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Both basal and stress-induced secretory activities of the hypothalamic-pituitary-adrenal (HPA) axis are distinctly modified in
lactating females. On the one hand, it aims to meet the physiological demands of the mother, and on the other hand, the
appropriate and stable plasma cortisol level is one of the essential factors for the proper offspring development. Specific
adaptations of HPA axis activity to lactation have been extensively studied in several animal species and humans, providing
interesting data on the HPA axis plasticity mechanism. However, most of the data related to this phenomenon are derived from
studies in rats. The purpose of this review is to highlight these adaptations, with a particular emphasis on stress reaction and
differences that occur between species. Existing data on breastfeeding women are also included in several aspects. Finally, data
from the experiments in sheep are presented, indicating a new regulatory factor of the HPA axis—salsolinol—which typical role
was revealed in lactation. It is suggested that this dopamine derivative is involved in both maintaining basal and suppressing
stress-induced HPA axis activities in lactating dams.

1. Introduction

During lactation, maternal anatomy, physiology, and
behavior undergo considerable changes to ensure successful
completion of the reproductive process—raising the off-
spring. Extensive growth of the mammary gland facilitates
the synthesis and release of the required amount of milk.
High milk production, resulting from intensive suckling,
requires in turn high energy inputs, and therefore, fat
reserves are utilized, as nutritional needs of the female
increase. Ovulation inhibition, leading to periodic infertility,
ensures sufficient time for nursing offspring. Moreover,
mothers display crucial behavioral adaptations, such as
protective behavior, aggression, and decreased anxiety [1].
Finally, considerable modifications of basal and stress-
induced hypothalamic-pituitary-adrenal (HPA) axis activi-
ties are observed [2].

The present review focuses on the adaptive changes of
HPA axis activity during lactation and possible mechanisms
responsible for these modifications, mainly in the central
nervous system (CNS). Most of the investigations have been
performed in rats, but fragmentary data from other species
clearly demonstrate intraspecific differences and are helpful
to understand the physiology of breastfeeding women.
Hence, the review highlights differences between rodents
and nonrodent animals in this adaptation. Lastly, we also
extend the current knowledge about new findings concerning
the function of salsolinol, an endogenous dopamine (DA)
derivative, in HPA axis activity in lactating sheep.

2. HPA Axis Activity

2.1. Basal Activity. Circulating adrenal corticosteroids are
necessary to maintain metabolic homeostasis in the
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organism. Their concentration is tightly controlled by the
CNS at the level of the hypothalamus and pituitary, which
together with adrenals form the HPA axis. The hypothalamic
regulatory site of the HPA axis is located within the paraven-
tricular nucleus (PVN), which neurons release corticotropin-
releasing hormone (CRH) and arginine vasopressin (AVP)
into the hypophyseal portal circulation. They reach cortico-
tropic pituitary cells via this route to stimulate adrenocorti-
cotropin (ACTH) secretion [3]. The potency of action of
these two neuropeptides may vary with species and physio-
logical conditions. In rats and humans, AVP is a weaker
ACTH secretagogue than CRH, but its action is essential
for a full ACTH response when subjects are challenged by a
variety of stressors [4]. However, studies performed on
anestrous sheep provided contradictory data. Several reports
indicated that AVP was a more potent stimulator of ACTH
release than CRH [5–7]. It was demonstrated that the effects
of CRH are likely mediated by the activation of protein
kinase A, whereas the action of AVP is mainly mediated by
the activation of protein kinase C [7]. It is possible that the
interaction between these two pathways causes a variety of
biochemical alterations within the corticotrophs, which are
in turn responsible for the synergistic effect on ACTH. Other
studies in sheep showed that an equimolar concentration of
AVP and CRH infused into the third ventricle of the brain
(IIIv) increased plasma cortisol concentration to the same
extent [8, 9].

Regardless of the animal’s lifestyle (day/night), HPA axis
activity undergoes circadian alterations that consist of
changes in pulsatile CRH, ACTH, and corticosterone/cortisol
secretion [10–12]. The magnitude of the pulses appears to be
the major variable in the pattern of this secretion over a 24 h
period [13], although there is evidence that the sensitivity of
corticotrophs to the negative feedback of corticosteroids also
shows diurnal variation [14]. Circadian rhythmicity in pulsa-
tile secretory activity of the HPA axis has been well demon-
strated in rodents, ruminants, and primates, including
humans, with peak levels occurring just before awakening
[13–16]. According to such a pattern, the morning nadir
and evening peaks of ACTH and corticosterone concentra-
tions have been observed in rats, while both characteristics
of the rhythm occur in the opposite periods in ruminants
and humans.

Studies in rats have shown that basal HPA axis activity is
distinctly increased in lactation due to a rise in nadir levels of
corticosterone [17–20], while evening peak concentrations
decrease [17, 21, 22], contributing to the flattening of the
diurnal rhythm. Analogously, an increase in nadir levels of
the hormone has been demonstrated for ACTH [21]. Such
an increase in the secretory activity of the HPA axis is
required to cope with the increased maternal metabolic
demands, and on the other hand, its stability prevents neona-
tal exposure to varying glucocorticoid levels. Glucocorticoids
have been demonstrated to freely enter maternal milk and
affect offspring, causing long-term programming effects in
postnatal and/or adult life [23, 24].

HPA axis activity during lactation is not modified in
exactly the same manner in other species. In contrast to the
findings in rats, no differences in basal HPA axis activity have

been observed between lactating and nonlactating sheep and
cows [25–27]. However, these studies did not examine
changes over a 24-hour period. Studies performed in our lab-
oratory also suggested the lack of differences in basal plasma
ACTH and cortisol concentrations between midlactating and
anestrous or postweaning sheep [28, 29]. Furthermore, a
study on Japanese macaques (Macaca fuscata) showed that
lactating females had even lower fecal glucocorticoid concen-
trations than cycling females during the mating season [30].
In women after parturition, the HPA axis gradually regains
its prepregnancy state [31], although the precise time course
of these changes has not been established. A higher basal level
of cortisol was demonstrated in women 8 weeks postpartum
compared to nonlactating ones [32]. On the other hand,
Chiodera et al. [33] showed no differences in cortisol and
ACTH concentrations in breastfeeding women 5–7 days after
parturition compared to nonlactating subjects. Since cortisol
levels fluctuate in the circadian rhythm, this discrepancy may
result from different sampling times during the day. There-
fore, it is necessary to precisely examine the time course to
clarify the dynamics of changes in basal HPA axis activity
in women during lactation.

2.2. Stress-Induced Activity. There is an increased activation
of the HPA system in response to certain challenges requir-
ing higher energy mobilization, for example, during stress
response. However, numerous studies in lactating rats
showed that stress-induced HPA axis activity is downregu-
lated in response to many types of physical stressors, such
as exposure to ether [20, 21, 34, 35], noise [36], electrical
shock [35], and hypertonic saline [37] as well as immune
challenges [38] and psychological stressors like the elevated
plus-maze test and forced swimming [39]. This phenomenon
is crucial for the aforementioned postnatal ontogenesis, since
mother’s glucocorticoids could be passed to the offspring
with milk [40] and affect, for example, infant temperament
[41]. Interestingly, the downregulation of a stress-induced
HPA axis activity in lactating dams does not manifest in all
situations. Dams exhibited greater ACTH and corticosterone
responses when exposed to either predator odor or male
intruder in the presence of the litter compared to analogically
stressed dams in the absence of offspring [42]. Thus, when
the stressor is a threat also to the offspring, the mother’s
HPA axis response to stress is much stronger. This indicates
that a specific central mechanism “filters” environmental
challenges, maintaining a reduced response of the mother’s
HPA axis to stress in the absence of a threat to pups, and
allows an adequate neuroendocrine response when offspring
is threatened [43].

Studies in sheep confirm hyporesponsiveness of the HPA
axis in lactating dams. Lactating sheep displayed lower corti-
sol response to barking dogs [44, 45] as well as isolation and
restraint stress [27] than nonlactating sheep. A critical role of
the pups’ presence in regard to hyporesponsiveness of the
HPA axis during lactation was also demonstrated in this
species. Interestingly, lactating ewes with lambs present
showed a greater cortisol response to a barking dog than to
isolation and restraint stress [45]. In our previous study,
simultaneous isolation from the flock and lamb evoked
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higher ACTH and cortisol secretion in mothers than the iso-
lation from the flock in the presence of their lamb [46]. The
above observations suggest a greater HPA response to
stressors when the safety of offspring is threatened. In
another species, the common marmoset (Callithrix jacchus),
lactating females maintained full HPA axis responsiveness to
restrain stress when their infants were present [47]. More-
over, free-living lactating rhesus macaques (Macaca mulatta)
had even higher cortisol levels than virgin females when they
were captured with their offspring [48].

HPA axis response to stress in breastfeeding women also
depends on the nature of stressors. Mothers during lactation
had lower ACTH and cortisol responses to treadmill exercise
in relation to nonlactating women [49], but cortisol response
to CO2 inhalation was not affected in breastfeeding women
compared with the control group [50]. Interestingly, hor-
monal response to social stress was reduced in breastfeeding
women when tested 10 minutes after feeding their infants
[51], but not after one hour of breastfeeding [52].

3. Mechanism of Adaptive Changes of the HPA
Axis in Lactation

Most studies on modifications of HPA axis activity in lactat-
ing females were performed in rats and demonstrated that
adaptive changes in the functioning of the HPA axis relate
mainly to the hypothalamus and pituitary [2]. However, after
dexamethasone treatment, an increase in plasma corticoste-
rone level in response to exogenous ACTH was lower in the
lactating group compared with controls [20], suggesting
alterations also at the level of the adrenal gland.

Several adaptive changes of HPA axis activity result
from modifications in the regulatory PVN region. It was
found that mRNA transcript levels were reduced for
CRH and greatly elevated for AVP within the PVN during
lactation [19, 36, 38, 53]. Moreover, it was demonstrated that
lactating rats exhibited a high degree of CRF and AVP
colocalization in parvocellular PVN neurons, hypothalamic
projections, and median eminence terminals compared to
virgins [53]. The above data allow to assume that AVP
plays a more important role in the regulation of basal
ACTH secretion than CRH during lactation. Data con-
cerning the potency of both ACTH secretagogues in lactating
sheep are not available.

Adaptive changes within the anterior pituitary concern in
particular lower sensitivity of corticotrophs to CRH. In
lactating rats, treatment with CRH caused lower ACTH
secretion than that observed in virgin rats [54]. Interestingly,
separation of the litter for 48h partially restored pituitary
responsiveness to this neuropeptide. In contrast, the
increased responsiveness of ACTH to AVP or the combi-
nation of AVP and CRH has been demonstrated in lactat-
ing rats [53, 54]. The precise mechanism of these
alterations is not known, although it was demonstrated that
the modified response to CRH was not the result of reduced
CRH and AVP receptor levels in the pituitary gland [54].
Studies on women showed that the ACTH response to
CRH treatment was blunted postpartum at 3 and 6 weeks,
but not at 12 weeks [55].

Reduced response to stress in lactating females is also a
consequence of a lower stimulation of parvocellular neurons
within the PVN, as a marked decrease of stress-induced c-fos
mRNA levels has been observed in these neurons in lactating
rats [38, 56]. Moreover, a decrease in the stress-induced
mRNA level of CRH [57] and AVP [38] has been shown
within the PVN in lactating rats. Another study showed that
the stress-induced AVP mRNA level in the parvocellular
PVN was similar to that observed in virgin females [57].
However, this discrepancy might have resulted from differ-
ences in the stressors applied, that is, lipopolysaccharide
injection versus immobilization.

Noradrenaline, which acts through α1-adrenergic recep-
tors, is the primary excitatory neurotransmitter for the par-
vocellular PVN neurons in stressful situations [58]. Thus,
HPA axis hyporesponsiveness to stress could be a conse-
quence of a decreased noradrenergic input and/or lower
sensitivity of the parvocellular PVN neurons to this neuro-
transmitter. Destruction of noradrenergic afferents terminat-
ing within the PVN in lactating rats did not reduce plasma
ACTH concentration in lactating rats, as observed in virgin
females [59]. In addition, central injection of α1- and α2-
antagonists failed to inhibit ACTH secretory response to
stress in lactating rats [60], while centrally administrated
α1-agonist caused a significant elevation of plasma cortico-
sterone concentration in virgin dams, but not in lactating
ones [61]. On the other hand, stress-induced c-fos mRNA
levels within the locus coeruleus did not differ between lactat-
ing and nonlactating rats [56].

Hyporesponsiveness of the HPA axis during lactation is
not only a consequence of PVN modifications, but also a
result of changes in other brain regions associated with
HPA axis activity regulation. Reduced expression of c-fos
mRNA was observed in the ventral part of the lateral septum
and the medial amygdala after immobilization stress in
lactating rats. It was, however, not found in the hippocam-
pus, dentate gyrus, piriform cortex, locus coeruleus, dorsal
vagal complex, and ventral tegmental area [56]. Interestingly,
central administration of CRH activated neurons in the bed
nucleus of the stria terminalis, lateral septum, medial and
central amygdaloid nuclei, and PVN in virgin rats, but
not in lactating counterparts [62]. Moreover, the basal
level of CRH mRNA was increased in the dorsomedial
region of the bed nucleus of stria terminals and decreased
in the central nucleus of the amygdala during lactation [53].
Arriaga-Avila et al. [63] demonstrated that after exposure
to immobilization stress, lactating rats have decreased DA
and increased γ-aminobutyric acid (GABA) release in the
medial prefrontal cortex region connected with, that is, the
amygdala and hypothalamus.

Modifications within the glucocorticoid negative feed-
back could be one of the suspected reasons for the altered
HPA axis function. However, the first research on this topic
demonstrated contradictory results [20, 37, 64]. More recent
data have shown that methylprednisolone, a synthetic corti-
costeroid, caused rapid attenuation of the HPA axis in virgin
rats, but not in lactating ones [22]. Additionally, a study in
humans demonstrated that dexamethasone had a lower abil-
ity to suppress plasma cortisol concentration in breastfeeding
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women [65]. The hippocampus is a promising research area
on modifications within the negative feedback of the HPA
axis during lactation. Numerous glucocorticoid receptors
(GR) and mineralocorticoid receptors (MR) are present in
this brain structure, signaling through both genomic and
nongenomic pathways [66, 67]. Moreover, the hippocampus
provides the GABAergic inhibitory network to the hypothal-
amus, especially to the PVN region [68, 69]. It has been
shown that lactating animals have significantly reduced MR
mRNA level within the hippocampus when compared with
virgin animals [22] and that there is also a reduction in the
GR density in the hippocampus during the first two weeks
of lactation, as opposed to the hypothalamus or pituitary
[64]. Considering that PVN CRH neurons are subject to
robust tonic inhibition mediated by GABAergic inputs [69],
it is likely that the limited corticosteroid signaling in the
hippocampus of lactating females increases the basal activity
of the HPA axis. On the other hand, the GABAergic system
was shown to be upregulated in lactating rats in the presence
of pups based on measurements carried out in the cerebro-
spinal fluid [70].

The hippocampus is also one of the most plastic regions
in the adult brain, since its neurons undergo continuous
remodeling throughout the lifespan [71]. It has consistently
been demonstrated in rats and sheep that cell proliferation
in the maternal hippocampus is reduced during the early
postpartum period compared to age-matched virgin females
[72–76]. This phenomenon occurs simultaneously with an
elevation in basal glucocorticoid level during lactation [72],
and both are abolished by weaning [73]. The inhibition of cell
proliferation is more likely to be a consequence of hormonal
changes that occur at parturition, since sheep mothers, sepa-
rated from their newborn lambs immediately after parturi-
tion, express a similar decrease in cell proliferation as those
staying with their lambs [72, 75]. The relationship between
hippocampal neurogenesis and hyporesponsiveness of the
HPA axis during lactation has not yet been fully explored.

4. Factors Involved in The Modulation of HPA
Axis Activity during Lactation

4.1. Suckling.Walker et al. [21] suggested that increased basal
HPA axis activity in lactating rats was not caused by the calo-
ric drain due to milk production. In light of this, other stimuli
associated with the presence of the offspring, like suckling by
the infant, seem to be crucial for the formation of mother’s
HPA axis adaptations. In rats, separation of pups from lactat-
ing mothers caused the return of basal ACTH and corticoste-
rone concentrations to the levels observed in nonlactating
females [19, 21]. Moreover, mother-offspring reunion after
a 4-hour separation resulted in a raise in maternal plasma
ACTH and cortisol concentrations [21]. More detailed data
were provided by a study using dynamic blood sampling in
rats for 24 hours. Three days after weaning, on day 10 of
lactation, basal HPA activity was substantially suppressed,
which was manifested by a reduced basal level of corticoste-
rone and its pulse number as well as delayed diurnal increase
of this hormone [22]. Two weeks after pups’ weaning, the
mean corticosterone concentration and pulse characteristic

returned to the level observed in the virgin control, although
the delayed diurnal rise phase was still observed [22].

The suckling stimulus is also crucial for maintaining a
reduced stress response in lactating animals. Separation of
the litter from lactating dams for 48 hours restored ACTH
response to CRH treatment in mothers [54]. The paramount
importance of suckling in maintaining HPA axis hypore-
sponsiveness has been confirmed in a study on lactating rats,
whose nipples were surgically removed [34]. Although these
females remained with the offspring, it was insufficient to
reduce ACTH and corticosterone stress response, as opposed
to lactating dams with intact nipples. Moreover, suckling by
pups induced an increase in c-Fos expression in many mater-
nal brain areas, including the locus coeruleus, which was not
observed to the same extent when rats were exposed to their
pups that were prevented from suckling by a wire screen [77].
Research in sheep also provided valuable data on HPA axis
activity in lactating females. It was demonstrated that lactat-
ing sheep had a lower response to isolation and restraint
stress than nonlactating controls [27]. The greatest reduction
of cortisol response occurred in lactating ewes with lambs
present and able to suckle, lower in lactating ewes with lamb
present but unable to suckle, and the lowest in mothers iso-
lated from offspring for 16 hours before and during the
experiment [27]. Our study also confirmed that suckling
reduced the stress-induced increase in plasma ACTH and
cortisol concentrations in lactating sheep [46]. We observed
that lactating sheep isolated from the flock had lower plasma
ACTH and cortisol concentrations when sucked by offspring
during the isolation [46]. These studies have clearly indicated
the importance of suckling, although stimuli associated with
the presence of pups are also essential. In contrast to animals,
reduction of the HPA axis response to a psychosocial stressor
in women seemed to occur only shortly after breastfeeding,
but not constantly during lactation [78].

The direct impact of suckling on the HPA axis in lac-
tating animals raises the question about the mechanism of
this phenomenon. Since suckling caused a substantial
release of prolactin and oxytocin, which also act in the
brain and are widely involved in maternal adaptations
during lactation [1], these both hormones may be consid-
ered as factors mediating the suckling effect on HPA axis
activity in lactating females.

4.2. Prolactin. Prolactin plays a crucial role in the onset of
maternal behavior [79, 80] and exerts an anxiolytic effect in
both lactating and nonlactating rats [81]. This hormone has
also been documented as having inhibitory properties against
HPA axis responses to stress in virgin and lactating rats [81].

The HPA axis can be regulated by prolactin originating
from two sources: synthesized by lactotrophs in the anterior
pituitary and released into the peripheral circulation, or
synthesized directly within the hypothalamus [80, 82, 83].
Suckling increases prolactin secretion during lactation not
only within the anterior pituitary, but also within the PVN
and medial preoptic area [84, 85]. Chronic infusions of
antisense oligonucleotides against the long isoform of the
prolactin receptor caused increases in stress-induced ACTH
release in lactating rats, confirming that endogenous

4 International Journal of Endocrinology



prolactin was indeed involved in the inhibition of HPA axis
stress response during lactation [80]. Moreover, infusions
of prolactin into the PVN suppressed cortisol response to
stress in both lactating and nonlactating sheep [44].

The action of prolactin within the CNS is possible
through its receptors present in the brain, especially within
the choroid plexus and hypothalamus [86–88]. Expression
of prolactin receptors during lactation in rats increases
within the medial preoptic nucleus, periventricular nucleus,
and arcuate nucleus. Moreover, prolactin receptor immuno-
reactivity or mRNA for prolactin receptors is detected within
the PVN, ventromedial hypothalamic nucleus, and supraop-
tic nucleus only during lactation, but not in diestrous females
[89]. On the other hand, Blume et al. [90] have suggested that
prolactin inhibits HPA axis activity indirectly through the
modulation of afferent inputs to the PVN.

4.3. Oxytocin. Oxytocin is the second hormone abundantly
released following suckling. Although peripheral oxytocin,
originating from the posterior pituitary, poorly penetrates
the CNS [91], suckling induces oxytocin release within the
SON and PVN [92, 93]. Moreover, oxytocin immunoreactiv-
ity increases during lactation not only within the PVN and
SON, but also in the bed nucleus of the stria terminalis, the
periventricular part of the medial preoptic, anterior commis-
sural nuclei in sheep [94], and in the brainstem and the ven-
tral septum in rats [95]. Oxytocin receptors are also widely
distributed in the CNS [96], and oxytocin binding within
the hypothalamus is increased in lactating females [97]. The
inhibitory effect of oxytocin on the HPA axis was suggested
by studies, in which oxytocin was infused intracerebroventri-
cularly in ovariectomized, estradiol-treated rats [98, 99]. The
latter authors have shown reduced corticosterone response to
noise and restraint stress. Moreover, it has been demon-
strated that restraint stress does not increase c-fos mRNA
level within the dorsal hippocampus, ventrolateral septum,
and PVN in animals treated with oxytocin, as observed in
control animals [99]. However, intracerebroventricular treat-
ment with oxytocin antagonist increased the stress-induced
plasma ACTH and corticosterone concentration in virgin
females, but not in lactating ones, demonstrating the inhibi-
tory effect of endogenous oxytocin on stress-induced HPA
axis activity only in virgin rats [100]. In sheep, oxytocin infu-
sion into the posterior pituitary reduced cortisol response to
barking dog in both lactating and nonlactating females, con-
firming the oxytocin inhibitory effect on stress-induced HPA
axis activity in mammals [44].

5. Salsolinol: A New Putative Inhibitor of HPA
Axis Activity during Lactation

Emphasizing the importance of suckling in the inhibition of
stress-induced HPA axis activity, it is worth considering
whether other factors, especially of neuronal origin, mediate
its action. This drew our attention to salsolinol, an endoge-
nous DA derivative [101], which is abundantly released
within the infundibular nucleus/median eminence (IN/ME)
of lactating sheep [102].

Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroi-
soquinoline) is a product of DA and acetaldehyde conden-
sation resulting from the enzymatic or nonenzymatic
Pictet-Spengler reaction [103]. The existence of salsolinol
synthase has been proposed [104], but it is neither fully
characterized nor its amino acid sequence is determined.
The activity of this enzyme and/or high concentrations of
salsolinol were found in several brain regions, mostly rich
in dopaminergic neurons of rats, ruminants, and humans
[102, 104–106]; salsolinol was also found in the median
eminence as well as in the neurointermediate (NIL) and
posterior lobes of the pituitary [107, 108].

In the past decades, salsolinol was considered as a com-
pound with a negative impact on the CNS. It was associated
with some neurobiological effects of ethanol [109] and was
also suspected of involvement in the etiopathogenesis of
Parkinson’s disease [103]. In addition to the involvement in
pathological processes, salsolinol may act as a neuromodu-
lator of some physiological functions in the CNS. It is
considered as a putative hypothalamic prolactin-releasing
factor in rodents [107] and ruminants [84, 108], in some
specific conditions, especially during the suckling stimulus
[102, 110, 111]. Toth et al. [107] found that salsolinol con-
centration in NIL of lactating rats revealed parallel increases
with plasma prolactin in response to a brief suckling stimuli,
following 4h separation. They also demonstrated that
salsolinol can elevate prolactin release in pituitary cell cul-
tures as well as in hypophysectomized rats bearing anterior
lobe transplants under the kidney capsule. In lactating sheep,
suckling induced an increase in the extracellular concentra-
tion of salsolinol within the IN/ME, which was closely related
to the changes in plasma concentration of prolactin [102].
Moreover, salsolinol effectively stimulated both prolactin
and oxytocin secretion in lactating sheep, when infused
into the IIIv [84, 112]. Furthermore, intracerebroventricu-
lar infusions of 1-MeDIQ, a compound antagonizing the
salsolinol actions, attenuated both prolactin [111] and
oxytocin [113] surge evoked by the suckling stimulus,
suggesting that salsolinol might mediate suckling-induced
release of both hormones.

In light of the above reports, it was important to investi-
gate whether salsolinol participates in the inhibition of HPA
axis activity during lactation. Several studies performed in
our laboratory during the last few years aimed at investigat-
ing this assumption. Initially, it was demonstrated that
intracerebroventricular infusions of salsolinol inhibited the
increase in plasma ACTH and cortisol levels in lactating
sheep induced by isolation stress [46]. Similar infusions, but
48 hours after weaning of 8-week-old lambs, also inhibited
ACTH and cortisol response to handling stress [28]. The
results of both studies suggested the inhibitory potency of sal-
solinol with respect to the HPA axis. Surprisingly, salsolinol
infusions had no effect on CRH concentration in perfusates
from the IN/ME. Furthermore, isolation stress also did not
affect CRH concentrations in perfusates from this site [46],
although this could be justified by a long-term collection of
one perfusate. On the other hand, the lack of changes in
CRH release within the ovine IN/ME, following the exposure
to stress with simultaneous increase in plasma ACTH and
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cortisol concentrations, suggests that, as in rats, AVP is an
important ACTH-releasing factor during lactation. However,
to the best of our knowledge, no direct data on this topic is
available for lactating sheep. Analogously to the above, both
suckling and salsolinol decreased ACTH and cortisol
response to stress, but did not change CRH concentration
[46], which again was indicated on AVP neurons, through
which salsolinol could affect ACTH secretion. However,
when 1-MeDIQ (a compound antagonizing salsolinol
actions) was infused into the IIIv in stressed lactating sheep,
the animals exhibited substantially higher concentrations of
perfusate CRH and plasma cortisol than stressed animals
treated with vehicle infusions [46]. This suggests that endog-
enous salsolinol is indeed an inhibiting factor of stress-
induced CRH release in lactating ewes, although its effect
on AVP neurons remains to be clarified. According to our
findings, the influence of salsolinol on stress response in
lactating sheep was similar to the change caused by suckling,
pointing to salsolinol as a factor mediating the effect of
suckling on the HPA axis [46]. Interestingly, this effect of
salsolinol in lactating sheep is specific not only for stress-
induced HPA axis activity, but also for the basal activity of
this neurohormonal axis [28]. Considering that the basal
activity of the HPA axis in lactating sheep is unaltered com-
pared to nonlactating sheep [25, 27], it appears that the salso-
linol effect related to basal HPA axis activity is counteracted
by other stimulating factors in physiological conditions.

Knowledge about the detailed mechanism of salsolinol
action in various physiological processes is still limited.
Specific and saturable binding sites for this compound were
found in the striatum, cortex, hypothalamus, median emi-
nence, and in the NIL of the pituitary [114]. It was suggested
that salsolinol binding is closely related to a site that can also
recognize and use DA as a signaling molecule, but its proper-
ties differ from any known DA receptors. Until now,
however, the structure of the salsolinol-specific receptor has
not been recognized. Previous studies on the physiological
effects of salsolinol on the CNS pointed to decreases in
catecholamine levels [115, 116]. This is consistent with the
ability of salsolinol to decrease tyrosine hydroxylase (TH)
activity, an enzyme limiting the rate of catecholamine
synthesis [117, 118].

It is difficult to explain the mechanism of salsolinol effect
on the HPA axis due to the lack of knowledge about the
detailed mechanism of salsolinol action within the CNS. An
interaction with the central noradrenergic system is one of
the possible routes, and the main premise is that salsolinol
suppresses TH activity [117, 118]. It was shown that salsoli-
nol, similarly to suckling, significantly attenuated stress-
induced noradrenaline increases within the intracellular
space of the IN/ME, confirming the inhibitory effect of
salsolinol on the noradrenergic system [46]. In addition to
changes in noradrenaline, we observed a considerable
increase in DA concentration within the IN/ME during stress
response, and both salsolinol and suckling greatly diminished
this reaction [46]. Moreover, our earlier study demonstrated
that salsolinol infusion into the IIIv of unstressed, anestrous
sheep reduced DA concentration within the IN/ME to an
undetectable level [116]. Although the regulation of the

HPA axis by DA has not been widely studied, it is suspected
that this catecholamine could stimulate secretory activity of
the HPA axis [119–121]. The suppressed dopaminergic
system could, therefore, contribute to the decreasing HPA
axis response to stress. However, it should be noted that the
measurements of noradrenaline and DA in our study refer
to the IN/ME and may not entirely reflect the amounts of
these neurotransmitters within the PVN, and thus further
research focusing directly on the PVN is necessary to confirm
our presumptions.

It is believed that salsolinol is a prolactin-releasing factor;
hence, one can expect that the inhibition of HPA axis activity
by this compound could result from the increased prolactin
release. However, despite the inhibition of ACTH and corti-
sol stress response, salsolinol does not increase peripheral
prolactin concentration in stressed-lactating sheep, suggest-
ing that prolactin does not mediate this salsolinol effect
[46]. In order to verify this observation, we conducted serial
salsolinol intracerebroventricular injections in anestrous
sheep subjected to handling stress at the turn of winter and
spring, when prolactin secretion was significantly reduced
[13]. As a result of salsolinol injections, sheep had lower
ACTH and cortisol response to stress compared to vehicle-
treated animals, but there were no changes in plasma prolac-
tin concentration, confirming that salsolinol action in regard
to the HPA axis occurred without prolactin mediation [29].
Oxytocin should also be considered as a potential mediator
of the discussed phenomenon, since salsolinol can mediate
suckling-induced release of this hormone in lactating sheep
[113]; however, it still remains to be investigated. Moreover,
it requires a detailed examination of the relationship between
prolactin and oxytocin and particularly which of these
hormones responds first to salsolinol. This topic, however,
is beyond the scope of this review.

6. Perspectives

Abnormalities in the functioning of the HPA axis in women
are often correlated with postpartum depression [122, 123].
Therefore, understanding HPA axis adaptive mechanisms
in lactating females seems to be crucial for the prevention
of this disorder. Particular attention should be paid to suck-
ling, because some articles have reported that nonbreastfeed-
ing women have a higher level of depressive symptoms
compared to breastfeeding women, although antidepressant
effects of breastfeeding have still not been proven [124].
Despite the practical needs of medicine, and the number of
clinical and basic studies on the functioning of the HPA axis
during lactation, the issue has not yet been fully investigated.
Our research on the role of salsolinol in this phenomenon
provides new and intriguing data and also initiates subse-
quent questions. In particular, they include the following:
Does the inhibitory effect of salsolinol on the HPA axis occur
in lactating rats—the main model for studying the mecha-
nism of HPA axis adaptation during lactation? How does
salsolinol regulate AVP and CRH secretion within the PVN
and whether the noradrenergic system is involved? Does
oxytocin mediate its effect on the HPA axis? The proper
mechanism of salsolinol action in the CNS and, especially,
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the specific salsolinol receptor structure is still the great
unknown. In addition to the use of other animal models,
there is also a need to conduct in vitro studies to analyze
the possibility of direct salsolinol action on the pituitary.
Despite these several unknowns, our research provides data
suggesting a new role of salsolinol in the physiology of lacta-
tion, being the next piece of the puzzle.
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