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With the increasingly severe problem of bacterial resistance, colistin, as the last line
of defense, has attracted attention again. Mobile colistin resistance (mcr-1) gene is
involved in the horizontal transmission of colistin resistance in Gram-negative bacteria
(GNB), which is a serious threat to human health. Therefore, rapid detection of mcr-
1 gene presence in clinical samples is crucial. In this study, a Recombinase-aided
amplification(RAA) method for mcr-1 was successfully constructed, with sensitivity of
20 copies/reaction. In addition, amplification signal could only be detected in the strain
containing mcr-1 gene among 14 different bacterial species. The method was then
used to test a total of 672 clinical samples from a pediatric hospital in Beijing. Five
strains harbored mcr-1 genes were isolated from mcr-1-positive clinical samples and
identified as Escherichia coli. Multi-locus sequence typing (MLST) analysis showed that
the five E. coli belonged to different ST types. Notably, the mcr-1 gene from the isolates
could be transferred conjugately to the recipient strain E. coli J53, with highest transfer
efficiency up to 57–58%, suggesting that the mcr-1 gene was located on the plasmid.
These findings showed that the RAA assay has potential to be a rapid and sensitive mcr-
1 gene screening test for clinical samples, and mcr-1 could be transmitted vertically and
horizontally between and within bacterial species in a plasmid-mediated manner.

Keywords: RAA assay, mcr-1, E. coli, colistin, children

INTRODUCTION

For the past few decades, polymyxins are used for the treatment of multidrug-resistant GNB when
better treatment options are not available (Li et al., 2006; Lim et al., 2010). The main mechanism of
action of polymyxin is that its positive charge binds to the negative charge of the phosphate groups
of lipid A on lipopolysaccharide (LPS) localized on the outer membrane of Gram-negative bacteria
(GNB) (Schindler and Osborn, 1979; Srimal et al., 1996; Moffatt et al., 2019). Ca2+ is essential for
maintaining the structural stability of LPS, and polymyxin can replace LPS-bound Mg2+ and Ca2+,
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increasing the permeability of bacterial outer membrane and
causing bacterial death (Schindler and Osborn, 1979). Many
factors, such as two-component systems PhoP/PhoQ (Elizabeth
et al., 2021) and efflux pumps MexXY-OprM (Poole et al.,
2015), can influence the resistance of bacteria to polymyxin.
However, the plasmid-mediated mcr genes can rapidly spread
via horizontal gene transfer (HGT) among humans, animals,
and the environment, posing the greatest risk to human health
(Hussein et al., 2021).

The mcr genes encode phosphoethanolamine (pEtN)
transferase enzymes, which can reduce the electrostatic
interaction between polymyxin and lipid A of LPS by binding
pEtN moiety to the lipid A of GNB, creating bacteria resistant
to polymyxin (Baron et al., 2016). So far, ten variants of the mcr
gene, mcr-1 to mcr-10, have been identified in various bacteria
(Wang et al., 2020). The plasmid-mediated colistin resistance
gene mcr-1 was the first to be identified from E. coli in 2015 and
is more widely disseminated than the other nine variants, while
mcr-2 to mcr-10 have only occasionally been reported (Liu et al.,
2016; Xiaomin et al., 2020). The spread of the mcr-1 gene makes
multidrug-resistant GNB more resistant to polymyxins, which
poses a serious threat to public health (Xiaomin et al., 2020).
Hence, a rapid and accurate method of detecting the mcr-1 gene
carrier strain would be helpful to guide clinical medication and
inhibit the mcr-1 gene spread.

The polymerase chain reaction (PCR) method has been used
to detect the presence of mcr genes, but it is time consuming
(Rebelo et al., 2018; Mentasti et al., 2021). RAA assay is a highly
efficient method for the rapid detection of specific target genes.
Based on isothermal amplification technology, the RAA assay can
be completed within 15–30 min at 39◦C and has been widely
used in clinical applications, such as for identifying New Delhi
Metallo-β-Lactamase Gene (Feng et al., 2021), blaKPC (Zhang
et al., 2021) and other applications (Fan et al., 2019; Qi et al., 2019;
Shen et al., 2019; Xue et al., 2020a,b). Here, an RAA assay was
developed to detect the mcr-1 gene in clinical samples, which was
proven to have high specificity and sensitivity. To further analyze
the characteristics of strains harboring mcr-1 genes obtained
from clinical samples, the minimum inhibitory concentrations
(MICs) and the HGT of mcr-1 to these isolates were investigated.

MATERIALS AND METHODS

Bacterial Strains, Growth Conditions,
and Primers
Information on all of the strains used in this study is listed in
Table 1. All strains were cultured in Luria-Bertani (LB) broth
(5 g/L yeast extract, 10 g/L sodium chloride, and 10 g/L tryptone)
at 37◦C in a shaker at 200 rpm. All primers involved in the
construction of plasmid, PCR and RAA assay are listed in Table 2.

Acquisition, Isolation, and Identification
of Clinical Strains
Six hundred and seventy-two stool samples were collected from
inpatients of Capital Institute of Pediatrics, Beijing, China. After

dilution, stool samples with different dilution gradients were
plated on LB plates with 2 mg/L of colistin sulfate salt and
incubated at 35–37◦C for 24 h. The screened single colonies
were identified using the VITEK R© 2 compact system (bioMérieux,
Nürtingen, Germany). Standard PCR and RAA assay were used
simultaneously to detect whether the strains harbored the mcr-
1 gene. Meanwhile, a sample of approximately 200 mg was
subjected to DNA extraction using a kit (Vazyme Biotech Co.,
Ltd., Nanjing, China) for further use.

Primer Design for the
Recombinase-Aided Amplification Assay
The sequence of the mcr-1 gene was downloaded from the
National Center for Biotechnology Information (NCBI) GenBank
database (NCBI Reference Sequence: NG_050417.1). The primers
and probes were manually designed under the principles of
RAA primer and probe. Briefly, the primer size was between
30 and 35 bp, the probe size was between 46 and 52 bp
and the final product size was between 100 and 200 bp. The
specificity of primers and probes was confirmed by NCBI
primer-specific BLAST analysis and the hairpins and primer
dimers were analyzed by Primer Primier 5. As an internal
positive control, the primers and the probe of the 16S rRNA
gene were designed in its conserved region. Related primers
and probes involved in this study were synthesized by Sangon
Biotech (Shanghai, China) and purified by high-performance
liquid chromatography.

Analytical Sensitivity and Specificity of
the Recombinase-Aided Amplification
Assay
The full-length mcr-1 gene was amplified by PCR and
cloned into vector pUC57 (Tiangen Biotech Co., Ltd., Beijing,
China) by TA cloning, and the recombinant plasmid was
called pUC57-mcr-1. The analytical sensitivity of the RAA
assay was determined using 10-fold serial dilutions of the
recombinant plasmid pUC57-mcr-1 ranging from 107 to
100 copies/µL. The analytical specificity of the RAA assay
was evaluated by amplifying the mcr-1 and 16S rRNA
genes from 14 different strains, respectively E. colimcr−1,
Klebsiella pneumoniae 2146, E. coli ATCC 25922, Pseudomonas
aeruginosa ATCC 27853, Shigella sonnei, Salmonella enteritidis,
Acinetobacter baumannii, K. oxytoca, Enterobacter aerogenes,
Proteus mirabilis, Enterobacter cloacae, Serratia marcescens,
Campylobacter jejuni, and Citrobacter freundii. The E. colimcr−1

was used as a positive control and sterile water was used as a
negative control.

Recombinase-Aided Amplification Assay
A commercial RAA kit (Jiangsu Qitian Bio-Tech Co., Ltd., China)
was used for the RAA assays. The RAA assays were performed
as described previously (Feng et al., 2021). Briefly, a 50 µL
reaction mixture was prepared first, which was made of reaction
buffer (25 µL), DNase-free water (15.7 µL), 10 µM primer F
(2.1 µL), 10 µM primer R (2.1 µL), DNA template (2 µL),
280 mM magnesium acetate (2.5 µL), and 10 µM probe (0.6
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TABLE 1 | Bacterial strains used in this study.

Bacterial strain Description/function Source

E. colimcr−1 Specificity of the RAA Assay Our microorganism center

Klebsiella pneumoniae 2,146 Specificity of the RAA Assay Our microorganism center

E. coli ATCC 25922 Specificity of the RAA Assay Our microorganism center

Shigella sonnei Specificity of the RAA Assay Our microorganism center

Salmonella enteritidis Specificity of the RAA Assay Our microorganism center

Acinetobacter baumannii Specificity of the RAA Assay Clinical isolate

Klebsiella oxytoca Specificity of the RAA Assay Clinical isolate

Enterobacter aerogenes Specificity of the RAA Assay Clinical isolate

Proteus mirabilis Specificity of the RAA Assay Clinical isolate

Enterobacter cloacae Specificity of the RAA Assay Clinical isolate

Serratia marcescens Specificity of the RAA Assay Clinical isolate

Campylobacter jejuni Specificity of the RAA Assay Clinical isolate

Citrobacter freundii Specificity of the RAA Assay Clinical isolate

Pseudomonas aeruginosa Specificity of the RAA Assay Clinical isolate

E. coli/mcr-1 1 mcr-1 positive strain 1 Clinical isolate

E. coli/mcr-1 2 mcr-1 positive strain 2 Clinical isolate

E. coli/mcr-1 3 mcr-1 positive strain 3 Clinical isolate

E. coli/mcr-1 4 mcr-1 positive strain 4 Clinical isolate

E. coli/mcr-1 5 mcr-1 positive strain 5 Clinical isolate

E. coli J53 Recipient strain Our microorganism center

E. coli-J53TCpE. coli/mcr-1 1 E. coli-J53 contains mcr-1 which was transferred from E. coli/mcr-1 1 This study

E. coli-J53TCpE. coli/mcr-1 2 E. coli-J53 contains mcr-1 which was transferred from E. coli/mcr-1 2 This study

E. coli-J53TCpE. coli/mcr-1 3 E. coli-J53 contains mcr-1 which was transferred from E. coli/mcr-1 3 This study

E. coli-J53TCpE. coli/mcr-1 4 E. coli-J53 contains mcr-1 which was transferred from E. coli/mcr-1 4 This study

E. coli-J53TCpE. coli/mcr-1 5 E. coli-J53 contains mcr-1 which was transferred from E. coli/mcr-1 5 This study

TABLE 2 | Primers used in this study.

Primer Sequence (5’→3’) Function

mcr-1-F1 ATGATGCAGCATACTTCTGT Plasmid construction

mcr-1-R1 TCAGCGGATGAATGCGGTGC Plasmid construction

mcr-1-F CGTTCAGCAGTCATTATGCCAGTTTCTTTCGCGTGC RAA assay

mcr-1-R CTTACGCATATCAGGCTTGGTTGCTTGTACCGC RAA assay

mcr-1-P GCCAATCTACTCGGTGGGTAAGCTTGCCAG[FAM-dT][THF][BHQ-dT]TGAGTATAAAAAAGC3’-block RAA assay

16S-F TGGAGCATGTGGTTTAATTC GATGCAACGC RAA assay

16S-R GGATAAGGGTTGCGCTCGTT GCGGGACTTAA RAA assay

16S-P TGACATCCACAGAACTTTCCAGAGATGGATTGG[FAM-dT]G[THF]C[BHQ-dT] TCGGGAACTGTGAGAC [30 -block] RAA Assay

dinBoF GTTTTCCCAGTCACGACGTTGTATGAGAGGTGAGCAATGCGTA MLST

dinB2oR TTGTGAGCGGATAACAATTTCCGTAGCCCCATCGCTTCCAG MLST

icd2oF GTTTTCCCAGTCACGACGTTGTAATTCGCTTCCCGGAACATTG MLST

icdoR TTGTGAGCGGATAACAATTTCATGATCGCGTCACCAAAYTC MLST

pabB2oF GTTTTCCCAGTCACGACGTTGTAAATCCAATATGACCCGCGAG MLST

pabBoR TTGTGAGCGGATAACAATTTCGGTTCCAGTTCGTCGATAAT MLST

polB2oF GTTTTCCCAGTCACGACGTTGTAGGCGGCTATGTGATGGATTC MLST

polBoR TTGTGAGCGGATAACAATTTCGGTTGGCATCAGAAAACGGC MLST

putP2oF GTTTTCCCAGTCACGACGTTGTACTGTTTAACCCGTGGATTGC MLST

putPoR TTGTGAGCGGATAACAATTTCGCATCGGCCTCGGCAAAGCG MLST

trpAoF GTTTTCCCAGTCACGACGTTGTAGCTACGAATCTCTGTTTGCC MLST

trpAoR TTGTGAGCGGATAACAATTTCGCTTTCATCGGTTGTACAAA MLST

trpB2oF GTTTTCCCAGTCACGACGTTGTACACTATATGCTGGGCACCGC MLST

trpBoR TTGTGAGCGGATAACAATTTCCCTCGTGCTTTCAAAATATC MLST

uidAoF GTTTTCCCAGTCACGACGTTGTACATTACGGCAAAGTGTGGGTCAAT MLST

uidAoR TTGTGAGCGGATAACAATTTCCCATCAGCACGTTATCGAATCCTT MLST
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FIGURE 1 | Primer and probe regions in mcr-1.

FIGURE 2 | Specificity of the RAA assay. (A) Amplification signal was only
amplified from E. colimcr−1, and no relevant signal was detected in other
mcr-1-lacking strains. (B) All strains produced 16S rRNA gene amplification
signals: 1: P. mirabilis, 2: K. pneumoniae 2146, 3: K. oxytoca, 4:
P. aeruginosa, 5: S. sonnei, 6: A. baumannii, 7: C. jejuni, 8: E. aerogenes, 9:
E. colimcr−1, 10: S. enteritidis, 11: E. cloacae, 12: C. freundii, 13: P. mirabilis,
14: E. coli ATCC 25922.

µL). Then, the reaction mixture was added to a tube with the
lyophilized form of RAA enzyme mix and the tube was mixed
briefly and incubated for 4 min in a B6100 Oscillation mixer (QT-
RAA-B6100; Jiangsu Qitian Bio-Tech Co., Ltd., China). Finally,
a fluorescence detector (QT-RAA-1620; Jiangsu Qitian Bio-Tech
Co., Ltd.) was used to measure the fluorescence for 20 min
at 39◦C.

FIGURE 3 | Sensitivity of the RAA assay. An increase in the fluorescence
signal was observed from 1 × 101 to 1 × 107 copies/reaction.

Standard Polymerase Chain Reaction
Assay
To detect mcr-1 gene, PCR was performed in a 20
µL reaction mix containing the following: 10 µL of
PCR Master Mix reagent (Tiangen Biotech Co., Ltd.,
Beijing, China), 1 µL of 10 µM mcr-1-F primer (5′-
CGTTCAGCAGTCATTATGCCAGTTTCTTTCGCGTGC-3′)
and mcr-1-R primer (5′-CTTACGCATATCAGGCTTGGT
TGCTTGTACCGC-3′), 1 µL of DNA template and 7 µL of
double-distilled water. The PCR cycling conditions were 95◦C
for 3 min, followed by 35 cycles at 95◦C for 30 s, 58◦C for 30 s,
and 72◦C for 1 min. The final extension step was 72◦C for 15 min.
The PCR products were sent to Sangon Biotech for sequencing.

Multi-Locus Sequence Typing Analysis
All mcr-1-positive E. coli isolates were identified using the
VITEK R© 2 compact system and screened in accordance with the
protocols presented on the MLST website.1 Eight housekeeping
genes, namely, dinB (DNA polymerase), icdA (isocitrate
dehydrogenase), pabB (p-aminobenzoate synthase), polB
(polymerase PolII), putP (proline permease), trpA (tryptophan

1https://bigsdb.pasteur.fr/ecoli/primers-used/
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FIGURE 4 | RAA assay was applied to clinical samples. Five mcr-1-positive samples were identified among 672 samples by RAA detection (A) and standard PCR
(B). The E. colimcr−1 was used as a positive control and sterile water was used as a negative control.

synthase subunit A), trpB (tryptophan synthase subunit B), and
uidA (beta-glucuronidase), were detected.

Antimicrobials Susceptibility Testing
To analyze the characteristics of strains harboring mcr-1
genes, MICs were mainly determined using a VITEK R© 2
system (bioMérieux, Nürtingen, Germany). Escherichia coli
ATCC25922 was used for quality control. The 2020 Clinical
Laboratory Standards Institute’s threshold was used to as

reference. In addition, the MICs of colistin and polymyxin
B were determined by the twofold serial dilution method,
as previously described (Fan et al., 2021). Briefly, the strains
harboring mcr-1 genes were grown in LB broth at 37◦C until
the optical density at 600 nm (OD600) reached 1.0. Next,
100 µL of the bacterial suspension (5 × 105 CFU/mL) and
different concentrations of diluted antibiotics were added to
each well of a 96-well plate (Corning). The 96-well plate was
incubated without agitation at 37◦C for 24 h. The minimum
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TABLE 3 | mcr-1-Positive Strains isolated from clinical samples.

Isolated strain Sample ID RAA PCR Sequencing Transfer
efficiency

E. coli/mcr-1 1 CIP1 + + mcr-1 3.54 × 10−2

E. coli/mcr-1 2 CIP2 + + mcr-1 2.06 × 10−3

E. coli/mcr-1 3 CIP3 + + mcr-1 2.34 × 10−3

E. coli/mcr-1 4 CIP4 + + mcr-1 0.57

E. coli/mcr-1 5 CIP5 + + mcr-1 0.58

+, mcr-1-positive.

antibiotic concentration to visibly inhibit bacterial growth was
recorded as the MIC.

Horizontal Gene Transfer Assay
To detect the HGT of mcr-1, colistin-resistant isolates served as
donor strains, with sodium azide-resistant E. coli J53 as recipient.
Briefly, 500 µL of each donor strain and 500 µL of the recipient
in LB broth were mixed, centrifuged at 8,000 rpm, and the
bacterial precipitates were resuspended on 50 µL of LB broth. The
resuspended bacteria were then added to round filter papers pre-
placed on nutritional agar plates and cultured overnight at 37◦C.
Transconjugant bacteria were selected on LB plates containing
sodium azide (100 mg/mL) and colistin (4 µg/mL). Meanwhile,
the same number of bacteria were plated on LB plates only
containing sodium azide (100 mg/mL). The number of bacterial
cells was determined by serial dilution and plating. The transfer
efficiency was calculated by dividing the number of successfully
transformed strains by the total number of receptor strains.

Statistical Analysis
All trials were conducted three times. The p-values and kappa
values of the RAA and standard PCR assays were calculated. The
statistical analysis was conducted with SPSS 21.0 (IBM, Armonk,
NY, United States).

RESULTS

Primers and Probe Design for the
Recombinase-Aided Amplification Assay
Since the first mcr-1 sequence was released in 2015 (NCBI
Reference Sequence: NG_050417.1), 31 variants of it have been
identified. The genome sequences of all mcr-1 genes are almost
identical. The primers and probes for this study were manually
designed on the specific and conserved region (Figure 1 and
Table 2).

Specificity and Sensitivity Analysis of the
Recombinase-Aided Amplification Assay
Fourteen different strains were used as templates to amplify
the mcr-1 gene (Table 1). Only from E. colimcr−1 did we
succeed in detecting amplification signals, while the others
were all negative (Figure 2A). As an internal control, the
amplification signals of the 16S rRNA were detected from all
bacteria (Figure 2B). Therefore, the RAA assay for the detection
of mcr-1 was 100% specific.

Furthermore, a 10-fold gradient dilution series of recombinant
plasmids pUC57-mcr-1 was used to detect the sensitivity of the
RAA assay. As the copies/µL increased from 1 × 101 to 1 × 107,
the fluorescence signal increased (Figure 3). The detection limit
of the RAA assay was 20 copies per reaction.

Evaluating the Recombinase-Aided
Amplification Assay on Clinical Samples
The RAA assay and the standard PCR assay were simultaneously
used to detect mcr-1 in 672 samples. Among these, the presence
of the mcr-1 gene was found in five samples. The two methods
gave the same experimental results (Figure 4 and Table 3).

By screening for colistin resistance, five colistin-resistant
E. coli were isolated from five clinical samples. All of these E. coli
had the mcr-1 gene, as determined by PCR and sequencing
(Table 3). MLST analysis showed that the five E. coli belonged to
different ST types: E. coli/mcr-1 1 (ST21), E. coli/mcr-1 2 (ST740),
E. coli/mcr-1 3 (ST48), E. coli/mcr-1 5 (ST809), and E. coli/mcr-1
4 (a new ST type).

Susceptibility Test for the Mobile Colistin
Resistance-Positive Bacteria
Following testing with the VITEK R© 2 compact system, most of
the mcr-1-positive E. coli were shown to be resistant to colistin,
ciprofloxacin, levofloxacin, doxycycline, and trimethoprim, and
sensitive to imipenem, amikacin, and meropenem (Table 4).
E. coli/mcr-1 2 was resistant to ticarcillin/clavulanic acid,
piperacillin/tazobactam, and cefoperazone, while the other
bacteria were sensitive to these antibiotics. The MICs of colistin
and polymyxin B were simultaneously determined by the twofold
serial dilution method (Table 4).

Transconjugation of Mobile Colistin
Resistance
To investigate the transferability of mcr-1, HGT assays were
performed using colistin-resistant isolates as donors and sodium
azide-resistant E. coli J53 as recipient. mcr-1 from all five
colistin-resistant strains was successfully transferred to E. coli
J53 recipient strain with some efficiency (Table 3). In contrast
to the parental recipient strain, E. coli J53 transconjugants
showed varying degrees of resistance to colistin and polymyxin B
(Table 4). It was not difficult to find that other resistance did not
transfer with the mcr-1 gene transfer (Table 4). Interestingly, the
transfer efficiency of mcr-1 from E. coli/mcr-1 4 and E. coli/mcr-
1 5 was much higher than that from other isolated E. coli
strains, at up to 57–58%. The mechanisms related to this are
under investigation.

DISCUSSION

Polymyxins are a class of medications used in the treatment of
systemic infections caused by susceptible strains of multidrug-
resistant GNB (Shatri and Tadi, 2022). In GNB, modification of
lipid A of LPS is the main mechanism of polymyxin resistance
and pEtN transferase enzyme encoded by mcr-1 can add a pEtN
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TABLE 4 | Bacterial susceptibilities to antibiotics.

Antibiotic agent MIC (mg/L)a

E. coli/
mcr-1 1

E. coli/
mcr-1 2

E. coli/
mcr-1 3

E. coli/
mcr-1 4

E. coli/
mcr-1 5

E. coli
J53

E. coli-J53
TCp

E. coli/
mcr-1 1

E. coli-J53
TCp

E. coli/
mcr-1 2

E. coli-J53
TCp

E. coli/
mcr-1 3

E. coli-J53
TCp

E. coli/
mcr-1 4

E. coli-J53
TCp

E. coli/
mcr-1 5

Ticarcillin/
Clavulanic acid

16S
≥ 128R 16S

≤ 8S 16S
≤ 8S

≤8S
≤ 8S

≤8S
≤ 8S

≤8S

Piperacillin/
Tazobactam

≤ 4S
≥ 128R

≤ 4S
≤4S

≤ 4S
≤4S

≤ 4S
≤4S

≤ 4S
≤4S

≤ 4S

Ceftazidime 0.25S 32R 8I
≤ 0.12S 32R

≤ 0.12S
≤0.12S

≤ 0.12S
≤0.12S

≤ 0.12S
≤0.12S

Cefoperazone ≤ 8S
≥ 64R

≤ 8S
≤8S 16S

≤ 8S
≤8S

≤ 8S
≤8S

≤ 8S
≤8S

Cefepime ≤ 0.12S
≥ 32R 8SDD

≤ 0.12S
≥ 32R

≤ 0.12S
≤0.12S

≤ 0.12S
≤0.12S

≤ 0.12S
≤0.12S

Aztreonam ≤ 1S
≥ 64R 16R

≤ 1S
≥ 64R

≤ 1S
≤1S

≤ 1S
≤1S

≤ 1S
≤1S

Imipenem ≤ 0.25S
≤0.25S

≤ 0.25S
≤0.25S

≤ 0.25S
≤0.25S

≤ 0.25S
≤0.25S

≤ 0.25S
≤0.25S

≤ 0.25S

Meropenem ≤ 0.25S
≤0.25S

≤ 0.25S
≤0.25S

≤ 0.25S
≤0.25S

≤ 0.25S
≤0.25S

≤ 0.25S
≤0.25S

≤ 0.25S

Amikacin ≤ 2S
≤2S

≤ 2S
≤2S

≤ 2S
≤2S

≤ 2S
≤2S

≤ 2S
≤2S

≤ 2S

Tobramycin 8I 8I
≥ 16R

≤ 1S 8I
≤1S

≤ 1S
≤1S

≤ 1S
≤1S

≤ 1S

Ciprofloxacin ≥ 4R
≥4R

≥ 4R 1R 2R
≤ 0.25S

≤0.25S
≤ 0.25S

≤0.25S
≤ 0.25S

≤0.25S

Levofloxacin ≥ 8R
≥8R 4R 1I 4R

≤ 0.12S
≤0.12S

≤ 0.12S
≤0.12S

≤ 0.12S
≤0.12S

Doxycycline ≥ 16R
≥16R

≥ 16R 8I
≥16R 2S 2S 2S 2S 2S 2S

Minocycline 8I
≥ 16R 4S

≤ 1S
≥ 16R

≤ 1S
≤1S

≤ 1S
≤1S

≤ 1S
≤1S

Tigecycline 1S
≤ 0.5S

≤0.5S
≤ 0.5S

≤0.5S
≤ 0.5S

≤0.5S
≤ 0.5S

≤0.5S
≤ 0.5S

≤0.5S

Trimethoprim ≥ 320R
≥320R

≥ 320R
≥320R

≥ 320R
≤ 20S

≤20S
≤ 20S

≤20S
≤ 20S

≤20S

Colistin 4R
≥ 16R

≥16R 8R
≥ 16R

≤ 0.5I 4R 4R 8R 2I 2I

Colistinb 16 16 16 16 16 ≤ 0.5 8 8 8 8 8

Polymyxin Bb 8 8 8 8 8 ≤ 0.5 4 4 8 8 8

S, susceptible; I, intermediate; R, resistance; SDD, susceptible dose-dependent.
aUnless otherwise indicated, all MICs were determined by VITEK R©2 system.
bMIC determined by twofold serial dilution method.

to the phosphate groups in lipid A (Liu et al., 2016, 2017). mcr-
1 has been identified in more than 50 countries across the globe,
and detected from many different species of GNB (Nang et al.,
2019; Xiaomin et al., 2020). Transmission of mcr-1 has been
observed in all kinds of environment including a variety of water
resources, raising the possibility that it could be transferred to
humans through HGT (Fernandes et al., 2017; Hembach et al.,
2017; Sun et al., 2017). Therefore, an efficient, sensitive and
reliable method to detect mcr-1 genes is crucial for early diagnosis
and infection control in clinical samples.

RAA assay, loop-mediated isothermal amplification (LAMP),
and nucleic acid sequence-based amplification (NASBA) are all
isothermal amplification techniques, among which RAA assay is
the cheapest. As an experimental method with high sensitivity
and specificity, RAA assay takes only 20 min to obtain results,
while LAMP and real-time PCR take 1–2 h (Du et al., 2021).
In addition, RAA assay has been successfully used in identifying
SARS-CoV-2, blaNDM, blaKPC, respiratory syntactical virus,
hepatitis B virus, salmonella, and other pathogens (Zhang et al.,
2017; Fan et al., 2019; Qi et al., 2019; Shen et al., 2019; Xue
et al., 2020a,b). In this study, we developed an RAA assay to
detect mcr-1 in clinical specimens from children. Among 672
samples, only five of them were mcr-1-positive, and the results
from RAA assay and standard PCR were identical, indicating
that RAA assay is efficient and accurate for detecting the mcr-1

gene in clinical samples. The detection rate was close to those
in other studies among children (Hu et al., 2017; Wu et al.,
2021). Human fecal carriage of mcr-1-positive E. coli has been
detected in many regions (Chan et al., 2018; Zhong et al., 2018);
in this study, all mcr-1-positive isolated strains were identified
as E. coli. Five distinct STs detected by MLST showed that
mcr-1-positive E. coli isolates from different origins have high
clonal diversity.

HGT of mcr-1 is a threat to human health, so it is necessary
to calculate the efficiency of mcr-1 transfer. The reported transfer
efficiency of mcr-1 varies greatly depending on the experimental
conditions, methods, and strains, ranging from 10−9 to 10−1

(Anjum et al., 2016; Liu et al., 2016; Quesada et al., 2016;
Gutiérrez et al., 2019; Lu et al., 2019; Li et al., 2022). In our study,
mcr-1 from all five colistin-resistant strains was successfully
transferred into the E. coli J53 recipient strain by conjugation.
Interestingly, the transfer efficiency of mcr-1 from E. coli/mcr-
1 4 and E. coli/mcr-1 5 was as high as 57–58%, which is quite
high among reported rates. Whether there is a new plasmid that
mediates gene transfer will be further studied in the future.

In conclusion, we constructed an RAA assay for mcr-
1, screened many clinical samples from a pediatric hospital
in Beijing, and confirmed the sensitivity, specificity and
effectiveness of our method, which will greatly contribute to
clinical diagnosis.
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