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ABSTRACT: Many cellular processes are dependent on correct pH levels, and
this is especially important for the secretory pathway. Defects in pH homeostasis
in distinct organelles cause a wide range of diseases, including disorders of
glycosylation and lysosomal storage diseases. Ratiometric imaging of the pH-
sensitive mutant of green fluorescent protein, pHLuorin, has allowed for targeted
pH measurements in various organelles, but the required sequential image
acquisition is intrinsically slow and therefore the temporal resolution is unsuitable
to follow the rapid transit of cargo between organelles. Therefore, we applied
fluorescence lifetime imaging microscopy (FLIM) to measure intraorganellar pH
with just a single excitation wavelength. We first validated this method by
confirming the pH in multiple compartments along the secretory pathway and
compared the pH values obtained by the FLIM-based measurements with those
obtained by conventional ratiometric imaging. Then, we analyzed the dynamic pH
changes within cells treated with Bafilomycin A1, to block the vesicular ATPase, and Brefeldin A, to block endoplasmic reticulum
(ER)−Golgi trafficking. Finally, we followed the pH changes of newly synthesized molecules of the inflammatory cytokine tumor
necrosis factor-α while they were in transit from the ER via the Golgi to the plasma membrane. The toolbox we present here can be
applied to measure intracellular pH with high spatial and temporal resolution and can be used to assess organellar pH in disease
models.

■ INTRODUCTION

Physiological pH homeostasis is crucial for many cellular
processes. Not only the cytosolic pH is of importance, but
defined intraorganellar pH delineates the secretory pathway.
The pH of the endoplasmic reticulum (ER) is approximately 7,
while the Golgi apparatus slightly acidifies from pH 6.7 at the cis
face to pH 6.0 at the trans face.1−3 Before secretory cargo is
released at the plasma membrane and reaches the neutral pH of
the extracellular environment, the pH in secretory vesicles is
about 5.2.1,2

pH is not only crucial for proper protein folding and enzyme
activity through influencing the charge of amino acid side chains,
but its importance in secretory protein transport is increasingly
clear.4 pH affects binding affinities of cargo molecules to
trafficking chaperones and thereby pH differences facilitate
intracellular transport by both influencing the transit of
cargo5−11 and the sorting of secretory pathway resident
proteins.12−14 Moreover, the localization of glycosylation
enzymes and their substrates is determined by pH,4,15−18 and
defects in this homeostasis cause a wide range of human
disease.4,19−25 Being able to accurately determine intra-
organellar pH along the secretory pathway is, therefore, of
both fundamental and diagnostic importance.
Fluorescent dyes that allow the measurement of intra-

organellar pH exist and are commercially available,26−30 but
the inability of specific organellar targeting is a major drawback.
The pH in the lumen of the Golgi and ER inmammalian cells has

been measured using Shiga-like toxins covalently bound to
fluorescent dyes31,32 and with the biotin−avidin system.33

However, especially the development of pH-sensitive mutants of
green fluorescent protein (GFP), such as pHLuorin,34,35 which
can be targeted to specific organelles by fusion proteins, has
enabled specific measurement of intracellular compartments.
Two classes of pHLuorin were developed bymutagenesis, which
altered the bimodal excitation spectrum of GFP with peaks at
395 and 475 nm.34,36 First, ecliptic pHLuorin, which shows a
reduction of its excitation efficiency at 475 nm at pH values
lower than 6. Second, ratiometric pHLuorin, which shows a
gradual increase in the ratio of excitation at 475/395 nm
between pH 5.5 and pH 7.5.34 With ecliptic pHLuorin,
intraorganellar pH can be determined by first recording an
image at 475 nm excitation and then correlating the fluorescence
intensities with a calibration curve. The pH can be determined
with ratiometric pHLuorin using a similar approach, but now by
sequentially recording images at 395 and 475 nm excitation. A
new version of ratiometric pHLuorin, ratiometric pHLuorin2

Received: November 18, 2021
Accepted: December 28, 2021
Published: January 10, 2022

Articlespubs.acs.org/acschemicalbiology

© 2022 The Authors. Published by
American Chemical Society

240
https://doi.org/10.1021/acschembio.1c00907

ACS Chem. Biol. 2022, 17, 240−251

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peter+T.+A.+Linders"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Melina+Ioannidis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Martin+ter+Beest"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Geert+van+den+Bogaart"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acschembio.1c00907&ref=pdf
https://pubs.acs.org/doi/10.1021/acschembio.1c00907?ref=pdf
https://pubs.acs.org/doi/10.1021/acschembio.1c00907?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acschembio.1c00907?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acschembio.1c00907?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acschembio.1c00907?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acbcct/17/1?ref=pdf
https://pubs.acs.org/toc/acbcct/17/1?ref=pdf
https://pubs.acs.org/toc/acbcct/17/1?ref=pdf
https://pubs.acs.org/toc/acbcct/17/1?ref=pdf
pubs.acs.org/acschemicalbiology?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acschembio.1c00907?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/acschemicalbiology?ref=pdf
https://pubs.acs.org/acschemicalbiology?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


Figure 1. FLIM of recombinant RpHLuorin2. (a) Representative confocal images of 10 μM recombinant RpHLuorin2 in calibration buffers with
defined pH. The intensity image (left column) was convoluted with the fluorescence lifetime value per pixel and pseudo-colored (right column). (b)
Representative fluorescence lifetime histograms of recombinant RpHLuorin2 in pH 4.87 solution (red-dashed line) or pH 7.5 solution (pink-dashed
line). Fits with monoexponential decay functions (pH 4.87, solid red line; pH 7.5, solid pink line) convoluted with the instrumental response function
(gray-dotted line). Graphs are normalized to the maximum photon counts. (c) Average lifetime histograms from the images of panel (a). 30 regions of
interest (i.e., ∼10 × 10 μm of imaged area) were selected per pH buffer and the average lifetime τ was measured. (d) pH dependence of recombinant
RpHLuorin2 in defined pH calibration buffers from the images of panel (a).
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(RpHLuorin2), was later developed with 8-fold improved
fluorescence.35

Ecliptic pHLuorin is less accurate than ratiometric pHLuorin
because the fluorescence intensity not only depends on the pH
but also on the concentration of pHLuorin. However,
ratiometric imaging also has several drawbacks, such as
sensitivity to background fluorescence leading to high variations
in the ratio values and the need for two sequential image
acquisitions with two different excitation wavelengths. As the
exocytic pathway is highly dynamic, the sequential imaging
could potentially result in misalignment of the emitted signal
(e.g., due to movement of organelles), compromising the
calculation of ratio values. To overcome this problem of dual
excitation, GFP-based probes have been developed that show a
pH-dependent change in fluorescence emission, including

E2GFP37 and deGFP4,38,39 and pH-sensitive fluorophores
have been targeted to organelles with theHaloTag technology.40

However, spectral overlap in fluorescence emission wavelengths
limits the use of these probes for multicolor experiments
together with other fluorescent probes.
In this study, we used another approach to overcome the

problem of dual excitation and exploit fluorescence lifetime, an
intrinsic property of fluorophores that is insensitive to changes
in laser intensity or protein concentration41,42 but is sensitive to
pH,43,44 to accurately measure intraorganellar pHwith both high
spatial and temporal resolution.

■ RESULTS AND DISCUSSION
FLIM of Recombinant Ratiometric pHLuorin2. We first

measured the fluorescence excitation spectra of recombinant

Figure 2. Calibration of RpHLuorin2 by FLIM in HeLa cells expressing GPI-RpHLuorin2. (a) Representative confocal micrographs of HeLa cells
expressing GPI-RpHLuorin2 in defined calibration buffers. The intensity image (left column) was convoluted with the fluorescent lifetime value per
pixel and pseudo-colored (right column). Scale bars, 10 μm. (b) Average lifetime histograms from the images of panel (a).N = 86 (pH 4.87), 108 (pH
5.31), 90 (pH 5.67), 115 (pH 6.17), 122 (pH 6.68), 113 (pH 7.03), and 120 (pH 7.5) cells from three independent experiments. (c) pH dependence of
HeLa cells expressing GPI-RpHLuorin2 in defined pH calibration buffers from the images of panel (a).
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RpHLuorin2 (Supporting Information Figure S1) in different
pH solutions with a fluorescence spectrometer. Depending on
the pH of the medium, the p-hydroxybenzylidene-imidazolidi-
none moiety in the chromophore of pHLuorin2, a derivative of
GFP,35 can exist in either the neutral phenol form or the anionic
phenolate form.45 As expected,34 we observed strong depend-
ence of the excitation efficiencies on pH, as a higher pH resulted
in an increased emission brightness (at 508 nm) at an excitation
wavelength of 470 nm, whereas the fluorescence brightness was

reduced at an excitation wavelength of 405 nm (Supporting
Information Figure S1a). These data show that for pHLuorin2,
the anionic form shows an excitation peak at 405 nm, while the
peak with 470 nm corresponds to the neutral form. We then
plotted the ratios of the emission signals with 405 nm over 470
nm excitation as a function of the pH and fitted these data with a
dose−response relationship, an empirical model to fit the
sigmoidal data as the (de)protonation states of RpHLuorin2 will
saturate at very high and low pH values (Supporting Information

Figure 3. Steady-state pH measurements of secretory pathway markers. (a) Schematic overview of all RpHLuorin2 constructs used in this study. The
signal sequence of LAMP1 is removed following cotranslational ER insertion and is not shown in the diagram. ER-RpHLuorin2 contains the N-
terminal signal sequence of the ER-resident protein calreticulin and a C-terminal ER retention signal KDEL.MW:molecular weight; RUSH: retention
using selective hooks;51 and SBP: streptavidin-binding protein. (b) Representative confocal micrographs of HeLa cells expressing the mentioned
RpHLuorin2 fusion constructs. The intensity image (left column) was convoluted with the fluorescent lifetime value per pixel and pseudo-colored
(middle column). The intensity image was also convoluted with the calculated pH per pixel and pseudo-colored (right column). FLIM: fluorescence
lifetime imagingmicroscopy. Scale bars, 10 μm. (c) Quantification of average pH values from panel (b).N = 88 (ER), 188 (MGAT2), 193 (GalT), and
134 (LAMP1) cells from three to five independent experiments.
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Figure S1b). The largest changes in fluorescence of RpHLuorin2
were observed between pH 5.5 and pH 7, making RpHLuorin2
an excellent candidate for pH measurements in the secretory
pathway.
As ratiometric determination of pH with RpHLuorin2

requires two sequential image acquisitions with different
excitation wavelengths, we investigated whether time-correlated
single-photon counting fluorescence lifetime imaging micros-
copy (FLIM) would be an appropriate substitute to allow for
single-scan imaging. We hypothesized that as the lifetime of
fluorophores is influenced by pH,43,44 the pH sensitivity of
RpHLuorin2 would allow for accurate pH measurement based
on fluorescence lifetime. Therefore, we performed FLIM of
recombinant RpHLuorin2 in different pH solutions at 488 nm
excitation (Figure 1). For GFP, the fluorescence lifetime of the
phenolate form is in the 2−3 ns range, while that of the phenol
form is <100 ps.46,47 At 488 nm excitation, we will mainly excite
the (fast) phenol form, but (due to fluorescence cross-talk) there
will also be some contribution of the (slow) phenolate form. The
observed fluorescence lifetime can hence be regarded as a
mixture of the decays of the neutral and anionic forms. Thus, an
increase in pH will result in a net higher lifetime, as has been
reported for other GFP-derived fluorescent proteins.43,48

For purified recombinant pHLuorin2, we observed a
dependency of the lifetime as a function of pH, and the
fluorescence lifetime increased upon an increasing pH (Figure
1). However, the fluorescence lifetime changed over a larger
range of pH values (4.5−7.5; Figure 1d) than the ratio of 405/
470 nm excitations (5.5−7.5; Supporting Information Figure
S1b). This larger dynamic range, which is likely caused by a
second protonation event, is an advantage of the FLIM-based
approach, because it increases the range of pH values that can be
determined. We then fused RpHLuorin2 to several intra-
organellar markers in the secretory pathway to perform pH
measurements in living cells.

pH Measurements in the Secretory Pathway. In order
to accurately measure intraorganellar pH of specific organelles,
we targeted RpHLuorin2 intracellularly by fusing it to proteins
and targeting sequences that locate to specific subcellular
locations in the secretory pathway (Figure 3a). The pH range
that can be measured with lifetime-based measurements of
pHLuorin2 (4.5−7.5) is ideally suited for measuring pH along
the secretory pathway, as the pH is neutral within the ER (∼7),
slightly acidic (∼6) in the Golgi network, and about 5.2 in
secretory vesicles.1−3 To interrogate the luminal pH along the
entire secretory pathway, we fused RpHLuorin2 to the signal

Figure 4. Incomplete blockage of Golgi acidification by Bafilomycin A1. (a) Representative confocal micrographs of HeLa cells expressing MGAT2-
RpHLuorin2 incubated for 1 h in the absence (solvent control DMSO) or presence of Bafilomycin A1 (200 nMBafA1). To generate the FLIM images
(middle column), the intensity images (left column) were convoluted with the fluorescent lifetime value per pixel and pseudo-colored. To generate the
pH images, the lifetimes were converted to the calculated pH per pixel and also convoluted with the fluorescence intensities (right column). Scale bars,
10 μm. (b)Quantification of average pH values from panel (a).N = 72 (DMSO) and 77 (BafA1) cells from four independent experiments. The dashed
lines indicate the average pH of the ER from Figure 3c. (c,d) Same as panels (a,b), but now for GalT-RpHLuorin2.N = 68 (DMSO) and 50 (BafA1A)
cells from four independent experiments.
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Figure 5. Dynamic pH measurements along the secretory pathway. (a) Representative confocal micrographs of HeLa cells expressing MGAT2-
RpHLuorin2 in the absence (Ctrl, green) or presence of BFA (orange). The intensity image (left column) was convoluted with the fluorescent lifetime
value per pixel and pseudo-colored (middle column). The intensity image was also convoluted with the calculated pH per pixel and pseudo-colored
(right column). FLIM, fluorescence lifetime imaging microscopy. Scale bars, 10 μm. (b) Quantification of average pH values from panel (a).N = 110
(DMSO) and 165 (BFA) cells from 2−3 independent experiments. (c) Representative confocal micrographs of HeLa cells expressing RUSH TNFα-
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sequence of the ER-resident protein calreticulin and a C-
terminal ER retention signal KDEL for ER targeting, to the
luminal regions of cis-/medial-Golgi protein alpha-1,6-man-
nosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase
(MGAT2), to trans-Golgi enzyme beta-1,4-galactosyltransferase
1 (GalT), to trans-Golgi network protein TGN46, and to
lysosome-associated membrane glycoprotein 1 (LAMP1) for
lysosomal targeting, and finally to a GPI anchor for plasma
membrane (i.e., extracellular) localization. For the Golgi
enzymes (MGAT2 and GalT), we truncated each protein by
removing their catalytic sites and only kept the transmembrane
region and stalk regions responsible for their localization.49−51

We then expressed the fusion constructs in HeLa cells, and
recorded FLIM images. We used the GPI-anchored RpHLuor-
in2 (GPI-RpHLuorin2) to calibrate the probe expressed in cells
using the same pH buffers as used for the calibration of purified
RpHLuorin2 (Figure 2).We again observed a dependency of the
fluorescence lifetime of RpHLuorin2 on pH, although the
absolute fluorescence lifetime values were lower than for the
recombinant RpHLuorin2, possibly due to crowding effects
leading to fluorescence self-quenching52 and/or to differences in
the local microenvironment such as phospholipid charge and
microdomain pH. These effects, as well as intracellular pools of
GPI-pHLuorin2, likely also contributed to the variation among
cells. The fluorescence lifetime dependency on pH could again
be fitted with a sigmoidal dose−response model.
After successfully calibrating our system, we proceeded with

pH measurements in the lumen of the organelles along of the
secretory pathway (Figure 3). With ER-RpHLuorin2, we
measured an apparent average pH of 7.2 [95% confidence
interval (CI)± 0.08], while with medial-Golgi marker MGAT2-
RpHLuorin2, we measured an apparent average pH of 6.1 (95%
CI ± 0.07), and with trans-Golgi marker GalT-RpHLuorin2, an
apparent average pH of 5.9 (95% CI ± 0.07) (Figure 3b,c).
Finally, for lysosomal marker LAMP1-RpHLuorin2, we
measured an apparent average pH of 4.7 (95% CI ± 0.15)
(Figure 3b,c). These pH values are all consistent with previous
literature.1,26 The fluorescence intensities (numbers of photons
collected per cell) did not correlate with the fluorescence
lifetimes for the four measured probes (Supporting Information
Figure S2), indicating that intercellular variations were not
caused by differences in expression levels.
To compare the FLIM-based measurements with ratiometric

measurements, we also performed ratiometric imaging in cells
using confocal laser scanning microscopy, where we changed the
excitation wavelength of each line of the imaging (Supporting
Information Figure S3). Confirming our previous experiments
with purified RpHLuorin2 (Figure 1; Supporting Information
Figure S1), we observed for GPI-pHLuorin2 that the ratio of
fluorescence with 405 and 488 nm excitations changed over a
narrower range of pH values (5.5−7.5; Supporting Information
Figure S3a) than with FLIM imaging (4.5−7.5; Figure 2). For
the MGAT2 and GalT probes, we observed similar pH values to
the FLIM-based measurements [Supporting Information Figure

S3b; MGAT2 pH 6.5 (95% CI± 0.16), GalT pH 6.1 (95% CI±
0.13)]. However, the spread of the data was considerably (∼2-
fold) larger for the ratiometric approach. As a result, less cells
have to be analyzed with the FLIM-based approach to accurately
determine the pH. To illustrate this point, we performed
Bootstrap statistical analysis, where we sampled our datasets to
estimate the 95% CI based on samples of increasing numbers of
cells (Supporting Information Figure S4). Based on this analysis,
we estimate that for the FLIM-based approach, >16 cells needed
to be measured for an accurate estimation of the pH for the ER,
MGAT2, GalT, and LAMP1 markers. However, for the
ratiometric approach, approximately 2-fold more cells needed
to be analyzed to reach a similar 95% CI.
To further characterize the RpHLuorin2 FLIM system, we

challenged cells with the vacuolar H+-ATPase (V-ATPase)
inhibitor Bafilomycin A1 (BafA1).53 The mammalian V-ATPase
is a protein pump that acidifies intraorganellar lumina by
translocating protons across the membrane.54,55 Our experi-
ments with the MGAT2 and GalT probes showed that
challenging the cells for 1 h with 200 nM BafA1 resulted in a
reduced acidification (i.e., less reduction of pH compared to
without BafA1) of both the cis- and trans-Golgi apparatus,
although this perturbation was incomplete as the pH did not
reach completely neutral values (Figure 4). Taken together, our
data show that the RpHLuorin2 FLIM system is highly suitable
for intracellular pH measurements with only a single-image
acquisition.

pHDynamics along the Secretory Pathway.To evaluate
whether our method would be able to measure dynamic changes
in pH, we started by measuring the pH of the medial-Golgi
marker MGAT2-pHLuorin2 in the presence of fungal
metabolite Brefeldin A (BFA). BFA is a potent inhibitor of
ER-Golgi trafficking and causes the relocation of Golgi-resident
enzymes to the ER.56,57 We, therefore, expected a substantial
increase in pH when MGAT2-RpHLuorin2-expressing cells
were challenged with BFA. Indeed, we measured an apparent
average pH of 7.1 (95% CI ± 0.07) in the BFA-challenged cells
compared to an apparent average pH of 6.4 (95% CI ± 0.08) in
the vehicle control cells (Figure 5a,b). This result means that our
system is capable of measuring dynamic alterations of pH in
living cells.
Next, we employed FLIM-based measurements to monitor

the changes of the pH in real-time along the secretory pathway.
To this end, we chose the secreted cytokine tumor necrosis
factor alpha (TNF-α) as a model protein that is transported
through the secretory pathway. Using the retention using
selective hooks (RUSH) system,51 we synchronized the transit
of TNF-α along the secretory pathway. RUSH uses the
expression of two separate constructs in the cell: (i) the hook
construct, which is an ER-targeting sequence fused to
streptavidin and (ii) the reporter construct, which is the protein
of interest (i.e., TNF-α) fused in tandem to a streptavidin-
binding protein (SBP) and a fluorescent protein (RpHLuorin2).
When biotin is absent from the culture medium, the reporter

Figure 5. continued

RpHLuorin2 in the absence of biotin (0 min) or 20, 40, and 60 min after biotin addition. The intensity image (left column) was convoluted with the
fluorescent lifetime value per pixel and pseudo-colored (middle column). The intensity image was also convoluted with the calculated pH per pixel and
pseudo-colored (right column). FLIM, fluorescence lifetime imaging microscopy. Scale bars, 10 μm. See also Supporting Information Movie S1. (d)
Quantification of average pH values of the cell shown in panel (c) and Supporting InformationMovie S1. Plotted is the average apparent lifetime for all
pixels of the projected imaged area of the cell. (e) Average pH measured of all cells expressing RUSH TNFα-RpHLuorin2. N = 29 from two
independent experiments.
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construct is held at the ER through an interaction of streptavidin
of the hook construct and the SBP. When biotin is added to the
culture medium, biotin outcompetes this interaction and the
reporter construct is released and transits along the secretory
pathway in a synchronized fashion.
In our case, we used the KDEL-motif as a targeting sequence

for the ER,51 and used a TNFα-SBP-RpHLuorin2 fusion protein
(RUSH TNFα-SBP-RpHLuorin2) as the reporter construct, so
that we could follow the dynamic transit of TNF-α from the ER,
via the Golgi network, to the plasma membrane (Figure 5c−e,
Supporting Information Movie S1). We confirmed the
subcellular localizations with immunolabeling experiments,
where we fixed cells expressing TNFα-SBP-RpHLuorin2 at
discrete time intervals after biotin addition and immunolabeled
for organellar markers for the ER (PDI), Golgi network
(GM130), and plasma membrane (WGA) (Supporting
Information Figure S5).
In the absence of biotin in the cell culture medium, when all

the TNFα-SBP-RpHLuorin2 reporter construct was trapped
within the ER, we measured an apparent average pH of 7.58
(95%CI ± 0.46) (Figure 5c−e, Supporting Information Movie
S1). In the ∼25 min following the addition of biotin to the cells,
TNFα-SBP-RpHLuorin2 was trafficked through the Golgi and
the apparent average pH gradually decreased to around pH 6. At
later time points, the pH gradually increased again as more
TNFα-SBP-RpHLuorin2 reached the plasma membrane. As
HeLa cells express the protease TACE, TNF-α likely dissociates
from the plasma membrane.58−60

After biotin addition, the TNF-α-RpHLuorin2 became
concentrated in the Golgi network, leading to a local increase
of the signal at this position (Supporting Information Figure
S6). In order to not saturate the signal at this timepoint, we had
to use a low intensity of excitation light for the RUSH
experiments. However, at the start of the experiments (i.e., prior
to biotin addition), the TNF-α-RpHLuorin2 construct was
located at the ER, which in mammalian cells is diffuse and
scattered through the entire cytoplasm. Likely as a consequence,
the photon count/pixel at earlier timepoints was low, leading to
an overestimation of the pH particularly for the ER localization.
Also because of the limited number of photons, we fitted the
fluorescence lifetime histograms with a single exponential decay
function and report the apparent average pH per cell.61

This result demonstrates that FLIM-based pH measurements
are a suitable method to determine intraorganellar pH with high
temporal resolution.

■ CONCLUSIONS
In this study, we measured the pH in various subcellular
compartments using FLIM of the pH-sensitive fluorescent
protein RpHLuorin2. Consistent with previous literature, we
observed a clear acidification of luminal pH through the
secretory pathway.1−3 The fusion of RpHLuorin2 is not
restricted to the proteins we described here; this system is
applicable to any other intraorganellar measurement, provided
that RpHLuorin2 can be fused to a luminal domain of a protein
residing in the target organelle. Furthermore, additional
applications include combining RpHLuorin2 with other
fluorescence (lifetime)-based probes to measure pH and other
cellular processes simultaneously within the same cell.
We also show that the FLIM approach enables measuring pH

with a kinetic resolution high enough to follow the dynamic
transit of a cargo molecule along the secretory pathway. In this
respect, our approach complements measurements of the

exocytic pathway using Vero and Shiga toxins labeled with
pH-sensitive fluorophores.31 These toxins are endocytosed by
receptor-mediated endocytosis and then transit via the Golgi
network to the ER, a process that can be followed by
microscopy. While this approach also enables measuring pH
along the secretory pathway, a disadvantage is that it does not
allow following the pH of designated secretory targets. For
example, after transit through the Golgi, TNF-α is reported to
traffic via designated subcompartments of recycling endosomes
to the plasma membrane,62 and it is not known whether Shiga
toxins also traffic via these compartments.
Compared to excitation-based ratiometric imaging, the key

improvement of our study is the usage of FLIM. Ratiometric
imaging of pHLuorin and derivatives30,34,35 requires the
sequential recording of the fluorescent protein at both 405
and 470 nm excitation wavelengths, while the emission is
recorded at the same wavelength. Although certain optical
schemes such as split-beam excitation might facilitate fast
switching between excitation wavelengths, this sequential
excitation intrinsically limits the temporal resolution and
consequently limits the applicability for pH determination in
dynamically moving and reshaping organelles. A problem with
such ratiometric imaging is that if the molecules (or organelles)
move or photobleach during the sequential excitation, this will
lead to an error as it causes variation in the ratios of the
fluorescence intensities of the two excitation channels. FLIM
mitigates this issue, as only a single recording with a single
excitation wavelength is required. Therefore, movement of
fluorescent molecules and photobleaching are no problem,
because the fluorescence lifetime is independent of the
concentration of fluorophores. FLIM is hence better suited for
visualizing the pH of organelles in living cells. Moreover, FLIM
measurements are not dependent on laser intensity,41,42 while
ratiometric measurements can easily be affected by fluctuations
in excitation laser power. FLIM measurements are thus more
comparable between experiments, as supported by our findings
that the spread in the data is larger for the ratiometric than for
the FLIM approach. Another advantage of the FLIM-based
approach is that reference measurements can be used over
independent experiments because the fluorescence lifetime is
independent of the fluorescence intensity.41,42 This is an
advantage over the ratiometric approach, where small differ-
ences in the laser intensity and alignment of the microscope can
have a major effect. However, a disadvantage is that it requires
access to a FLIM microscope, whereas ratiometric imaging can
be performed on most of the confocal and epifluorescence
microscopes.
In contrast to another study that relies on equilibrating pH

with the ionophore monensin,30 we used GPI-anchored
RpHLuorin2 to obtain calibration curves with defined pH
buffers because monensin is a known inhibitor of physiological
Golgi transport, thereby likely affecting the observed fluo-
rescence lifetime values.63−69

Defects in the regulation of pH are a hallmark of a wide range
of disease, including disorders of glycosylation,4,19,21−25

cancer,70 neurodegenerative diseases,71−74 mitochondrial dis-
orders,75 and lysosomal storage disorders.76 The tools we
presented in this study offer a method to assess intraorganellar
pH using FLIM. Our data show that FLIM is more accurate than
ratiometric imaging. Moreover, due to its high temporal
resolution, it not only enables measuring pH in static
compartments but also measuring the dynamic changes that a
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protein experiences during its trafficking along the secretory
pathway.

■ METHODS
Microscopy. Time-correlated single-photon counting FLIM

imaging was performed on a Leica SP8 SMD system at 37 °C,
equipped with a HC PL APO CS2 63×/1.20 Water objective.
pHLuorin2 was excited at 488 nm with a pulsed white light laser,
operating at 80MHz. Photons were collected for 1 min or 30 s for time-
lapse experiments with a HyD detector set at 502−530 nm, and lifetime
histograms of the donor fluorophore were fitted with a mono-
exponential decay function convoluted with the microscope instrument
response function in Leica LAS X. For reconstructing the images, tiff
files with τ values were generated using FLIMFit77 and 2 × 2 spatial
binning and then convoluted with the fluorescence intensities using a
custom-written ImageJ Macro. Ratiometric pH measurements were
done similarly to the FLIM measurements, but the imaging was
performed on a Leica SP8 SMD system at 37 °C, equipped with a HC
PL APO CS2 63×/1.20 Water objective or a Zeiss LSM 800 system at
37 °C, equipped with a Plan Apochromat 1.4× Oil objective.
RpHLuorin2 was excited at 405 and 488 nm sequentially, images
were acquired with an emission wavelength bandwidth (495−560 nm)
that included an emission wavelength of 508 nm.
See the Supporting Information for experimental details.
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