctant to identify true 
negatives. More advanced methods for negative sampling (e.g. adversarial negative sampling, as in Wang et al., 
201840) and the explicit modeling of uncertainty could help address these issues. Future work could improve 
negative sampling for Rosalind, and explore methods of evaluation designed for positive-unlabelled data sets41.

A second common challenge with knowledge-graph-based methods is the lack of interpretability of predic-
tions, that is, the ability for the algorithm to provide a rationale for its scores. Recent studies using graph convo-
lutional neural networks for link predictions address both the noise and interpretability challenges42,43, however, 
more work is needed to make them practically useful in gene prioritization. A third challenge with approaches 
like Rosalind is the potential for "easy inference", i.e. a model prediction based on either simple pattern-matching 
or true data leakage between training and test sets, instead of a meaningful representation of the problem. It can 
also lead to an overly-optimistic assessment of performance. By restricting the set of diseases to those that have 
more than 30 genes in the benchmark in order to avoid evaluating on disease subtypes, we partly mitigate this 
problem. A next step to addressing this issue would be to model disease hierarchies, and create train-test splits 
based on a particular level of disease granularity.

Finally, a third common pitfall of knowledge graphs methods is that they often lack granularity in their 
entity relationships, due to the coarseness of the databases from which they derive, which can lead to predic-
tions with low specificity. For example, the KEGG database provides only one kind of gene-disease association, 
which can in fact reflect a range of underlying relationships, from a human genetic link to an association in a 
disease model. In addition, protein-protein interaction databases often do not consider different tissue types. 
This can be a problem for diseases in which differences in gene interaction networks in a specific organ or cell 
type affected is often critical to understanding the disease pathophysiology and treatment potential. In addition, 
many disease pathways are missing from existing databases. One can address these data issues by augmenting 
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knowledge graphs with expert-curated data, or specific text extraction61. Another way to address these issues is 
to use post-processing steps, and leverage a variety of metadata such as tissue expression or pathway involve-
ment to filter target predictions.

Conclusion
Here, we introduce Rosalind, a novel, holistic approach to gene prioritization that combines data integration 
with tensor factorization to predict therapeutic genes for diseases. Rosalind outperforms state-of-the-art gene 
prioritization algorithms in predicting those genes likely to be therapeutic targets (Fig. 1) and can make pro-
spective predictions using time-sliced data (Fig. 2). Using tensor factorization to explicitly model both entities 
and relations affords Rosalind the unique ability to learn and distinguish subtle and important relationships: 
we show that Rosalind is able to distinguish between those genes most likely to fail and succeed in clinical trials 
by learning the nuances of the clinical success and clinical failure relations (Fig. 3). Finally, we demonstrate the 
in silico-to-in vitro translatability of Rosalind’s predictions by evaluating 55 top-scoring genes for Rheumatoid 
Arthritis in cell assays, allowing us to identify both known and novel potential drug targets for RA (Fig. 4) with 
efficacy comparable to that of those presented in Jones et al.18. This is particularly encouraging because the 
molecular inhibitors used in Jones et al. hit well-established immune targets, underlining the ability of Rosalind 
to identify promising targets that are little explored in the literature.

Improved gene prioritization methods such as Rosalind avoid using costly, large-throughput screens and, in 
their place, enable streamlined, directed assays testing evidence-based hypotheses that have a higher probability 
of downstream success. Overall, Rosalind provides a flexible, improvable approach to gene prioritization that is 
able to generate clinically relevant predictions at scale. This could allow it to generate promising clinical avenues 
for thousands of diseases with unmet need, and to help slow the trend of declining productivity in drug discovery.

Methods
Knowledge graph construction.  The knowledge graph component of Rosalind consists of biomedical 
entities and directed relations that link them together, and is constructed from both structured and unstructured 
data (Fig. 5A). An entity-relation-entity triple is referred to as an edge in the graph, and has a binary representa-
tion (1 if the edge exists, 0 if it does not). This graph is then separated into three disjoint data sets: training data, 
validation data and test data. Rosalind is trained on the training data set, and its performance on the validation 
data is used to determine when to stop training. Training is stopped when metrics calculated on the validation 
set do not change over 5 training epochs, implying that the model has fully extracted all useful information from 
the training data. Rosalind’s final performance statistics are then evaluated on the test set. Our training data span 
all entities and relations.

Biomedical literature database.  Approximately 20% of our knowledge graph edges are extracted from the litera-
ture. The corpus used for text extraction is a combination of public and licensed documents. It is composed of 
29 million PubMed abstracts, 1.5 million PubMed Central (PMC) open-access full-text articles for commercial 
use and 4.1 million licensed full-text articles from multiple publishers. The documents are merged based on 
PubMed/PMC/DOI information to avoid duplicate data in information extraction.

Named entity recognition.  In order to extract relevant information related to biomedical entities in structured 
data, a dictionary-based Named Entity Recognition (NER) method is used to extract entity names in the Bio-
medical Literature Database described above. In this process, abbreviations and synonyms are detected and 
linked together. This dictionary-based NER pipeline allows for the quick editing of data and augmenting the 
literature discovery process.

Biomedical entities.  There are 5 types of entities in the knowledge graph: GeneProteins (also referred to as 
genes or targets), Diseases, Gene ontology processes (GO Process), Pathways, and Compounds (Fig. 5B).

GeneProteins are a set of 19,197 unique gene names from the HUGO Gene Nomenclature Committee 
(HGNC), using the HGNC ID as the primary identifier. Only human protein coding genes are extracted. Three 
additional structured data sources are used to retrieve additional synonyms and data source IDs: Entrez Gene 
from the National Center for Biotechnology Information (NCBI)44, the Ensembl genome browser Release 9745, 
and the Universal Protein Resource (UniProt)46.

Diseases are extracted from several sources. The Medical Subject Headings (MeSH) ontology47 is the seed to 
which all other sources are merged. The following disease sources are aggregated using this seed: Online Men-
delian Inheritance in Man database (OMIM)48, the Disease Ontology (DO)49, Orphanet50, the National Cancer 
Institute Thesaurus (NCIT)51, and the Unified Medical Language System (UMLS)52. From these, 9,972 diseases 
are represented in the Rosalind knowledge graph.

The GO Process dictionary was downloaded from the Gene Ontology Resource on October 17, 201853 and 
includes 29,699 terms in the “Biological Process” category, all of which are included in our training data. The 
Pathway dictionary is composed of a set of 302 pathway terms from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG)54, release 78.2. Additionally, 2,224 pathway terms come from the Reactome Pathway Database 
(Reactome)55, version 65.

The Compound dictionary originates from ChEMBL56, Clarivate Analytics’ Integrity database (Integrity)57 
and The Comparative Toxicogenomics Database (CTD)58. 261,812 compounds are linked and actually used in 
the knowledge graph.
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Relations.  The 5 types of entities described above are connected in the knowledge graph through 11 relation 
types constructed from multiple biomedical databases and extracted from literature. Structured data is pooled 
from the following sources: ChEMBL, Integrity, the National Human Genome Research Institute and European 
Bioinformatics Institute Genome-Wide Association Catalog (NHGRI-EBI GWAS Catalog), downloaded on 
February 11, 201859, Disgenet60, CTD, KEGG, and the OMIM database.

Relation extraction from unstructured data focuses on three categories of linkages: Encode-Attend-Tag edges 
(EAT), a proprietary term used to describe edges that demonstrate biological association, and Literature-based 
Therapeutic Evidence edges (LTE) that convey a therapeutic relationship and Syntactic Subject-Verb-Object 
Edges (SVO), that capture directional biological associations.
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Figure 5.   Knowledge graph construction. (A) A heterogeneous knowledge graph is constructed from literature 
evidence, compound libraries, experimental data, databases of collated and curated datasets, and clinical 
trial evidence (B) A canonical set of connections in the graph. Note that these edges can be directional: 1 
GeneProtein entities are connected to other GeneProtein entities through protein-protein interactions (PPI). 
2 GeneProteins are connected to Diseases through Therapeutic Relationships (benchmark) and Biological 
Association relations. 3 GeneProteins are connected to Pathways via Biological Association relations, and are 
connected to GO processes via a Biological Association link and a Therapeutic Link relation. 4 Compounds are 
connected to Diseases via Therapeutic Links. 5 GeneProteins are connected to compounds via Experimental 
Evidence edges. 6 Diseases are connected to Pathways and GO processes via a Mechanistic Connection 
relation. 7 GO processes are connected to GO processes via Biological Association relations. (C) The percentage 
compositions of the five biomedical entities is shown here, with Compounds dominating the graph. (D) The 
number of edges between each pair of entities. GP=GeneProtein, GO=GO process, D=Disease, C=Compound, 
P=Pathway. Shown in red is the benchmark relation, GeneProtein-Disease Therapeutic Relationship.



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18250  | https://doi.org/10.1038/s41598-020-74922-z

www.nature.com/scientificreports/

EAT edges are extracted by running an algorithm that uses distant supervision to learn syntactical associa-
tion on the biomedical literature database in order to extract sentences that provide evidence for a particular 
Disease-GeneProtein link. In addition to identifying supporting sentences in the literature, this process assigns 
a confidence score between 0 and 1 to each edge that reflects the accuracy of that Disease-GeneProtein link. 
Here, EAT edges with a score of 0.95 or higher, or the top 15% of all EAT edges, were included, amounting to 
approximately 300,000 edges.

LTE edges are extracted from article titles in the biomedical literature database using a set of expert-curated 
rules61. An edge is included in this dataset if a title includes both the disease and GeneProtein names, and a pre-
defined lexicon that conveys a therapeutic relationship. For example, an LTE edge between ADIPOQ and Blood 
Platelet Disorders was extracted from the article title: "Adiponectin inhibits hyperlipidemia-induced platelet 
aggregation via attenuating oxidative/nitrative stress."

SVO edges encapsulate biological, bidirectional relationships between entities that exist at the sentence level. 
SVO extraction is done via an unsupervised, rule-based model that unearths relationships that follow strict pat-
terns, particularly, entities linked via a verb belonging to a predefined list. SVO edges are comprised of standard 
subject-verb-object relationships in addition to subject-verb-in-object (i.e. GPR-9-6 [subject] was expressed 
[verb] at high levels IN thymus [object]) and subject-verb-to-object (i.e. Infection [subject] of DCs with live 
Mtb led [verb] TO cell death [object]) relationships.

Edge construction.  Entities and relations combine to form edges, a schematic of which is shown in Fig. 5B. 
A summary of edges and edge counts is shown in Fig. 5D. GeneProtein-GeneProtein interactions at the pro-
tein level, that is, protein-protein interactions (PPIs), are collated from the OmniPath database62, the Biologi-
cal General Repository for Interaction Datasets database (Biogrid)63, the SIGnaling Network Open Resource 
(SigNOR)64, KEGG and Reactome, resulting in a set of 629,357 edges. GO process-GO process edges are con-
structed using the Gene Ontology Resource hierarchy, using the following five relationships between entities: 
"is a", "regulates","part of ","negatively regulates" and "positively regulates," resulting in a set of 143,490 edges.

GeneProteins and GO processes are connected via two relation types: the first, GeneProtein-GO process 
Therapeutic Link, is constructed using the AmiGO database, for a total of 129,382 edges. The second, Gene-
Protein-GO process Biological Association, comes from a combination of SVO edges and annotated edges, for 
a total of 255,265 edges. Disease-GO process Mechanistic Connection relations are constructed using gene set 
enrichment analyses drawn from the eDGAR database of Disease-GeneProtein associations and CTD, totalling 
76,587 edges. GeneProtein-Pathway relationships are Biological Associations extracted from KEGG and Reac-
tome for a total of 133,872 edges. Disease-Pathway edges are inferred from gene sets extracted from KEGG and 
Reactome, combined with GeneProtein-Disease associations from EAT. A set of filters were applied to reduce 
noise: for example, a Disease was required to be associated with at least two GeneProtein entities in order for a 
Pathway to be considered; Pathways containing names of other diseases, and Pathways with fewer than 3 genes 
were excluded from the analysis. This produced a total of 348,001 edges. Disease-Compound Therapeutic Link 
relations are derived from the Integrity database and filtered for any relation with the clinical testing phase 
‘Preclinical’ or higher, resulting in 13,919 edges. GeneProtein-Compound associations were extracted from the 
chemical database of the European Molecular Biology Laboratory (ChEMBL) and filtered for those edges with 
a pChEMBL value of 7 or higher, resulting in a set of 331,852 GeneProtein-Compound edges.

Disease-GeneProtein relation are split into two broad categories. The first relation category, Disease-GenePro-
tein Biological Association, represents a biological association between GeneProtein and Disease. These relations 
are extracted from the NHGRI-EBI GWAS Catalog (downloaded on February 11, 2018), along with ChEMBL and 
DisGeNET, version 4.0. Additionally, EAT edges representing a biological association are included in this set of 
edges, for a total of 443,330 edges. The second relation category, Disease-GeneProtein Therapeutic Relationship, 
represents relationships between GeneProtein and Disease where the GeneProtein is causally implicated in the 
pathogenesis of a Disease. This relation type is constructed from the combination of CTD, KEGG, and OMIM, 
in addition to LTE edges, for a total of 128,018 edges.

Conclusively assessing the relative importance of each relation type to performance, however, is difficult. 
When removing individual relation types, the removal of GeneProtein-Disease Biological Association edges 
has the largest impact on performance. A full subset analysis valuing the relation types is not computationally 
feasible, but emerging work could help make such evaluations possible in the future65,66.

Therapeutic relationship benchmark.  In order to condition the model to learn to predict those drug targets most 
likely to be therapeutically linked to a disease, Rosalind uses the Disease-GeneProtein Therapeutic Relationship 
set of edges as a benchmark, or test set, shown in red in Fig. 5. This Therapeutic Relationship relation type may 
include drug targets implicated in the disease by evidence derived from pre-clinical models or clinical trials, 
or those targets of drugs approved in the clinic. These data are included in Rosalind using the train-valid-test 
data split described at the beginning of this section. This means that the relation Therapeutic Relationship was 
included in training and solely comprised our validation and test sets. Therapeutic Relationship edges are split 
between training, validation and test using a 60%-20%-20% split by edge count, or a 60%-40% by edge count for 
those analyses in which only a training and test set were used.

For the state-of-the-art comparison, this Therapeutic Relationship dataset is further refined by following 
the benchmark disease refinement procedure outlined in Zakeri et al., 2018 resulting in the 314 diseases used 
in Zakeri et al., 201810. In order to diminish the possibility of information leakage between this test set and the 
training data, all diseases with a GeneProtein-Disease node degree of fewer than 30 targets were removed from 
the test set. These diseases are often subtypes: filtering them out prevents a situation in which, for example, ALS 
Type 16 is in the training data and ALS Type 17 is in the test data set, artificially inflating our performance on 
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ALS Type 17. This leaves 198 final diseases in the test set. A train-valid-test split was used and the test set was 
constrained to the 198 diseases in the Therapeutic Relationship Benchmark.

For reference, a summary of datasets and edge counts and entity counts can be found in the Supplementary 
Information, in Tables 1, 2 and 3.

Relational inference for link prediction.  In tensor factorization, each entity in the graph is represented 
as a d-dimensional vector e ∈ Rd . Similarly, every relationship link between these entities is also modeled as a 
d-dimensional vector l ∈ Rd . For a graph with n entities, this forms an entity embedding matrix E ∈ Rn·d that is 
learned during training, as well as a relation embedding matrix L ∈ Rk·d which contains all k relations.

Individual facts in the knowledge graph are represented as a triple: the subject, relation, and object of that 
fact. For example, the entities “Rheumatoid Arthritis" and the “Interleukin 6 receptor" may exist in the knowl-
edge graph, and the statement “the interleukin 6 receptor is a therapeutic drug target in the disease rheumatoid 
arthritis" can be encoded by the triple (rheumatoid arthritis, therapeutic drug target, interleukin 6 receptor). 
The purpose of training a model, then, is to adjust the embeddings so that a given scoring function φ , which 
combines the entities and relations, produces high scores for true facts that are present in the data and low scores 
for false facts that are not true according to the knowledge graph. Note that the standard “closed-world“ assump-
tion is followed here, in which facts missing from the knowledge graph are assumed to be false67. Though this is 
of course a false declaration, as all test links would necessarily be incorrect in this framework, this assumption 
provides a methodology for gathering large quantities of negative samples and is commonly used in practice.

Rosalind uses the ComplEx scoring function, which operates on complex embeddings matrix E ∈ Cn·d and 
L ∈ Ck·d . A number of similar scoring functions exist for link prediction using tensor factorization: Canonical 
Polyadic decomposition68, RESCAL69, HolE70, DistMult71, and ComplEx14, among others. The algorithms are 
often referred to as decoders72, due to their ability to decode a learned dense vector representation into the 
probability of a link. Because of its scalability, robust performance across hyperparameters and datasets, and 
ability to model asymmetric relationships, ComplEx was chosen for this work. The ComplEx decoder takes the 
following form:

where φ(s, r, o) represents the un-normalized likelihood of the fact triple (s, r, o). Separating the real and imagi-
nary parts:

where �·� indicates the trilinear product. Re(x) and Im(x) are the real and imaginary part of x, respectively; ē is 
the complex conjugate of e; and s, o, and r are indices for the subject, object, and relation. Notably, this factored 
form facilitates the implementation of Rosalind in standard machine learning frameworks such as Tensorflow73. 
With these components separated, the computation becomes:

where a represents the real embedding of the entity or relation and b represents the imaginary embedding. With 
this form, standard machine learning frameworks can process these embeddings separately, as if there were six 
real embeddings per fact ( esa, esb, lra, lrb, eoa , and eob ) instead of three complex embeddings es , lr , and eo.

At the beginning of training, six embedding matrices were randomly initialized using Xavier Gaussian 
initialization74. There were n = 322, 591 entities (18,582 GeneProteins, 9,972 Diseases, 29,699 GO processes 
(mechanisms), 2,526 Pathways and 261,812 Compounds) and k = 11 relations, which collectively represent 
2,633,073 biological facts in the knowledge graph. The embedding dimensionality was d = 200 . For negative 
sampling, 5 negative facts were sampled randomly for every positive example with a matching entity type per 
the standard methodology. Batch sizes were 3000 examples per batch, while ensuring that there were the same 
number of examples between relations in every batch. This equality in number of examples per relation per batch 
has the effect of oversampling rarer relations, such as the therapeutic relationship specified in the benchmark rela-
tions, and consequently making those relations more important for training. Adam75 was used for optimizing the 
embeddings, and cross-entropy was used as a loss function for the optimizer. Dropout of 0.5 on the embeddings 
was used. Training time for Rosalind on a 4-core CPU requires approximately 33 minutes per epoch, resulting 
in a total of around 9 hours with 17 epochs of training and early stopping after no improvement for 3 epochs. 
Once trained, a batched prediction requires 74 ms per disease to predict and rank scores across all targets in total.

A visualization of the embeddings before and after training can be found in Fig. 6; note that initially random 
embeddings develop structure and groupings through the training process, facilitating both inference and post-
hoc analysis. Note the complex, intricate structure of the t-distributed stochastic neighbor embedding (t-SNE) 
representations that show close embedding similarity by close distance. Certain Compounds group with other 
Compounds; particular Pathways group with GO processes, and certain GO processes cluster interestingly close 
to Diseases.

State‑of‑the‑art algorithm comparison.  State-of-the-art comparison was done in two stages. For the 
first stage, the performance of the ComplEx decoder used by Rosalind was compared with three similar scor-

φ(s, r, o) = Re(

d∑

j=1

lrjesj ēoj)

(1)φ(s, r, o) =�Re(es), Re(lr), Re(eo)� + �Im(es), Re(lr), Im(eo)�

(2)+ �Re(es), Im(lr), Im(eo)� − �Im(es), Im(lr), Re(eo)�

(3)φ(s, r, o) =�esa, lra, eoa� + �esb, lra, eob� + �esa, lrb, eob� − �esb, lrb, eoa�
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ing functions used in matrix factorization: DistMult, canonical polyadic factorization (CP), and holographic 
embeddings (HolE). For particular datasets, CP, the oldest method76, has been shown to perform at the state-
of-the-art with correct initialization68. Similarly, HolE70 has shown improved performance on the standard 
benchmark datasets WN18 and FB15k, while DistMult71, a recent but less state-of-the-art architecture, forms a 
baseline for performance. CP, HolE, and ComplEx are asymmetric decoders, meaning that the same (subject, 
relation, object) triple produces a different score for (object, relation, subject), while this is not true of DistMult. 
Additionally, for this analysis, the impact of regularization via Dropout is measured on recall performance. 
Dropout selects random dimensions of the embedded representation and sets the value of those dimensions to 
zero instead of their true values. Each dimension of the embedding has an independent probability of p = 0.5 to 
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Figure 6.   Visualization of entity representations through Rosalind. (A) Shown here is a depiction of training 
through tensor factorization, using a graph consisting of three entities (A, B, and C), and two relations, r1 and 
r2 . Step (a) shows the original graph, with three entities connected via two relations. Step (b) shows the sparse 
tensor representation of this graph, with entities across two dimensions and relations along the third, and a 1 
or 0 value for each coordinate, indicating whether an edge exists or does not exist, respectively. Step (c) shows 
the calculation of the ComplEx score for a single point in the tensor, that represents an entity-relation-entity 
edge, which is a function of the latent embeddings for the two entities and relation. The ComplEx score for each 
possible entity-relation-entity edge is calculated, and used to populate the graph reconstruction tensor (dense), 
shown in (d). Training involves calculating the reconstruction error, or the difference between the ComplEx 
score and the true 1 or 0 value from the original graph tensor. This error signal is then used to update the entity 
embeddings. (B) A tSNE representation of the embeddings in A before training; note the lack of structure. (C) A 
tSNE representation of the embeddings in B after training.
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be set to zero. Dropout has been shown to be an extremely effective regularizer, and decreasing overfitting helps 
particularly here with such highly-parameterized embedding models. For these performance assessments, data 
are split into train, valid, and test sets as described above, and training and validation edges ((Disease, Therapeu-
tic Relationship, GeneProtein) triples) are filtered from the prediction list.

In the second stage, full Rosalind (data and model) was compared to similar gene prioritization algorithms. 
Other methods use different datasets for training and testing, and different link prediction algorithms for pri-
oritizing which genes are the most promising for a given disease. To ensure a fair comparison, the 198-disease 
benchmark is used, which is a subset of the diseases used in previous studies10, the construction of which is 
detailed above. The test subset of these data is comprised of 198 diseases and a total of 4,613 GeneProtein-Dis-
ease Therapeutic Relationship edges. As alternative methods make use of different ontologies and thus represent 
knowledge differently, it is not possible to perfectly map the identical concepts of disease and gene directly 
between all methods. Similarly, it is not possible to enforce our training, validation, and testing data on external 
algorithms. Not enforcing a data split favors external methods, as the Disease-GeneProtein associations which 
comprise our test set should appear in their training data. Overall, these methods provide a qualitative compari-
son across five different gene prioritization methodologies, listed below: 

1.	 Open Targets77, a comprehensive data-modeling-based platform that provides considerable context for each 
entity in order to prioritize possible therapeutic targets by integrating a variety of data sources, including 
genetic association data, somatic mutation data, drug information, scores derived from pathways and systems 
biology, RNA expression, text mining sources, and animal models.

2.	 SCUBA78, a positive-uncertain matrix completion (PU-learning) approach.
3.	 MACAU​10, a Bayesian matrix factorization based approach that draws upon considerable side information, 

conditioning upon Interpro79, Gene Ontology53, and Uniprot46 for additional gene context. For diseases, 
literature-based disease features derived from textual term-frequency inverse-document frequency (TF-IDF) 
occurrences in PubMed were used, as in ElShal et al.80

4.	 CATAPULT81, a network-based supervised SVM-based method combined with a metric of diffusion distance 
on the network.

5.	 PGCN13, a graph convolutional network based approach.

As each of these alternative methods themselves show improved performance compared to a variety of other 
state-of-the-art methods, comparison against these methods provides a comprehensive assessment of Rosalind 
across gene prioritization approaches. A description of the entity alignment process across algorithms be found in 
the Supplementary Material. Pre-trained available models were used for Open Targets, PGCN, and CATAPULT; 
for MACAU and SCUBA, the models were conditioned at least partially upon Rosalind training data while reus-
ing data from those respective algorithms. The GeneProtein-Disease links in Rosalind’s training and validation 
sets were filtered from the prediction lists of all methods for evaluating metrics, as per standard practice. Note 
the filtered GeneProteins may or may not have been actually prioritized by the models or trained upon; however, 
in cases where Rosalind training GeneProteins were predicted in the output of an external model, this provides 
a methodology to avoid penalizing models with a different training set. This establishes a favorable comparison 
for external models, because and external models are not penalized for training on Rosalind test GeneProteins. 
Finally, the performance of each algorithm is scaled according to the number of successfully mapped diseases; for 
algorithms such as PGCN which match only 66 of the 198 diseases, the recall score is multiplied by 3 to account 
for losses due to ontology mapping. The decision to choose recall as our performance metric, over alternatives 
such as mean average precision (mAP), area under the precision-recall curve (AUPR), area under the receiver 
operating characteristic curve (AUROC), accuracy, etc., was made because the data is positive-unlabelled (P-U): 
the positive data, or graph edges, are reasonably known, while the class assignment of “negative” data is unknown, 
as these edges may be discovered in the future. Recall, which is only based on pre-existing positives, is more 
appropriate in a P-U scenario than precision, which is dependent on accurate negative data. For this reason, 
recall is more representative of performance on our data, while precision, AUPR, AUROC, and accuracy would 
require the accurate labelling of negative data. For reference, however, mAP at rank 500 (mAP@500) values can 
be found in Table 5 of Supplementary Information.

Time‑slicing.  To test Rosalind’s ability to make future predictions, the knowledge graph is "time-sliced", 
so that training and test data are temporally separated. Rosalind is then trained on data up to and including a 
particular year threshold and evaluated on a test set consisting of edges after that year. Edges were time tagged 
with the first literature mention of that relationship. For each edge in the Rosalind knowledge graph, a list of 
publication years of relevant articles was extracted from our Biomedical Literature Database; a document was 
said to contain an edge if the entities of that edge (i.e. Disease and GeneProtein) co-occur on the level of a para-
graph. Each edge was then assigned the earliest year of this list, under the assumption that the first literature 
mention of a relationship between entities is indicative of when information of this relationship first surfaced in 
the scientific community. 50 edges were manually examined to evaluate whether the year tag corresponded with 
the earliest literature, and 74% of edges were accurately tagged. For those edges that were incorrect, there was at 
most a 1-year difference between the correct date and the tagged year. Note that in the non-time-sliced Rosalind 
model, there is no implicit temporal separation between training and test data.

Because of data quality concerns with year-tags for Compound-Disease edges and a lack of year data for 
GO processes and Pathway edges, only the following three relations were included in this analysis: Therapeu-
tic Relationship Benchmark, GeneProtein-GeneProtein PPI and GeneProtein-Disease Biological Association. 
Overall, only 51% of these edges were tagged, resulting in a total data set of approximately 800,000 edges. Six year 
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thresholds were selected, 1990 to 2015 in 5 year increments (inclusive), used to separate training and validation/
test data (see Supplementary Table 4). For the time-banded time-slicing analysis (Fig.  2C and D) only a train and 
test set were used, and mAP and Recall were calculated on the full set of diseases in the forward-looking 5-year 
time band. While data may have been imbalanced over diseases in the various time-bound data sets due to the 
temporal distribution of data over time, we do not adjust for this imbalance, as temporal information leakage 
would be unavoidable. For example, year thresholds might have been chosen by disease to ensure an even train-
test split, but because Rosalind uses information over all diseases to make a prediction on any given disease, 
making the model susceptible to future information leakage across diseases. Similarly, down-sampling data 
based on the year threshold introduces information about the future distribution of information to the training 
data, again causing information leakage. As this analysis is intended to simulate the performance of the system 
agnostic to year threshold, the data distribution was not changed. Dataset statistics on the different time bands 
can be found in Supplementary Table 4. For Figs. 2B, and 2E-F, the test set was constrained to the 198 diseases 
used in the state-of-the-art comparison; only 184 were able to be year-tagged.

Clinical trial outcome prediction.  Clinical trial outcome prediction analyses were performed using 
GeneProtein-Disease edges extracted from Shih et al.24 Supplementary Table S1 to explore Rosalind’s ability to 
differentiate clinical trial success from failure. Edges were constructed from data up to and including April 2016. 
Each edge was tagged with its maximum clinical phase and included multiple entries for each GeneProtein-
Disease pair in cases where results differed based on the compound tested. For example, the target somatostatin 
2 receptor is tested for acromegaly using compounds g-02113, l-363377 and ptr-3172, which achieved phases 
Discovery, Discontinued, and Phase II Clinical trial respectively. For these instances, the GeneProtein-Disease 
pair was assigned the highest phase obtained from any experiment, which, in this case, was Phase II. For the 
purpose of this experiment, all Phase II and Phase III discontinuations were marked as clinical trial failures and 
all GeneProtein-Disease pairs that achieved phase "Pre-registration or higher" as clinical trial successes. Other 
phases, such as Discontinued, Discovery, and Phase I clinical trial, were not assigned to success or failure since 
their status is ambiguous (e.g. a drug program with highest phase Discovery could be a terminated due to factors 
other than efficacy, such as financial reasons). As mentioned earlier, the large majority of Phase II and Phase III 
discontinuations are due to failures of efficacy39. Therefore, using only Phase II/III discontinuations data for the 
clinical failure category ensures that our experiment addresses efficacy as opposed to other factors affecting drug 
discovery success.

From Shih et al.24, 2,710 GeneProtein-Disease Clinical Trial Success edges and 1,327 GeneProtein-Disease 
Clinical Trial Failure edges were ingested, out of a possible 3,242 successes and 1,596 failures. Successes far 
outnumber failures due to our limiting the definition of failure to Phase II/III discontinuations. For the clinical 
success prediction analysis, the relations “Clinical Trial Success“ and “Clinical Trial Failure”, from Shih et al.24 are 
used as the benchmark, included in the training data and solely comprising the validation and test datasets. While 
it may seem that these data consist of two labelled classes, that of success and that of failure, we choose to treat 
success prediction and failure prediction as two separate problems. We do this because the same GeneProtein-
Disease association can be represented in both clinical trial success and failure, and because a low score for suc-
cess should be interpreted as less promising to succeed, but does not necessarily mean a GeneProtein-Disease 
pair is more likely to fail.

For all analyses, a full summary of datasets, train-val-test splits, and data statistics can be found in Supple-
mentary Table 4.

Rheumatoid arthritis assay.  Target triage.  The top 600 ranked Rosalind predictions for RA were as-
sessed for inclusion. This cut-off of 600 was chosen based on observing a sequence of greater than 10 genes 
with no literature evidence beyond this point, suggesting limited evidence to support prediction quality. This 
list was refined by expert curation based on expected biological rationale, safety, tissue specificity and previous 
evidence. These characteristics can influence whether an eventual clinical trial is successful. Expected biological 
efficacy was determined using a combination of existing supporting evidence from our Biomedical Literature 
Database, supporting evidence from the GWAS catalog and differential expression data from the OmicSoft Dis-
easeLand release TCGA-B37_20190215_v859,82. Safety was determined by association with adverse events in 
publicly available datasets, particularly, those targets with a clinical target development level83 were considered 
safer, and those involved in the absorption, distribution, metabolism or excretion (ADME) of drugs were consid-
ered unsafe84. Tissue specificity of a gene was assessed using τ values85 calculated using data from the OmicSoft 
database. Finally, genes were filtered for ligandability, requiring compounds to display submicromolar affinity 
(<1µ M) for their targets from Chembl86, as well as being commercially available from suppliers. This resulted in 
a set of 55 targets and their associated compounds prioritized for testing in the assay.

Assay.  Rosalind-predicted genes were tested in an in-vitro patient-derived FLS assay (BioIVT, Royston, United 
Kingdom). Cells were obtained from existing inventory stocks of primary human FLS from rheumatoid arthritis 
(RA) patients at BioIVT. BioIVT confirmed that all tissues were procured with informed consent and appropri-
ate ethical approval for research use. Additionally, BioIVT confirms that all experiments were performed in 
adherence with good scientific practices according to Standard Operating Procedures. For this assay, FLSs were 
cultured in FGM-2 medium at passage 4. Cells were seeded in 96-well plates at 10,000 cells/well, and incubated 
overnight at 37◦ C in a 5% CO2 incubator. Cells were treated (n=2 experiments for each treatment) with our 
selected 55 test compounds. Compounds were tested at 3 concentrations (10µ M, 1 µ M, 0.1 µM), aiming to iden-
tify dose-dependent effects, and to engage the primary pharmacology against compounds’ intended genes. This 
range was chosen to account for potential discrepancies between published cell-free IC50s of our compounds, 
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and their actual potencies in the cell system. The p38 inhibitor SB202190, tested at 1 µ M, was used as a posi-
tive control. DMSO was used as a vehicle control, and medium alone was the untreated control. The difference 
between SB202190 and DMSO provided the signal-to-background ratio of our experiment. SB202190 was cho-
sen as a positive control, as it has been shown to significantly control fibroblast-like synoviocyte activation87 and 
provided a strong assay window.

After 30 minutes incubation with compounds, cells were treated with recombinant human TNFα (R&D 
systems) or Poly(I:C) (InvivoGen) at single EC90 concentrations, and incubated at 37◦ C for 24 hours. TNFα 
and Poly(I:C) were chosen as they were shown to mimic innate immune activation and activation during viral 
exacerbations, respectively, states observed in RA and used by Jones et al.18. Each stimulus has been shown 
to induce secretion of a consistent set of six cytokines: regulated on activation, normal T-cell expressed and 
secreted (RANTES), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interferon γ-induced protein 10 (IP-10), Mono-
cyte chemotactic protein 1 (MCP-1) and Growth regulated oncogene α (GROα ), which recruit immune cells to 
the site of the disease18.

The following assay controls were included on each plate (quadruplicate wells): TNFα or Poly(I:C) alone (at 
selected EC90 concentration), medium alone (untreated control), positive inhibitory control (TNFα or Poly(I:C) 
+ SB202190), and SB202190 alone. FLSs from three donors were tested, and FLSs from one donor were chosen 
since each donor displayed a robust and comparable cytokine response to each stimulus. Representative images 
of the cells were captured (top concentration only) to estimate compound-induced cytotoxicity based on a visual 
assessment of cell morphology. Supernatants were then collected from the wells and stored at -20◦ C. Immunoas-
say analysis was performed using the MSD U-PLEX®format (Meso Scale Discovery, Rockville, Maryland, USA) 
for 5 cytokines (IL-6, IL-8, IP-10, MCP-1 and GRO) and singleplex format for RANTES. The raw MSD data were 
analysed in GraphPad Prism®and then the interpolated data transferred to Microsoft Excel for calculation of 
percentage of control values. Compounds were marked as toxic at the 10µ M concentration, resulting in 30 final 
gene-compound pairs. Of these, drug targets initial "hits" were identified as those drug targets that produced a 
>50% inhibition of at least two cytokine endpoints by corresponding compounds at any concentration (10µ M, 
1 µ M or 0.1µ M) under either TNFα or Poly(I:C) stimulation. Final "hits" were identified as drug targets that 
produced a >50% inhibition of at least two cytokine endpoints by corresponding compounds under both TNFα 
or Poly(I:C) by any corresponding compound at 1 µ M and 0.1µ M, to avoid hits due to off-target effects at the 
highest dose (10µM).

Evaluation metrics and statistical tests.  Model performance for the analyses presented here was meas-
ured using two metrics, mean average precision (mAP) and average recall at rank k (Recall@k). Mean average 
precision is defined by:

where D is the number of diseases in the benchmark and AP(d) is the average precision for that disease, d. Aver-
age precision is defined as:

 where GTP is the number of ground-truth positive GeneProteins, and rel(k) is an indicator function that takes 
the value 1 if k is a positive example and 0 if not. P(k) is the precision at rank k.

Recall at is defined as:

where k is the maximum rank of interest. Average recall at rank k is calculated by taking the simple mean over 
the total number of diseases of interest, D.

The statistical test used to compare distributions across the analyses presented here was a Mann-Whitney-
Wilcoxon (MWW). Medians of both distributions are reported, along with the corresponding U-statistic and 
p-value.
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