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Abstract: Aliphatic diazirines have been widely used as prominent photophores for photoaffinity
labeling owing to their relatively small size which can reduce the steric effect on the natural interaction
between ligands and proteins. Based on our continuous efforts to develop efficient methods for
the synthesis of aliphatic diazirines, we present here a comprehensive study about base-mediated
one-pot synthesis of aliphatic diazirines. It was found that potassium hydroxide (KOH) can also
promote the construction of aliphatic diazirine with good efficiency. Importantly, KOH is cheaper,
highly available, and easily handled and stored compared with the previously used base, potassium
tert-butoxide (t-BuOK). Gram-scale study showed that it owned great advantages in being used
for the large-scale production of aliphatic diazirines. This protocol is highly neat and the desired
products can be easily isolated and purified. As the first comprehensive study of the base-mediated
one-pot synthesis of aliphatic diazirines, this work provided good insight into the preparation and
utilization of diazirine-based photoaffinity labeling probes.
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1. Introduction

Photoaffinity labeling [1–5] has emerged as a powerful methodology in the field of biology
due to its availability for elucidating the interactions between bioactive molecules and proteins.
Various photophores—including phenyl azides, benzophenones, and diazirines—are commonly
employed in this field [6–11]. Under UV irradiation, photophores are converted into highly
reactive intermediates which can form covalent bonds between ligands and proteins. The stable
links in the components allow for further separation and detection. Among these photophores,
aliphatic diazirines [12–16] have attracted tremendous attention due to their relatively small size,
thus minimizing the steric effect of the natural interaction between ligands and proteins. For the
conventional synthesis procedure of aliphatic diazirines [17,18], the ketones precursor was first treated
with ammonia for several hours, then it was reacted with hydroxylamine-O-sulfonic acid (NH2OSO3H)
to form diaziridines. After removal of the ammonia, diaziridines were further converted to diazirine in
the presence of I2-TEA or Ag2O (Scheme 1a). Despite the wide applications, this protocol suffers many
issues such as low yield and tedious procedures. To solve these issues, we have recently developed
a novel one-pot synthesis of aliphatic diazirines by using t-BuOK under air [19]. In spite of its good
efficiency, t-BuOK is a flammable base and it should be commonly handled and stored under inert
gas. Furthermore, its relatively high price also limits the large-scale production of diazirines and the
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corresponding labeling probes. Herein, for the first time, we carried out a comprehensive study to
screen the bases and other conditions, and it was found that KOH also could be used for one-pot
synthesis of aliphatic diazirines with great efficiency (Scheme 1b). Significantly, it is cheaper, easily
handled, and stored as well as being highly available in many labs. Gram-scale study confirmed its
usability for the large-scale production of aliphatic diazirines. Furthermore, a kinetic study to elaborate
the one-pot process was also performed on the basis of NMR analysis.

Scheme 1. Previous (a) and base-mediated one-pot (b) synthesis of aliphatic diazirines.

2. Results and Discussion

2.1. Reaction Optimization

We initiated our studies by using levulinic acid (1a) as a model substrate for reaction optimization,
which was treated with 1.1 equivalent of NH2OSO3H in liquid ammonia at room temperature for
12 h to generate the corresponding diaziridine in situ. Then, base (3.3 equiv.) was gradually added
into the mixture and the reaction was further stirred at room temperature under air for 2 h. Lithium
amide was first tested and it was able to afford aliphatic diazirine (2a) at a 36% yield (Table 1,
entry 1). Sodium amide was examined and a slightly higher yield of 2a was obtained (44%, entry 2).
Several metal hydrides were able to mediate the construction of diazirine (2a), albeit with moderate
yields (entries 3–5). Alkoxides were also utilized to promote the formation of products and the
results indicated that a potassium base is preferred to sodium one (entries 6–8). Furthermore, NaOH
and KOH [20–25] were employed and it was found that KOH was able to afford 2a in 67% yield
(entries 9 and 10). Although its efficiency was slightly lower compared to t-BuOK [19], KOH is easily
handled, stored, and highly available in many labs. Its relatively low price makes it feasible for
large-scale synthesis of aliphatic diazirines. Moreover, the by-products derived from OH anion can
easily be removed in this reaction. Thus, we optimized KOH for the subsequent study. The reaction
carried out at either low temperature (entry 11) or in methanolic ammonia (entry 12) caused a low
yield of product (2a), indicating that both temperature and concentration of ammonia are crucial for
the generation of diazirine in this protocol.

2.2. Scope Investigation

With the optimized condition in hand, the generality of the protocol was evaluated with different
ketone procedures. A wide range of substituted ketones—including acid, alcohol, ester, and hexatomic
rings—were tolerated under this condition to be converted into the corresponding diazirine products.
When monoacid substrates were tested, 3.3 equivalents of KOH were required to create the desired
product and the corresponding diazirines were obtained in moderate to good yield (Scheme 2, 2a–d).
A binary acid derivative (1e) was subjected to the optimal reaction with 4.3 equivalents of KOH, and the
desired product (2e) was isolated in 35% yield. Neutral ketones with aliphatic chain or aromatic ring are
good substrates (2f–h) and up to an 89% yield was given for compound (2g). 3-Azibutanol (2i), a widely
utilized photophore, was readily synthesized with a 75% yield. Compared to the previously synthetic
method for 2i, the KOH-mediated procedure showed a relatively good efficiency. Furthermore, t-butyl
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alcohol ester was also tolerated in the optimal condition, and the desired product was isolated in
61% yield (2j). The spectroscopic data were summarized in Supplementary Materials.

Table 1. Reaction optimization of one-pot synthesis for aliphatic diazirine 2a a.

Entry Solvent Base Temp Yield (%) b

1 NH3 LiNH2 RT 36
2 NH3 NaNH2 RT 44
3 NH3 NaH RT 47
4 NH3 MgH2 RT 20
5 NH3 CaH2 RT 17
6 NH3 EtONa RT 45
7 NH3 MeONa RT 45
8 NH3 MeOK RT 63
9 NH3 NaOH RT 28
10 NH3 KOH RT 67
11 NH3 KOH 0 ◦C 11

12 NH3/MeOH
c KOH RT 5

a Unless otherwise mentioned, 1a (2 mmol) and NH2OSO3H (1.1 equiv.) was added to liquid ammonia (8 mL)
at −78 ◦C and the reaction mixture was stirred at room temperature for 12 h until base (3.3 equiv.) was added.
After the addition of base, the reaction was further stirred at room temperature under air for 2 h. b Isolated yields
were presented. c Ammonia gas was bubbled into MeOH (8 mL) at 0 ◦C for 30 min.

Scheme 2. Scope investigation of one-pot synthesis of aliphatic diazirine with KOH a. a Unless
otherwise mentioned, 1 (2 mmol) and NH2OSO3H (1.1 equiv.) was added into liquid ammonia (8 mL)
at −78 ◦C and the reaction mixture was stirred at room temperature for 12 h until base was added.
After the addition of base, the reaction was further stirred at room temperature under air for 2 h.
b 4.3 equivalent of KOH was used.
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2.3. Kinetic Study of One-Pot Synthesis of Aliphatic Diaizirine

To investigate the one-pot process, we performed a kinetic study based on 1H-NMR analysis.
Aliphatic ketone (1f) (Scheme 3a) was initially treated with liquid ammonia at room temperature, while
no imine (1f′) was observed although the treatment was continued to 12 h. When 1f was subjected
to the reaction with NH2OSO3H in liquid ammonia at room temperature for 12 h, the corresponding
diaziridine (1f′′) was detected (Scheme 3b). To be noted, a trace amount of diazirine (2f) was generated
at this stage which can be detected by 1H-NMR spectrum. Following with further treatment by KOH
for 2 h, the formation of diazirine (2f) was dramatically improved (Scheme 3c). Furthermore, no
other by-products were distinctly detected in the spectrum during the formation of diaziridine as well
as diazirine. These results indicated that diaziridine as the precursor can be directly converted to
diazirine in KOH-mediated one-pot reaction. This method is useful with the isolation and purification
of the final products being more convenient.

Scheme 3. One-pot synthesis of aliphatic diazirine 2f. The reaction stages were monitored using
1H-NMR with CDCl3. (a) starting material 1f; (b) 1f was treated with NH2OSO3H in liquid ammonia
for 12 h; (c) The residue was further treated with KOH in liquid ammonia under air for 2 h.

2.4. Gram-Scale Synthesis

To explore the behavior of this protocol for large-scale synthesis of aliphatic diazirines, we
designed gram-scale reactions. Compound 1f (1.03 g) was subjected to the optimized conditions and
the desired product (2f) can be readily isolated at a 90% yield (Scheme 4a). It undoubtedly confirmed
the advantages and applicability of KOH-mediated synthetic strategy for the large-scale synthesis
of aliphatic diazirines. 3-Azibutanol (2i) is a widely used photophore that labels active molecules
in the field of photoaffinity labeling [26–30]. While many syntheses suffered relatively low yields.
By using the KOH-mediated one-pot strategy, we can synthesize 2i in a 75% yield (Scheme 2). It is
a great improvement compared with previous synthetic methods as well as the t-BuOK-mediated
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one. A gram-scale synthesis was carried out and the protocol was able to afford 2i at a 44% yield from
gram-scale 1i (Scheme 4b), thus indicating the good applicability of KOH-mediated one-pot strategy
in large-scale synthesis.

Scheme 4. Gram-scale synthesis of 2f (a) and 2i (b).

3. Materials and Methods

3.1. General Procedures

All reactions were carried out in a metal sealed tube (300 mL, 10 MPa, 200 ◦C). The NMR spectra
were measured on JEOL EX-270 (JEOL, Tokyo, Japan). All solvents were of reagent grade and purified
using the appropriate methods. HRMS spectra were obtained with a Waters UPLC ESI-TOF mass
spectrometer (Waters, Milford, CT, USA).

3.2. Typical Procedures for One-Pot Synthesis of Aliphatic Diazirines from Corresponding Ketones

3.2.1. Acidic Substrates (1a–e)

Ketone (2 mmol) was dissolved in liquid NH3 (8 mL) in a sealed tube at −78 ◦C.
Hydroxylamine-O-sulfonic acid (1.1 equiv.) was carefully added at the same temperature. After closing
the tube, the reaction mixture was stirred at room temperature for 12 h, before it was cooled at −78 ◦C
and subsequently opened. KOH (3.3 equiv. for 1a–d and 4.3 equiv. for 1e) was added to liquid NH3

mixture and then the tube was sealed. The reaction mixture was further stirred at room temperature
under air for 2 h. The ammonia was gradually removed at room temperature in a fume hood.
The residue was dissolved with water (30 mL) which was adjust pH to 2 with HCl aq, then extracted
twice with Et2O (30 mL). The organic layer was washed with brine, dried over MgSO4, and evaporated.
The residue was subjected to silica-gel column chromatography to afford the diazirinyl products.

3.2.2. Neutral Substrates (1f–j)

Ketone (2 mmol) was dissolved in liquid NH3 (8 mL) in a sealed tube at −78 ◦C.
Hydroxylamine-O-sulfonic acid (1.1 equiv.) was carefully added at same temperature. After closing the
tube, the reaction mixture was stirred at room temperature for 12 h, before it was cooled at −78 ◦C and
subsequently opened. KOH (2.3 equiv.) was added to liquid NH3 mixture then the tube was sealed.
The reaction mixture was stirred at room temperature under air for 2 h. The ammonia was gradually
removed at room temperature under a fume hood. The residue was partitioned between water (30 mL)
and Et2O (30 mL). The aqueous layer was extracted twice with Et2O (30 mL). The combined organic
layer was washed by brine, dried over MgSO4, and evaporated. The residue was subjected to silica-gel
column chromatography to afford the diazirinyl products.
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3-(3-Methyl-3H-diazirin-3-yl)propanoic acid (2a): Pale yellow oil, 1H-NMR (270 MHz, CDCl3) δ ppm:
11.88 (s, 1H), 2.26 (t, J = 7.6 Hz, 2H), 1.73 (t, J = 7.6 Hz, 2H), 1.05 (s, 3H); 13C-NMR (68 MHz, CDCl3) 178.3,
29.1, 28.2, 24.8, 19.2; HRMS (ESI) m/z [M + Na]+ calcd. for C5H8N2O2Na 151.0483, found 151.0508.

4-(3-Methyl-3H-diazirin-3-yl)butanoic acid (2b): Pale yellow oil, 1H-NMR (270 MHz, CDCl3) δ ppm:
2.35 (t, J = 7.2 Hz, 2H), 1.48–1.57 (m, 2H), 1.38–1.44 (m, 2H), 1.02 (s, 3H); 13C-NMR (68 MHz, CDCl3)
179.7, 33.4, 33.1, 25.2, 19.5, 19.0; HRMS (ESI) m/z [M + Na]+ calcd. for C6H10N2O2Na 165.0640,
found 165.0641.

5-(3-Methyl-3H-diazirin-3-yl)pentanoic acid (2c): Pale yellow oil, 1H-NMR (270 MHz, CDCl3) δ ppm:
2.34 (t, J = 7.4 Hz, 2H), 1.56–1.67 (m, 2H), 1.35–1.41 (m, 2H), 1.19–1.29 (m, 2H), 1.01 (s, 3H); 13C-NMR
(68 MHz, CDCl3) 179.9, 33.9, 33.7, 25.5, 24.0, 23.4, 19.6; HRMS (ESI) m/z [M + Na]+ calcd. for
C7H12N2O2Na 179.0796, found 179.0778.

1,2-Diazaspiro[2.5]oct-1-ene-6-carboxylic acid (2d): Pale yellow solid, 1H-NMR (270 MHz, CDCl3) δ ppm:
2.47–2.57 (m, 1H), 2.02–2.11 (m, 2H), 1.82–1.92 (m, 2H), 1.61–1.73 (m, 2H), 0.87 (dt, J = 14.1, 3.6 Hz,
2H); 13C-NMR (68 MHz, CDCl3) 181.6, 41.2, 29.8, 27.3, 26.4; HRMS (ESI) m/z [M + H]+ calcd. for
C7H11N2O2 155.0821, found 155.0809.

3,3′-(3H-Diazirine-3,3-diyl)dipropanoic acid (2e): Pale yellow solid, 1H-NMR (270 MHz, CDCl3) δ ppm:
2.11 (t, J = 7.5 Hz, 4H), 1.72 (t, J = 7.5 Hz, 4H); 13C-NMR (68 MHz, CDCl3) 176.2, 29.1, 28.9, 28.7; HRMS
(ESI) m/z [M + Na]+ calcd. for C7H10N2O4Na 209.0538, found 209.0551.

3-Methyl-3-phenethyldiaziridine (1f′′): Pale yellow oil, 1H-NMR (270 MHz, CDCl3) δ ppm: 7.27–7.32
(m, 2H), 7.18–7.22 (m, 3H), 2.77 (t, J = 7.8 Hz, 2H), 1.91 (t, J = 7.8 Hz, 2H), 1.61–1.70 (m, 2H), 1.47 (s, 3H);
13C-NMR (68 MHz, CDCl3) δ 141.1, 128.5, 128.2, 126.1, 55.0, 40.4, 31.3, 22.9; HRMS (ESI) m/z [M + H]+

calcd. for C10H15N2 163.1235, found 163.1238.

3-Methyl-3-phenethyl-3H-diazirine (2f): Pale yellow oil, 1H-NMR (270 MHz, CDCl3) δ ppm: 7.26–7.31
(m, 2H), 7.15–7.22 (m, 3H), 2.46–2.52 (m, 2H), 1.64–1.70 (m, 2H), 1.00 (s, 3H); 13C-NMR (68 MHz, CDCl3)
140.9, 128.6, 128.3, 126.2, 36.3, 30.0, 25.6, 19.8; HRMS (ESI) m/z [M + H]+ calcd. for C10H13N2 161.1079,
found 161.1085.

3-Methyl-3-nonyl-3H-diazirine (2g): Pale yellow oil, 1H-NMR (270 MHz, CDCl3) δ ppm: 1.25–1.35
(m, 16H), 0.99 (s, 3H), 0.88 (t, J = 6.2 Hz, 3H); 13C-NMR (68 MHz, CDCl3) 34.2, 31.8, 29.33, 29.31, 29.2,
29.1, 23.9, 22.5, 19.8, 13.9; HRMS (ESI) m/z [M + H]+ calcd. for C11H23N2 183.1861, found 183.1888.

5-Methyl-1,2-diazaspiro[2.5]oct-1-ene (2h): Pale yellow oil, 1H-NMR (270 MHz, CDCl3) δ ppm: 1.58–1.81
(m, 5H), 1.36–1.45 (m, 1H), 1.00–1.10 (m, 1H), 0.91 (d, J = 6.4 Hz, 3H), 0.50–0.59 (m, 2H); 13C-NMR
(68 MHz, CDCl3) 39.8, 33.6, 31.0, 30.9, 28.3, 23.5, 21.8; HRMS (ESI) m/z [M + H]+ calcd. for C7H13N2

125.1079, found 125.1084.

2-(3-Methyl-3H-diazirin-3-yl)ethanol (2i): Pale yellow oil, 1H-NMR (270 MHz, CDCl3) δ ppm: 3.54
(t, J = 6.3 Hz, 2H), 1.65 (t, J = 6.3 Hz, 2H), 1.08 (s, 3H); 13C-NMR (68 MHz, CDCl3) 57.6, 36.9, 24.1, 20.1;
HRMS (ESI) m/z [M + H]+ calcd. for C4H9N2O 101.0715, found 101.0738.

Ttert-butyl 3-(3-methyl-3H-diazirin-3-yl)propanoate (2j): 1H-NMR (270 MHz, CDCl3) δ ppm: 2.03
(t, J = 7.7 Hz, 2H), 1.59 (t, J = 7.7 Hz, 2H), 1.38 (s, 9H), 0.95 (s, 3H); 13C-NMR (68 MHz, CDCl3)
171.7, 80.6, 30.0, 29.6, 27.9, 25.1, 19.5; HRMS (ESI) m/z [M + H]+ calcd. for C9H17N2O2 185.1285,
found 185.1302.

4. Conclusions

In conclusion, we reported a comprehensive study about the base-mediated one-pot synthesis of
aliphatic diazirines. KOH, a cheap, easily-handled and stored base, was optimized for the one-pot
reaction. Many precious diazirines were prepared in moderate to excellent yields. Kinetic study
showed that diaziridine as the intermediate can be directly converted to diazirine after the addition
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of KOH under air. Gram-scale synthesis indicated its good applicability in the large-scale synthesis
of aliphatic diazirines for photoaffinity labeling. The reactions are pretty neat and products can be
easily isolated and purified. This protocol will be helpful for effective synthesis of diazirine-based
photoaffinity label ligands to elucidate functional analysis of biological activities.

Supplementary Materials: Copies of the 1H- and 13C-NMR spectra are available online.
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