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Abstract
It is well known that signals encoded by mechanoreceptors facilitate precise object manipu-

lation in humans. It is therefore of interest to study signals encoded by the mechanorecep-

tors because this will contribute further towards the understanding of fundamental sensory

mechanisms that are responsible for coordinating force components during object manipu-

lation. From a practical point of view, this may suggest strategies for designing sensory-

controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear

decoding paradigm to reconstruct the force stimulus given signals from slowly adapting

type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding

model which is a function of the force stimulus and the force’s rate of change. In the decod-

ing phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given

the SA-I spike patterns and parameters described by the encoding model. Under the current

encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that

the force derivative contributes significantly to the rate of change to the SA-I afferent spike

modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous

because it can incorporate past and current information in order to make predictions—con-

sistent with neural systems—with little computational resources. This makes it suitable for

interfacing with prostheses.

Introduction
It has been demonstrated that tactile afferents—associated with cutaneous mechanoreceptors
—signal information to the brain that is relevant for dexterous object manipulation in humans
[1, 2]. While each of the four types of afferents [3–6] has unique properties, they may encode
the same stimulus features jointly [7–12]. Fast adapting type I (FA-I) afferents respond to
dynamic skin deformations of relatively high frequencies (5–60 ms), slowly adapting type
I (SA-I) afferents are tuned towards low frequency skin deformations of the glabrous skin [13,
14], fast adapting type II (FA-II) afferents are optimized for detecting transient mechanical
events [13–16], and slowly adapting type II (SA-II) afferents respond to remotely applied
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lateral stretching of the skin [3, 17]. However, a complete understanding of the mechanisms
that underlie information signaling remains elusive: As an example, the contribution of SA-I
afferents towards the encoding of force is yet to be assessed quantitatively [18]. In order to gain
insight into the representation and consequent reconstruction of properties of the object and
motor control, a systematic approach within a quantitative framework that is simple to inter-
pret is of interest. This will facilitate studying factors that concurrently contribute to the affer-
ent spiking behavior. Kim et al. [19] used an intricate integrate and fire model—driven by a
linear combination of indentation depth and its higher derivatives—to encode and simulate
tactile afferent data under various stimuli. Neural decoding techniques that avoid explicit
encoding models (reverse correlation) have been applied [20–22], and recently extended to tac-
tile afferent data [23].

Another way of estimating continuous values given neural spike data (neural decoding) is
by implementing a dual paradigm—encoding and decoding, respectively—within a Bayesian
framework [24–33]. While the encoding stage involves a probabilistic mapping of the rela-
tionship between the recorded afferent spike data and the stimulus that led to the afferent
spike response, the decoding stage aims to reconstruct the most likely values of the stimulus
given the afferent spike data. The Bayesian decoding framework offers a more flexible means
of analysis—unlike regression methods [34]. For instance, it is possible to do statistical infer-
ences [27, 35], and also possible to capture nonlinear relationships between the stimulus and
the corresponding neural spikes [27, 34, 36]. A dual paradigm based on Bayesian methods is
yet to be extended to the analyses of tactile afferent data. First, a parametric statistical model
is used to capture the relationship (dependence) between the tactile afferent spiking data
and the force stimuli and its higher order derivatives. In this way, we can assess the relative
importance of the higher order derivatives of the stimulus on the afferents’ propensity to
spike at some time t. Furthermore, methodologies essential to the reconstruction of the con-
tinuous force stimuli given the spike data, are described. A second stage implements a recur-
sive algorithm to estimate continuous values. The estimated continuous values represent the
stimulus. Implementing these methods should yield improved quantitative descriptions of
how tactile afferents represent information about properties between the glabrous skin of the
hand and objects.

To apply these methods, we use SA-I afferent data to reconstruct the corresponding force
stimulus. The SA-I afferent spike data were elicited, and recorded at the median nerve, during
the application of a force stimulus at the tip of the human finger-pad. The parameters esti-
mated from the model fit to the data can capture relationships between afferent spike activity
and the covariates. As a result, statistical hypothesis tests can be used to quantitatively assess
the relative importance of model components. In addition, through goodness-of-fit analyses,
we can identify afferent spike data properties that the model cannot capture. A description of
the mapping of afferent spike trains into a continuous signal would demonstrate a possible way
of how the central nervous system interprets and converts spike train information into signal
predictions. In an on-line setting, decoding will be implemented based on current and previous
inputs, a technique in agreement with the sequential way neural systems update—the current
signal prediction is computed from the previous signal prediction plus the new information in
the spike train about the change in the signal since the previous prediction. In the encoding
stage we model SA-I spiking activity as a nonhomogeneous Poisson process whose instanta-
neous firing rate is a function of the force indenting the tip of the finger-pad and its higher
order derivatives. In the decoding stage we use Bayesian statistical theory to derive a nonlinear,
recursive filter algorithm for reconstructing the force stimulus from a population of SA-I affer-
ent spike patterns.

Bayesian Decoding of Slowly Adapting Type I
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Methods

Data
Eight subjects, 24.3 ± 5.7 years of age (mean ± SD) participated in this study. The study was
approved by the local ethics committee, at Western Sydney University (Ethics Approval
H9967). The procedures followed were in accordance with the ethical standards of the local
ethics committee on human experimentation and with the Helsinki Declaration of 1975, as
revised in 2000. Each participant had no known neurological disorders. All subjects provided
written informed consent before taking part in the study. Normal force was applied to the fin-
ger-pad of an immobilised finger of the right hand using a six axis robotic manipulator AGI-
LUS R900 (KUKA Roboter GmbH, Germany). A force transducer (Nano F/T, ATI Industrial
Automation, Garner, USA) was attached at the tip of the robotic manipulator. The robot was
programmed to safely deliver the force stimulus at the human finger-tip. Upon touching the
finger-tip, the robotic manipulator switched from position to force control mode. A device to
immobilize the finger was used. The device was adjustable and could accommodate different
finger sizes.

Tactile data were recorded from SA-I afferent fibers of the right hand. The needle electrode
was percutaneously inserted into the median nerve and positioned in such a way as to obtain
action potentials (AP) waveforms [37, 38]. Force profiles and the corresponding tactile afferent
signals were recorded simultaneously, using a 16-bit data acquisition system (PowerLab, ADIn-
struments; Dunedin New Zealand). Force data were sampled at 1kHz and afferent data were
sampled at 20kHz. The acquisition system was set up with a monitor to provide visual feed-
back, and speakers to provide audio feedback. The feedback from the monitor and speakers
was used to ensure that the quality of the data recorded is suitable for analysis. Spike sorting
techniques—where the occurrences of AP waveforms that pertain to an individual cell are
grouped—were applied to the afferent data based on methods described in [39–41]. In cases
where AP waveforms overlapped, as result of recording from more than one afferent fiber, we
used a combination of automated and visual methods to identify which afferent fibers contrib-
uted to that AP waveform.

Fig 1 shows an example of a force profile and the corresponding (spike sorted) neural spikes
that were recorded from an SA-I afferent (Panels A and B respectively). We apply the methods
described below, to an ensemble of 28 SA-I afferents.

Statistical methods
SA-I afferents are associated with Merkel discs that encode information about some properties
of the object in the hand into neural spike patterns. We devise a model (encoding) to capture
the mapping between the force stimulus and the corresponding SA-I afferent spike response.
The data were split into two disjoint subsets. A subset was used to fit a model (encoding) and
another was used to assess how well the decoding algorithms generalize. The encoding subset
was defined as the data recorded during the first portion of recording (between 100–450 ms,
see Fig 1). This subset was used to fit the nonhomogeneous Poisson process model for each
SA-I afferent. The second subset was defined as the data recorded during the rest of the record-
ing period (between 451–750 ms) and was used to reconstruct the force stimulus using a recur-
sive Bayesian filter.

Encoding model. We define the model for SA-I afferents using a nonhomogeneous Pois-
son process. A nonhomogeneous Poisson process is a Poisson process where the rate parameter
varies as a function of time and/or some other physical quantity but it retains the memoryless
property [42]. In this study, the rate parameter of the nonhomogeneous Poisson process is
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modeled as a function of the force stimulus and the derivative of the force stimulus. This is
because among three candidate models—a first where we consider force only, a second where
we take a combination of force and its derivative, and a third where force as well as its first and
second derivatives are considered. We used the model which considers the force and its first
derivative because this model yielded the lowest Akaike’s Information Criteria (AIC) value
[43]—for each of the afferents under the current model. The encoding model is defined as fol-
lows:

lðtjsðtÞ; b0; βÞ ¼ exp ðb0 þ βSðtÞÞ ð1Þ

where β0 corresponds to the baseline firing rate, β is the vector of parameters corresponding to
covariates that modulate firing rate, and S(t) is a matrix of covariates that modulate the firing
activity. We assume that individual SA-I afferents form a population of conditionally indepen-
dent Poisson processes (the SA-I afferents are independent given their model parameters). We
fit the nonhomogeneous Poisson model defined in Eq 1 to each SA-I afferent. We estimated
the model parameters based on the maximum likelihood method [44, 45]. The relative impor-
tance of the first and second derivatives of the components were assessed using Akaike Infor-
mation Criterion (AIC) [27, 46].

Assessment of goodness-of-fit. After fitting the model to data, we assessed its validity in
describing the observed SA-I afferent spike data. In order to use already established statistical
methods, such as the Kolmogorov-Smirnov (K-S) test, we transformed the data into a simpler
form. The Time rescaling theorem, in addition to simulation of point process data, can be used
to transform the data [47–49]. Using the rate (conditional intensity function), estimated from
the data, we transformed the data using time rescaling to obtain a homogeneous Poisson pro-
cess with rate equal to one, and further transformed the data into uniform random variables:

uj ¼ 1� exp
Z tj

tj�1

laðtjsðtÞ; b0a; βaÞ
 !

dt ð2Þ

where tj is the spike time, uj is a uniform random variable. We then use the K-S test to assess

Fig 1. Example of SA-I firing characteristics. PanelA shows the stimulus used to elicit slowly adapting
type I tactile response shown inB. PanelC shows a representation of a series of action potentials along with
their corresponding times of occurrence (in ms). A zoomed in version of the left most action potential is
represented in panel D. We fit a nonhomogeneous Poisson model to the first portion of the data (100–450
ms). The inverse problem—decoding—was done using data in the range 451–750 ms.

doi:10.1371/journal.pone.0153366.g001
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how close the empirical distribution of rescaled spike times are to a reference uniform distribu-
tion on the interval (0, 1). If the nonhomogeneous model described fit the data correctly, the
transformed data should lie on a 45° line on the K-S plot.

Decoding model. The state transition function for the force is defined as follows:

stl � stl�1
¼ _sDtl�1

ð3Þ

Following the encoding stage, the decoding stage aims to find the best estimate of s(tl) for
each tl using a probability density given theA afferents, force and force derivative parameters.
To facilitate the description of the decoding procedure, we start by defining a set of times in
(t%, T], t%� t0 < t1 <, � � �,< tl < tl+1, � � �, tL � T, and let ΔNa(tl) be an indicator function. The
indicator function is equal to one if there is a spike at time tl and zero if there is no spike at

time tl. We let DNðtlÞ ¼ ½DN1ðtlÞ; � � � ;DNAðtlÞ�⊺ be a vector of allA afferents at time tl. The
probability density of s(tl), given the spikes in (t%, T]) and parameters estimated during the
encoding stage, is computed sequentially using Bayes’ rule from probability densities of previ-
ous force and force derivatives and that of the new afferent data recorded since the previous
state prediction was made [27], [50]. The formulation of the recursive algorithm is based on
two steps: the prediction and the update. The prediction stage is based on the relationship
between the posterior, at the previous time step, and the state evolution model. The one-step
prediction probability density is defined below.

Pr sðtlÞjDNt% :tl�1

� �
¼
Z

dsðtl�1Þ Pr sðtl�1ÞjDNt% :tl

� �
Pr sðtlÞjsðtl�1Þð Þ ð4Þ

The equations for tracking the mean and variance of the one-step prediction are defined
below:

�sðtljtl�1Þ ¼ F�sðtl�1jtl�1Þ ð5Þ

Wðtljtl�1Þ ¼ FWðtt�1jt�ÞF⊺ þ Q ð6Þ

where F is the state transition matrix, and Q is the covariance matrix of a Gaussian process
with zero mean. F was assumed to be a linear evolution system because we observed that neigh-
boring force values are very close to one another.

In the update stage, we use Bayes rule to get the posterior probability density and is defined
as follows:

Pr stl jDNt% :tl�1

� �
Pr DNtl

js tl;DNt%:tl�1

� �� �
Pr DNtl

jDNt%:tl�1

� � ð7Þ

where the second part in the numerator of Eq 7 is the likelihood of observing a spike. The likeli-
hood function ofA afferents is described below,

pðDNðtlÞjsðtlÞ;DNt% :tl�1
Þ ¼

YA
a

½laðtlÞ�ðDNaðtlÞÞ exp ð�½laðtlÞ�Þ ð8Þ

We track the posterior mean and posterior variance as follows:

�sðtljtlÞ ¼ �sðtljtl�1Þ þWtl jtl

XA
a¼1

@ log lðtlÞ
@sðtlÞ

� �⊺

DNaðtlÞ � laðtlÞð Þ
� �

ð9Þ
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where

W�1
tl jtl ¼ W�1

tl jtl�1
þ
XA
a¼1

@ log laðtlÞ
@sðtlÞ

� �⊺

laðtlÞ
@ log laðtlÞ

@sðtlÞ
� ��

� DNaðtlÞ � laðtlÞð Þ @2loglaðtlÞ
@sðtlÞ@ðsðtlÞÞ⊺

�
tl jtl�1

ð10Þ

Results
Our main finding is that for slowly adapting type I tactile afferents, the force derivative (in
addition to the force) is an external factor that influences spike behavior. As a consequence, it
is an essential component when studying relationships between observed spikes and a force
stimulus. Furthermore, we can predict force profiles given results based on parameters learned
during the encoding model and slowly adapting type I tactile afferents. More details about
these findings are presented in following sections.

Encoding
We used a nonhomogeneous Poisson model, described in the methodology section, to fit to the
SA-I tactile afferent spike data. SA-I afferent spike data with negative force coefficients (β1)
were removed. There were seven such spike trains, and they were removed because the quality
of the recording may not have been good for reliable identification of spikes. For each of the 28
SA-I afferents, the firing rate was highest in the region with highest force and highest rate of
change of the force stimulus. The inclusion of force derivative, based on Akaike Information
Criteria (AIC), resulted in an improvement (lower AIC value) in the fit of the model for 26 of
the 28 afferents. A Wilcoxon Signed-Ranks Test indicated that AIC values for the model that
considers force only was statistically significantly higher than AIC values of the model consid-
ering force and its first derivative (p< 0.001, significance level α = 0.05, two tailed). We also
compared AIC values of the model that accounted for force, its first and second derivatives,
against the model that considers just force and its derivative. A Wilcoxon Signed-Ranks Test
indicated that AIC values for the model that considers force, and its first and second derivatives
was statistically significantly higher than AIC values of model considering force and its deriva-
tive (p< 0.001, significance level α = 0.05, two tailed). We selected the model that considers
force and its first derivative. The force and force derivative modulation components of the non-
homogeneous Poisson model are consistent with previous studies; that is, the firing propensity
increases with increasing force and the first derivative of the force [6].

Parameters were estimated individually for each SA-I afferent, and are distributed as shown
Fig 2. Estimating parameters individually allows for the direct quantitative assessment of the rela-
tive importance of force and force derivative on SA-I firing. To illustrate, we use parameters esti-
mated using the SA-I afferent shown in Fig 2: we take the force (f) and force derivative (f 0) values
at t = 400ms (2.89N and 37.38Ns−1) and estimate the spike rate. The estimated spike rate under
nonhomogeneous model that considers force only is, exp(β0 + β1 f) = exp(−4.26 + 0.45 × 2.89),
�52 spikes per second. However when the force derivative is taken into account the rate is esti-
mated to be, exp(β0 + β1 f + β2 f 0) = exp(−4.42 + 0.33 × 2.89 + 0.02 × 37.38),� 69 spikes per sec-
ond. Because we have a relatively small number of SA-I afferents, we use the median to assess
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their central tendency [27]. The median of the estimated parameters is: β0 = −4.42, β1 = 0.23, and
β2 = 0.02. The median ratio of the force to the derivative of the force is: exp(0.23) = 1.26 to exp
(0.02) = 1.02. These results suggest that the force derivative, in addition to the force, contributes
to the modulation of SA-I firing rate under the proposed model.

Assessment of model fit. We used time rescaling to assess model goodness-of-fit. Time
rescaling transforms the rate into identically distributed exponential random variables with
mean rate one. A further transformation is done to obtain uniform random variables in the
interval (0, 1). Based on the transformed data, we use the K-S test [48]. Results show that the
model captures properties of the data reasonably well as shown in Fig 3. While the model is
useful in describing some aspects of SA-I spiking behavior, it does not account for a number
factors that contribute to the observed spiking behavior. Implementing a model that accounts
for other covariates and spike history may lead to improved decoding of SA-I afferents.

Fig 2. Distribution of parameters estimated from the data based on the nonhomogeneous Poisson
model. In this Figure, parameter α corresponds to the baseline firing rate, parameter β1 corresponds to the
force stimulus, and parameter β2 corresponds to the rate at which the force changes. The dots represent the
actual parameter estimates from individual SA-I afferents.

doi:10.1371/journal.pone.0153366.g002

Fig 3. Goodness-of-fit assessment (K-S plot) of proposedmodel. If the model describes the data well,
the estimated distribution should follow a forty-five degree line. The 95% confidence intervals for the
Kolmogorov-Smirnov statistic are computed by um � 1:36=ð ffiffiffi

n2
p Þ, where um ¼ ðm� 1

2
Þ=n are the values of the

cumulative distribution (CDF) of a uniform random variable,m = 1, 2, � � �, n, and n is the number of interspike
intervals. Results show that the Poisson model does not describe the data well.

doi:10.1371/journal.pone.0153366.g003
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Decoding
Due to the limited number of trials, we pooled data from individual trials to form a population
of spike trains [51–54], and then decoded the average force profile. The 28 SA-I afferents were
pooled from across multiple trials by considering the interval: 100ms before stimulus onset and
100ms after stimulus offset, see Fig 1.

Figs 4 and 5 show results of the force reconstruction. For results based on Fig 4, spike data
were split into half. One half was used for training the other half was used to assess how well
the model performs. One disadvantage with this approach is that we are left with fewer spike
trains for decoding. Fig 5 shows results based on a recursive Bayes’ filter, given signals from 28
SA-I afferents. The decoding of smooth force trajectories is fairly accurate. The estimation at
the points of loading and unloading is spurious. This is likely because there is no SA-I afferent
responses (these are points of very low forces). It is not surprising that the model did make rea-
sonable predictions, and may suggest that FA-I afferent signals carry information associated
with the points of loading and unloading. We also estimated force profiles based on an encod-
ing model that only considered force (left out the force derivative). Results based on Fig 6 show
that decoding results based on this model are worse than the model that considers both the
force and the first derivative of the force, at all phases of the force profile. Overall, the recursive
algorithm, based on the encoding model that considers both the force and the derivative of the
force performed well in predicting the force stimulus.

Discussion
As a first step, the nonhomogeneous Poisson model we used gives a reasonable approximation
to the SA-I afferent spike data as a function of the force and the derivative of the force. The
model describes each SA-I afferent spike train data using three parameters: baseline firing,
force stimulus, and the derivative of the force. The model allows for quantitative assessment of
the relative importance of the derivative and its higher order derivatives of the spike patterns
observed in SA-I afferents. Based on our results, as shown in Fig 5, good predictions of the
force stimulus can be made from a population of 28 SA-I afferents. These results suggest that
SA-I afferents carry a substantial amount of information about the force stimulus and its first

Fig 4. Decoding of entire force profile.We split the data into two sets of equal number of afferents. We
used the first half of the data to encode and the other half to decode. Using this we have less spike trains for
the decoding operation and may explain the relatively poor performance.

doi:10.1371/journal.pone.0153366.g004
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derivative and, in addition, that this information can be quantitatively captured using a nonho-
mogeneous Poisson model. These results extend decoding work of Ruiz et al. [55], Aimonetti
et al. [56], and Khamis et al. [23]. Ruiz et al. [55] used a population vector algorithm to study
how tactile stimuli is represented in the motor cortex. Aimonetti et al. [56], implemented a

Fig 5. Recursive decoding results based on subset of the data not seen by the encodingmodel. In this
scheme, the first portion of the data, as described in the Methods section, was used to map the relationship
between the force profiles and the corresponding SA-I afferent spike activity (encoding). Then using
parameters estimated from the encoding stage and the rest of the SA-I afferent data, the force stimulus is
predicted. Here we use all 28 SA-I afferents to decode and results show that the algorithms generalize well.
The performance of the filter is less accurate during the off-loading phase (period just before contact at the
finger-pad is lost) when compared to that during the plateau phase. It is likely because SA-I afferents do not
respond during this period (and at point just when contact is made). The model, for example at the on-loading
phase may not have sufficient information due to latency. It is also possible that decoding would improve if we
consider other types of afferents like the FA-II because they are the most sensitive.

doi:10.1371/journal.pone.0153366.g005

Fig 6. Comparison of performance betweenmodel that accounts for force only andmodel that
accounts for force and the derivative of the force. In order to compare our model against a model that
simply accounts for the force, we take the absolute difference between the true values and the predicted
values for each model. Under this framework, the model that accounts for force derivative, in addition to force,
performs better.

doi:10.1371/journal.pone.0153366.g006
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population vector algorithm to predict direction of limb movements via cutaneous afferents.
Khamis et al. [23] used a multiple linear regression algorithm to study force and torque predic-
tion from populations of SA-I and FA-I afferent firing patterns recorded in monkeys respec-
tively. They reported that the force stimulus can be predicted from a population—58—of the
SA-I afferent type alone. This result agrees with our findings: We predicted force stimulus
from 28 SA-I afferents recorded in humans. Nonlinear decoding results, based on Bayesian fil-
ters, show that the force stimulus representation can be updated, sequentially based on the
spiking activity of the SA-I afferents.

Encoding model
Our encoding model differs from that by Kim et al. [18] in that it summarizes the data with far
fewer parameters (three), identifies stimulus components that are relevant for spike modula-
tion (force stimulus and its derivative), and allows for the goodness-of-fit assessment. The
goodness-of-fit assessment is an important aspect of our approach, and this is because it can
reveal properties of the data not captured by the model. This, in turn, guides us in proposing
strategies for refining the model. Although the nonhomogeneous Poisson model is a good
starting point for the encoding of SA-I afferents, it is limited in that it inherently assumes that
the instantaneous rate and variance of the firing rate are equal and that there is no spike history
dependence [42].

Decoding
The recursive Bayesian methods we implemented provide good force prediction results. Our
decoding implementation differs from that of Ruiz et al. [55], Aimonetti et al. [56], Khamis
et al. [23] in that the continuous signal values (force and force derivative), at the current time,
are estimated by incorporating information from the new afferent spike data since the previous
estimate, the previous signal value estimates, and the likelihood function of spike data. This
approach is in agreement with the way neural systems update and predict. Furthermore the
methods implemented here are nonlinear, in agreement with findings that the properties of
tactile objects undergo a nonlinear transformation at the periphery [57–59]. As shown in Fig 5,
the decoding algorithm predicts the force profile well. There is a larger deviation of the predic-
tion of the force profile during force retraction, when compared to the plateau region of the
force profile. This suggests that other afferent types may be needed. For example, FA-II affer-
ents (the most sensitive afferent type with lowest thresholds) may indeed encode information
about the moment of contact and the moment force stimulus contact ends, and that including
them in the decoding procedure would yield improved results.

Conclusion
We have analyzed SA-I afferent data using methods that are useful for providing insight into
quantifying how populations of SA-I afferents spiking patterns encode information about the
force stimulus. This methodology is also useful for identifying the relevant covariates that con-
tribute to the neural spike patterns and for suggesting mechanisms underlying encoding.

The two major steps in our analysis paradigm are; the representation of the relation between
the population spiking activity given the signal with a parametric statistical model, and the
recursive application of Bayes’ theorem to predict the signal (force stimulus) from the popula-
tion SA-I afferent spiking activity. The information content of the spike train is quantified in
terms of the force signal predictions. The advantage of the current paradigm is in its ability to
incorporate past and current information in order to make predictions—consistent with neural
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systems—and with little computational resources, making it suitable for interfacing with pros-
theses [30, 60].

While linear regression based decoders may be effective, they do not treat firing rates as sto-
chastic but known constants. In contradistinction, the Bayesian approach models the spike
trains as a stochastic point process and the force stimulus as a stochastic process based on
known or reasonably assumed properties. Bayesian decoders have also been shown to be more
accurate when compared to linear decoders [27, 34, 61, 62]. Although our implementation
may be limited because we make Gaussian assumptions of the posterior density, Bayesian
decoders are optimal in the sense that signal estimates have the smallest errors. Future work
should consider a Bayesian decoders based on all types of tactile afferent signals. This may lead
to improved results. Bayesian decoding techniques based on particle filtering would provide
better results when compared to point process filter however, they are computationally burden-
some and therefore are not suitable for real-time neural decoding which is essential when con-
trolling neuroprothetic devices [32].
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