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Abstract: Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin
superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated
molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate
immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules),
including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands
stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and
trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including
diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and
cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for
the treatment of cancer and chronic inflammatory diseases.
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1. Introduction

RAGE (receptor for advanced glycation end-products) was first isolated from the hu-
man lung library in 1992 and noted for its ability to act as a receptor for advanced glycation
end products (AGEs). RAGE is a transmembrane protein of the immunoglobulin (Ig) super-
family of cell surface molecules [1], and interacts with multiple ligands that mediate cellular
responses to a range of DAMPs (damage-associated molecular pattern molecules), such as
AGEs, the S100 group of proteins, HMGB1 (high mobility group box-1 protein), amyloid
β, and DNAs, and also acts as an innate immune sensor of PAMPs (pathogen-associated
molecular pattern molecules), such as bacterial LPS, respiratory viruses, viral and parasitic
proteins, and bacterial DNA [2–12]. Ligand stimulation of RAGE activates signal trans-
duction pathways, such as the diaphanous-related formin 1 (DIAPH1), mitogen-activated
protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT, and Toll-interleukin
1 receptor domain-containing adaptor protein (TIRAP) pathways, which result in RAGE-
dependent NF-κB activation [13–19]. RAGE is expressed in many cell types, including
endothelial, vascular smooth muscle, and cancer cells monocyte/macrophages, granulo-
cytes, and adipocytes [20]. Upregulated RAGE expression has been reported in diabetes
mellitus, atherosclerosis, rheumatoid arthritis, Alzheimer’s disease (AD), cardiovascular
diseases (CVDs), and immune/inflammatory diseases [21–25], and has also been shown to
be related to the developments and progressions of different cancer types [26].

2. Structure and Isoforms of RAGE

RAGE is a 50–55 kDa glycosylated protein that contains an extracellular (amino acids
23–342), a hydrophobic transmembrane (residues 343–363), and a cytoplasmic (residues
363–404) domain. The extracellular structure of RAGE is composed of a variable (V)
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immunoglobulin (Ig) domain (residues 23–116) and two constant C1 (residues 124–221)
connected to C2 (residues 227–317) Ig domains by a flexible seven amino acid linker [27].
Its V domain consists of eight strands (A’, B, C, C’, E, F, and G) connected by six loops that
form two beta-sheets linked by a disulfide bridge between Cys38 (strand B) and Cys99
(strand F) [28]. The molecular surfaces of V-C1 domains are covered by a hydrophobic
cavity and contain many highly positively charged Arg and Lys residues [17]. In contrast,
the C2 domain is composed of acidic amino acids and carries a negative surface charge
(Figure 1) [29]. Multiple RAGE ligands contain highly negatively charged regions and can
bind to the positively charged V-C1 domain [7]. Ding Xu reported that heparan sulfate
plays a crucial role in stabilizing RAGE homodimerization the self-association of V-V do-
mains and RAGE hexamerization [30]. In its monomeric state, RAGE has only weak affinity
for several ligands, and thus, it appears that its multimerization is necessary for ligand
binding. RAGE oligomerizations through its C1-C1 domains, C2-C2 domains, and/or TM
helix dimerization are important steps for RAGE signaling after ligand binding [30–32].
The transmembrane helical structure of RAGE contains the meticulously conserved GxxxG
motif, which promotes helix-helix homodimerization and may be involved in signal trans-
duction [33]. The cytoplasmic domain of RAGE exhibits high sequence identity with
primates and rodents, which is essential for RAGE ligand-mediated signal transduction [1],
and its cytoplasmic domain contains a highly acidic region that is capable of binding several
molecules. In fact, truncation of this domain abolishes downstream RAGE signaling and
attenuates RAGE-associated pathologic effects [34,35].

The human RAGE gene is located on chromosome 6 in the MHC (major histocom-
patibility complex) class III region, which contains many genes that impact the adaptive
and innate immune systems [29]. More than 20 RAGE isoforms with diverse biological
functions have been found to result from alternative splicing [36]. In addition, poly-
morphisms in RAGE have been suggested to be potential biomarkers in RAGE-relevant
diseases [37,38], and the RAGE transcript has been identified as the target for the pro-
ductions of alternative splicing generates isoforms, such as full-length RAGE (FL-RAGE),
dominant-negative RAGE (DN-RAGE, residues 23–363), N-truncated RAGE (N-RAGE,
124–404), C-truncated soluble RAGE (sRAGE, 23–342), and splice variant endogenous
secretory RAGE (esRAGE) [39]. The functions of these truncated RAGE isoforms have yet
to be elucidated, but it has been established the dysregulations of RAGE isoforms and their
ligands lead to the development of a number of human diseases [40,41]. Soluble RAGE
may competitively inhibit RAGE-ligand-mediated signaling, and a low sRAGE level has
been suggested to be a biomarker for diseases [7]. On the other hand, serum levels of
sRAGE in diabetes, sepsis, and end-stage renal disease (ESRD) are elevated [42,43].
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Figure 1. Structural analyses of RAGE. (A) Schematic representation of full-length RAGE domain. 
RAGE consists of a variable (V) domain, two constant (C1 and C2) domains, a transmembrane re-
gion, and a cytoplasmic tail. (B) RAGE isoforms. RAGE isoforms in the illustration include (from 
left to right) full-length RAGE, oligomers, dominant-negative RAGE (DN-RAGE), N-truncated 
RAGE (N-RAGE), endogenous secretory (esRAGE), and soluble form RAGE (sRAGE). (C) The sur-
face of RAGE colored according to electrostatic charges (PDB ID: 4YBH). Positively charged areas 
are shown in blue, and negative charged areas in red. The figure was prepared using PyMOL. 

The human RAGE gene is located on chromosome 6 in the MHC (major histocom-
patibility complex) class III region, which contains many genes that impact the adaptive 
and innate immune systems [29]. More than 20 RAGE isoforms with diverse biological 
functions have been found to result from alternative splicing [36]. In addition, polymor-
phisms in RAGE have been suggested to be potential biomarkers in RAGE-relevant dis-
eases [37,38], and the RAGE transcript has been identified as the target for the productions 

Figure 1. Structural analyses of RAGE. (A) Schematic representation of full-length RAGE domain. RAGE consists of a
variable (V) domain, two constant (C1 and C2) domains, a transmembrane region, and a cytoplasmic tail. (B) RAGE
isoforms. RAGE isoforms in the illustration include (from left to right) full-length RAGE, oligomers, dominant-negative
RAGE (DN-RAGE), N-truncated RAGE (N-RAGE), endogenous secretory (esRAGE), and soluble form RAGE (sRAGE).
(C) The surface of RAGE colored according to electrostatic charges (PDB ID: 4YBH). Positively charged areas are shown in
blue, and negative charged areas in red. The figure was prepared using PyMOL.

3. RAGE as a Multi-Ligand Receptor

RAGE binds diverse classes of ligands, such as HMGB1, S100 calcium-binding pro-
tein/calgranulin, amyloid-β, and lysophosphatidic acid (LPA) [3,5,22,44–47]. RAGE ex-
pression can also increase DNA internalization and augment the Toll-like receptors (TLR)
response through TLR9 [48,49]. Ligand engagement of RAGE activates multiple signaling
pathways, including those of ERK, AKT, STAT3, JNK and MAPK, which result in the
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activations of transcription factors, including NF-κB [50,51]. Furthermore, interactions be-
tween RAGE and multiple ligands upregulate RAGE through positive feedback loops [52],
and following RAGE activation are expressed on various cell types, including endothelial
cells, vascular smooth muscle cells, lymphocytes, neurons, monocytes/macrophages, and
podocytes [20,35,53–55]. Moreover, ligand-RAGE interactions are involved in the patho-
geneses of diabetes mellitus, chronic renal failure, rheumatoid arthritis, atherosclerosis,
neurodegenerative diseases, cancer, immune/inflammatory responses, and aging [56–63].
Ligands of RAGE are listed in Table 1.

Table 1. Significant RAGE ligands.

RAGE Ligands RAGE Binding Domain Clinical Significance Ref.

Endogenous RAGE Ligands

AGEs V Diabetes, chronic inflammation and cancer [28]

S100/calgranulins V or VC1 or V2 Inflammatory response and cancer differentiation and progression [64]

HMGB1 VC1C2 Cancer development and metastasis and drug resistance [65]

β-sheet fibrils V Neuronal disease: Alzheimer’s disease [66]

Mac1 RAGE-mediated leukocyte recruitment [45]

Quinolinic acids VC1 Neuronal disease: Huntington’s disease [67]

LPA V Cell proliferation and migration in C6 glioma and smooth muscle cells [68]

PS Rac1 activation in alveolar macrophages [69]

C1q Recruitment of leukocytes and phagocytosis [70]

mDia1 cytoplasmic Initiation and activation of RAGE-mediated signaling [13]

Exogenous RAGE Ligands

RNA or DNA VC1 RAGE-mediated augmentation of inflammation [8]

RSV F protein VC1 Promote the survival of RSV-infected cells [11]

Longistatin V Longistatin acts as an antagonist to RAGE and suppresses inflammation [12]

AGEs: Advanced glycation end-products; HMGB1: High mobility group box-1 protein; LPA: Lysophosphatidic acid; PS: Phosphatidylserine;
mDia1: Mammalian diaphanous 1; RSV: Respiratory syncytial virus.

3.1. Endogenous RAGE

Many types of AGE have been identified, and aging leads to accumulations of AGEs
in tissues and plasma [71]. Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine
(CEL) are found in human tissue and blood plasma and bind to the V domain of RAGE. In-
teractions between AGEs and RAGE induce the expressions of pro-inflammatory cytokines
and chemokines, such as TNF-α, IL-1β, and CCL2 [72,73], and have been linked with the
complications of diabetes, chronic inflammation, Alzheimer’s disease, and cancer [28].
Methylglyoxal (2-oxoaldehyde) is a precursor of AGEs and a reactive α-oxaldehyde.
RAGE binds to three structural isomers of methylglyoxal-derived hydroimidazolones
(MG-H), that is, MG-H1 [Nδ -(5-hydro-5-methyl-4-imidazolon-2-yl) ornithine], MG-H2
[5-(2-amino-5-hydro-5-methyl-4-imidazolon-1-yl) norvaline], and MG-H3 [5-(2-amino-
4-hydro-4-methyl-5-imidazolon-1-yl)- norvaline], and binding between the V-domain
of RAGE and MG-H increases the phosphorylation of c-Jun N-terminal kinase (JNK)
in vitro [74].

The S100 protein family contains 25 members with different expression patterns, func-
tions, and oligomeric states, and S100B, S100A1, S100A2, S100A4, S100A5, S100A5, S100A6,
S100A7, S100A8/A9, S100A11, S100A12, and S100P have been shown to interact with
RAGE in vivo [2]. The S100 proteins are small proteins (9–13 kDa) that bind calcium via
EF-hand domains and act as calcium sensors, which participate in calcium signal trans-
duction. They are also involved in the regulation of several cellular processes, such as cell
differentiation and progression in invertebrates. Most S100 calcium-binding protein genes
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are located in human chromosome 1q21, which tends to exhibit physical chromosomal
rearrangements [75]. S100 proteins interact and regulate various proteins involved in
the dynamics of cytoskeletal constituents, calcium homeostasis, cell growth, and differ-
entiation. S100B is mainly expressed in the brain and is well expressed and secreted by
astrocytes, Schwann cells, and oligodendrocytes [64,76,77]. Extracellular S100B proteins
bind to the RAGE V-domain and recruit PI3K/AKT and NF-κB [78], and these interactions
induce trophic and inflammatory responses by neurons and carcinogenesis [78–80]. S100A1
is primarily expressed in the heart and only marginally expressed in other tissues [81].
S100B and S100A1 were reported to interact with RAGE on cell surfaces, inducing neurite
outgrowth, and increase cell survival in a HMGB1 dependent manner [82]. S100A2 has
been shown to interact with and increase the transcriptional activity of tumor suppressor
protein p53, and is downregulated in many cancers, including prostate, oral, melanoma,
lung, and breast cancer [83–88]. However, it is upregulated in other cancers, such as gastric,
esophageal squamous carcinoma, non-small lung carcinoma, and ovarian cancer [89–92].
Leclerc demonstrated that S100A2 interacts with the V-domain of RAGE [2]. The bind-
ing between S100A4 and RAGE increased the production of matrix metalloproteinase 13
(MMP-13), which requires modulation of intracellular calcium levels [93]. S100A5 inter-
acts with the RAGE V-domain in a calcium-dependent manner and is highly expressed
in astrocytic tumors [94]. S100A6 is found at high levels in the lungs, kidneys, muscles,
spleen, and the brain, and is overexpressed and plays important roles in many cancers
including melanoma, lung cancer, hepatocellular carcinoma, colorectal cancer, and gastric
cancer [84,95–101]. S100A6 interacts with the V and C2 domains of RAGE and activates
JNK signaling [78]. RAGE-S100A7 (psoriasin) mediates chemotaxis and is involved in
the regulation of pro-inflammatory and antimicrobial functions [102]. S100A8 (calgran-
ulin A, also known as MRP8) and S100A9 (calgranulin B, also known as MRP14) are
strongly expressed by cells of myeloid origin, epithelial cells, and keratinocytes during
inflammation. S100A8/A9 can form heterodimers or hetero-tetramers in the absence or
presence of calcium, respectively [103–106]. High levels of S100A8/9 have been found
in Alzheimer’s disease, rheumatoid arthritis, Crohn’s disease, cystic fibrosis, and several
cancers, such as colorectal carcinoma, prostate cancer, and gastric cancer [107–113]. Al-
though the RAGE/S100A8/A9 interaction is unclear, it is known to promote cell growth via
p38MAPK, p44/42 kinase, and NF-κB in tumor cells [114,115]. S100A11 levels are elevated
in prostate, breast, and pancreatic cancer; however, S100A11 acts as a tumor suppressor
in bladder and renal carcinomas. Furthermore, S100A11-RAGE signaling modulates the
pathogenesis of osteoarthritis (OA) by regulating differentiation to hypertrophy [116–121].
S100A12 (calgranulin A) is highly expressed in inflammatory diseases, such as cystic
fibrosis, atherosclerosis, psoriasis, rheumatoid arthritis, Crohn’s disease, and Kawasaki
disease [122–127]. S100A12 promotes intracellular signal transduction in neurons involving
the MAPK and phospholipase C pathways [128]. SPR showed S100A12 interacts with
the V-domain of RAGE [2]. The interaction between S100A13 and RAGE has not been
revealed, though it is known S100A13 translocates from nucleus to cytoplasm and that this
leads to the extracellular secretion of endothelial cells in a RAGE dependent-manner [129].
S100A13 mRNA has been reported in many tissues and organs including kidneys, ovaries,
spleen, brain, and heart. This AGE is a marker of angiogenesis in human astrocytic gliomas
and invasive lung cancer [130–133]. S100P is present in breast, gastric, ovarian, pancreatic,
and prostate cancer and colorectal carcinoma [134–136], and the S100P-RAGE interaction
activates ERK and NF-κB signaling pathways in NIH3T3 cells [137].

HMGB1 is a highly conserved nuclear protein that acts as a chromatin-binding factor,
and this binding leads to the bending of DNA and the promotion of DNA transcrip-
tion [138]. HMGB1 is passively released by necrotic cells and actively secreted by inflamma-
tory cells. Extra HMGB1 binds with high affinity to several receptors including TLR-2, TLR-
4, and RAGE on endothelial, smooth muscle and cancer cells and neutrophils [65,139,140].
HMGB1 overexpression is a hallmark of sepsis, arthritis, neurodegeneration, aging, an-
giogenesis, and cancer development and metastasis [141–145]. Interaction between RAGE
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and HMGB1 promotes the activations of tumor cell signaling pathways, such as those of
ERK1/2, p38MAPK, and NF-κB, and results in cancer progression and metastasis [146,147].
Recent studies have revealed that HMGB1-RAGE signaling triggers ERK-mediated mito-
chondrial Drp1 phosphorylation leading to autophagy for chemoresistance and regrowth
in colorectal cancer [148]. RAGE also binds amyloid-β peptides (Aβ40 and Aβ42), which
form aggregates in the brain and promote neurodegeneration [5] and may also act as
mediators of disease progression in AD by interacting with Aβ and transporting it across
the blood-brain barrier (BBB). In addition, these bindings result in the expressions of
pro-inflammatory cytokines and endothelin-1 [66].

Quinolinic acid, a neuroactive metabolite of the kynurenine pathway, is an agonist
of the N-methyl-D-aspartate (NMDA) receptor and is normally present at nanomolar
concentrations in human brain and cerebrospinal fluid (CSF). Excessive quinolinic acid
levels have been implicated in a variety of human neurological diseases, including AD and
Huntington’s disease [67]. The direct interaction between quinolinic and the VC1 domain
of RAGE is involved in early responses to noxious stimuli and may be associated with
signaling cascades leading to cell death [6].

Endothelial RAGE interacts with Mac-1 on leukocytes [45], and Orlova et al. re-
ported HMGB1 dose-dependently enhanced the interaction between Mac-1 and RAGE and
induced the activation of NF-κB in neutrophils [47].

Lysophosphatidic acid (LPA) is a serum phospholipid with growth factor-like activities
in many cell types. LPA stimulates cell migration, proliferation, and survival by acting
on its cognate G-protein-coupled receptors [149]. Furthermore, RAGE was found to be
required for LPA-mediated signal transduction, leading to proliferation and migration, in
C6 glioma cells and smooth muscle cells [68].

Phosphatidylserine (PS) is a structural component of nuclear envelopes, endoplasmic
reticulum, the inner cytosolic region of plasma membranes, myelin, and Golgi appara-
tus [150]. Cells undergoing apoptosis display PS on their surfaces, and this acts as a signal
for the induction of phagocytosis and is recognized by receptors of lysosomal phagocytic
vesicles. RAGE-deficient alveolar macrophages showed harmed apoptotic thymocytes
and resulted in the defective clearance of apoptotic neutrophils in RAGE-deficient mice.
PS-RAGE binding plays an important role in the GTPase and Rac1 signaling pathways.
Details of the PS-RAGE interaction are still being explored and the molecular mechanism
has not been determined [69].

Complement protein C1q binds to microbial surfaces or immune complexes, and thus,
stimulates the complementation system and the productions of membrane lytic complexes,
opsonins, and anaphylatoxins. Surface plasmon resonance (SPR) showed RAGE and C1q
interact directly with a Kd of 5.6 µM, and this interaction plays a role in adaptive immunity
and promotes C1q-mediated phagocytosis [70].

The recognition of DNA and RNA derived from hosts or pathogens is one way the
innate immune system responds to infection and tissue damage. RAGE promotes DNA
uptake by endosomes and augments TNR response through TLR9 [8]. TIRAP and myeloid
differentiation primary response gene 88 (MyD88) are TLR2/4 adaptor proteins, and these
proteins induce AKT, p38, IKKα, and JNK. Sakaguchi et al. demonstrated that bind-
ings between phosphorylated RAGE and TIRAP or MyD88 result in the transduction of
downstream signals [151]. Furthermore, RAGE-TLR crosstalk is involved in chronic inflam-
matory reactions and is considered a potential target for the treatment of neurodegenerative
disorders [152].

3.2. Exogenous RAGE Ligands

RAGE plays a role in immune reactions by recognizing and responding to various
PAMPs, including bacterial lipopolysaccharide (LPS), bacterial DNA, and viral and para-
sitic proteins. LPS is a major component of the cell walls of Gram-negative bacteria and
initiates inflammatory cascades leading to sepsis. RAGE directly interacts with LPS and
is involved in LPS-induced NF-κB activation and endothelial hyperpermeability [10,153].
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The VC1 domain of RAGE can bind 22-nt dsDNA derived from vaccinia virus and a 22mer
CpG motif-containing dsDNA [8]. Human respiratory syncytial virus (RSV) is a major
cause of severe respiratory tract infections. The RSV fusion (F) protein mediates fusion
between the viral envelope and airway epithelial cells. RAGE binds F protein and enables
RSV infection of airway epithelial cells [11]. Longistatin secreted in saliva of the tick Haema-
physalis longicornis also binds to RAGE. Longistatin acts as a RAGE antagonist, suppresses
NF-κB translocation, and thus, hosts immune response [12].

4. RAGE Ligand Signaling

Although many extracellular ligands interact with the VC1 domain of RAGE, the cyto-
plasmic domain of RAGE plays a vital role in RAGE-mediated signaling and overall RAGE
function. RAGE activates diverse intracellular signaling pathways, including those of
p38MAPK, AKT, ERK, mammalian diaphanous 1 (mDia1), and Rho GTPase (Rac1, Cdc42),
and these pathways activate cascade transcription factors, such as NF-κB, SP-1, STAT3, and
EGR-1 [7,51,154]. RAGE activates various signals by binding with adaptor proteins, such as
mDia1, PKCζ, ERK1/2, dedicator of cytokinesis 7 (DOCK7), and DIAPH1 [13–16,151,155].
This interaction blockade presents a novel potential therapeutic target (Figure 2).
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Figure 2. RAGE signal transduction pathway. RAGE interacts with a diverse spectrum of extracellular
ligands and multiple signal transduction pathways, including PI3K, p28MAPK, Rho GTPase, Rac1,
and JAK pathways. At the transcriptional level, NF-κB, AP-1, and Stat3 have upregulated as vital
targets of RAGE signaling, nevertheless other transcription factors.

The cytoplasmic domain of RAGE binds with formin homology domain-1 (FH-1) of
mDia1 [13], and the role of RAGE-mDia1 signaling is regulated during vascular smooth
muscle cell (SMC) signal transduction and migration [156]. The S100B/RAGE/mDia1
pathway was reported to induce the migration of microglia via the activations of Rac1,
JNK, and AP-1 and to result in the upregulations of the chemokines, CCL3, CCL5, and
CXCL12 [157]. RAGE-mDia1 signaling also mediates the activations of Rac1 and Cdc42
during C6 glioma cell migration [15], and RAGE-mDia1 activates PKCβII, ERK1/2, and
JNK signaling and regulates Egr-1 in hypoxic macrophages [158].
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Ishihara et al. revealed by immunoprecipitation that ERK1/2 interacts with the
cytoplasmic region of RAGE in HT1080 cells [16]. The release of HMGB1 from dying
cancer cells enhances regrowth and chemoresistance via RAGE-ERK signaling, and the
RAGE-ERK pathway activates the phosphorylation of Drp1 at residue S616, thus triggering
autophagy for chemoresistance and regrowth in surviving colorectal cancer cells [148].
RAGE has four potential phosphorylation sites at Ser391, Ser399, SER400, and Thr401. Of
these, only Ser391 is conserved in humans, mice, rats, guinea pigs, rabbits, cats, and dogs.
When RAGE binds with one of multiple ligands, its cytoplasmic domain is phosphorylated
by PKCζ. In HEK293 cells, RAGE phosphorylated at Ser391 co-precipitated with TIRAP or
MYD88, and these interactions promoted downstream signal mediators, such as NF-κB,
AKT, JNK, Rac1, and p38 [151]. Furthermore, in several types of cancer cells, DOCK7 (an
XYZ) binds to the cytoplasmic domain of RAGE and leads to Cdc42 activation [155].

5. RAGE in Diseases

RAGE overexpression and activation are hallmarks of various diseases, including
neurodegenerative, cardiovascular, vascular, and coronary diseases and atherosclerosis,
diabetes, retinopathy, and cancer [58,159–168]. When a ligand binds to RAGE, downstream
signaling pathways, including PI3K, ERK1/2, STAT, JAK, Rho GTPase, and transcription
factors (AP-1 and NF-κB), are activated [15,19,166,169,170]. Furthermore, RAGE binding
can also increase RAGE expression (Figure 3) [50].
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5.1. Diabetes and Cardiovascular Disease

RAGE and its ligands accumulate in acute inflammatory conditions, such as diabetes,
atherosclerosis, and nondiabetic vascular disease [58,159,161,171,172]. Diabetes mellitus is
a disease of metabolic dysregulation resulting from defective insulin secretion, insulin resis-
tance, or both. The RAGE-AGE pathway mediates vascular calcification and increases bone
matrix protein levels through TGF-β, ERK1/2, fetuin-A, p38MAPK, PKC, and NF-κB [173].
AGEs significantly enhanced vascular intracellular calcium levels in rat bovine vascular
smooth muscle cells (BVSMCs) [174], and induced cytosolic ROS production, which led
to mitochondrial permeability transition and mitochondrial complex I deficiency in ro-
dents [175]. Atherosclerosis is an inflammatory disease of the arterial walls, and RAGE has
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been linked to atherosclerosis development via several ligands, including AGEs, HMGB1,
and S100 proteins [161]. Diabetes accelerates atherogenesis and RAGE deletion suppressed
atherogenesis in ApoE null mice by activating the TGF-β/ROCK1 pathway [176]. Further-
more, AGE-RAGE accumulates in atherosclerotic lesions and increases the protein levels of
MCP-1, PAI-1, VCAM-1, and ICAM-1 [177].

5.2. Neurodegeneration

RAGE has been reported to be elevated in human brain tissue in neurological disorders,
including AD, Huntington’s disease, Parkinson’s disease, and schizophrenia [166,178–181].
RAGE-mediated transport of circulating Aβ across the BBB leads to Aβ accumulation
and disruption of the brain’s vascular system [66]. HMGB1/HMGB1 receptors (TLR4
and RAGE) mediate the acute phase, during which damage to ischemic tissue and BBB
permeability increase. In contrast, during the final phase of ischemic brain injury, HMGB1
promotes recovery and remodeling [182]. Immunohistochemical studies have demon-
strated that RAGE levels are diminished in AD patients and that some of its ligands, such
as AGEs, S100, and Aβ, lead to RAGE overexpression in neurons, microglia, astrocytes,
and BBB vasculature [166,183–186]. Furthermore, in microglia, S100B/RAGE upregulated
the Rac-1/JNK pathway and the transcriptional factors NF-κB and AP-1 [187].

5.3. Cancer

RAGE has been implicated in the pathogeneses of breast, bladder, hepatic, pancre-
atic, colorectal, gastric, and lung cancer, glioma, and melanoma [62,188–192]. RAGE is
associated with various pathophysiological conditions and increased in cell migration
and invasion resistance to apoptosis, autophagy stimulation, proliferation, and metas-
tasis. Blocking RAGE signaling diminished tumor growth and proliferation in murine
cancer models and offers an attractive means of targeting RAGE-mediated carcinogen-
esis [15,62,189,190]. AGE/RAGE pathways induced pro-tumorigenic proteins, such as
ERK1/2 and cREB1 (cAMP response element-binding protein 1), and cancer progression
and metastasis by MCF-7 breast cancer cells [193]. RAGE and its ligands also play vital
roles in pancreatic ductal adenocarcinoma (PDAC) by increasing NF-κB activity and may
be directly activated RAS which KRAS oncogenic mutations are observed in up to 30%
of all cancers and in PDAC KRAS mutation is in nearly all tumors [194]. Interactions
between RAGE and S100 proteins or HMGB1 are involved in melanoma progression and
metastasis [195], and the AGE/RAGE pathway was found to increase the phosphorylation
of ERK and promote tumor progression, invasion, and metastasis in gastric cancer via
the RAGE/ERK/Sp1/MMP2 pathway [196]. HSP70 (heat shock protein 70) is actively
released under inflammatory conditions and activates the inflammatory pathway. Somensi
et al. demonstrated that HSP70 directly binds RAGE and stimulates ERK1/2, NF-κB, and
TNF-α in human lung cancer cells A549 [197]. The AGE/RAGE pathway is also involved in
carcinogenesis via RAS/ERK/Rac/CDC43 signaling [198]. PR3-RAGE binding mediates a
signal transduction cascade involving the phosphorylations and activations of ERK/2 and
JNK1 in prostate cancer cells [199]. Furthermore, elevated expressions of RAGE, thyroid
transcription factor 1 (TTF-1), glucose transporter 1 (GLUT-1), and SOX2 were suggested to
be early events during the development of HCV (hepatitis C virus) associated hepatocellu-
lar carcinoma (HCC) [200]. RAGE is also involved in the progression of pancreatic cancer
in vitro and in vivo via the expressions of MMP2, MMP-9, NF-κB, and vascular endothelial
growth factor (VEGF) [201], and in H1975 cells (a non-small cell lung cancer (NSCSLC)
cell-line) was found to enhance growth, metastasis, and EMT (epithelial-mesenchymal tran-
sition) by activating the P13K/AKT and KRAS/RAF-1 pathways. Furthermore, in a H195
cell xenograft model. RAGE downregulation reduced tumor growth [202]. Thus, RAGE
has been determined to be oncogenic and its involvement in diverse cancers has been
well demonstrated, which suggests RAGE-ligand interactions offer promising therapeutic
targets for RAGE-related diseases.
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5.4. Other Diseases

Endothelial dysfunctions involve of the extracellular matrix (ECM) enzymes lysyl
oxidase (LOX) and endothelin-1 (ET-1). At the gene level, the expressions of these enzymes
are regulated by transcription factors such as NF-κB and AP-1. In human endothelial cells,
AGE/RAGE increased the expressions of LOX and ET-1 through the AGE/RAGE/MAPK
signaling cascade, which disrupted endothelial homeostasis by promoting cellular prolif-
eration, altering the biomechanical properties of ECM, and impairing endothelial barrier
functions [203]. In addition, uric acid (UA) induces endothelial dysfunction by inhibiting
nitric oxide production. Cai et al. reported that human umbilical vein endothelial cells
(HUVECs) exposed to high concentrations of UA overexpressed HMGB1, RAGE, NF-κB,
and inflammatory cytokines. Furthermore, blocking RAGE significantly suppressed the
upregulations of RAGE and HMGB1 [204].

RAGE and its ligands are also involved in coronary artery disease (CAD). sRAGE el-
evates acute ischemia and acts as a potential biomarker of acute coronary syndrome
(ACS) [165]. Moreover, inhibition of RAGE using sRAGE protected against systolic
overload-induced heart failure by modulating the AMPK/mTOR and NF-κB pathways [163].

Retinal microvascular dysfunction is a major component of diabetic retinopathy.
RAGE plays a critical role in Müller glial activation and the downstream cytokine produc-
tion associated with diabetic retinopathy [205]. In mouse models of type 1 and 2 diabetes,
administration of sRAGE reduced early retinopathic abnormalities, such as endothelial
and pericyte damage, loss of retinal neuronal function, retinal permeability, microgliosis,
and inflammatory perturbation [206–208].

Obesity increases the risks of cardiovascular disease, hypertension, diabetes, and
cancer. S100A4, S100A8/9, S100A12, and S100B act as DAMPs, activate receptors such
as RAGE and TLR-4, and promote macrophage-based inflammation [209]. Furthermore,
genetic deficiency of RAGE inhibited high-fat diet-induced weight gain, adipose tissue
inflammation, energy expenditure, and insulin resistance [210].

Elevated RAGE expression in lung alveolar epithelial type 1 (AT1) cells may be
involved in the proliferation and differentiation of pulmonary epithelial cells [211]. RAGE
is expressed most in lung tissue and is an important mediator of diverse lung pathologies,
such as pulmonary fibrosis, lung cancer, allergic airway inflammation (AAI), asthma,
pneumonia, chronic obstructive pulmonary disease (COPD), bronchopulmonary dysplasia,
and cystic fibrosis [168].

5.5. RAGE Polymorphisms and Inflammatory Disease

The gene coding for RAGE is located within the gene-dense major histocompatibility
class III region on chromosome 6, which contains numerous genes involved in immune
and inflammatory responses [212]. At least 30 polymorphisms within the exon, intron,
and gene regulatory regions have been identified, and these polymorphisms affect RAGE
expression and RAGE-mediated signals [213]. The major genetic variants of the RAGE
gene involve a coding change in the V domain (Gly82Ser) and two changes in its promoter
region (-429T/C and -374T/A) [41]. The gly82Ser isoform of RAGE exhibits enhanced
ligand-binding affinity and increases inflammatory mediator levels. Gly82Ser genotypes
are associated with elevated levels of serum AGE, serum CRP, plasma TNF-α, and urinary
8-iso-PGF2α [214]. The promoter region -439T/C variant of the RAGE gene acts as a
biomarker of the diabetic/pre-diabetic state. In diabetic subjects, the -429T/C variant
was associated with higher hemoglobin A1c (HbA1C) levels. In addition, the -374T/A
allele has been shown to affect gene transcription and to be a potential marker of vascular
disease [215].

Although RAGE is greatly expressed in adult lung tissues, RAGE knockout (RAGE-
KO) mice do not exhibit pulmonary changes associated with life expectancy [216]. However,
RAGE-KO mice appear to have an extended life span, as more reached an age of 24 months
than did wild-type mice in a comparative study [217].
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sRAGE administration dose-dependently reduced aortic atherosclerotic lesion sizes,
numbers, and complexities [41,218], and in sRAGE suppressed diabetic complications and
inflammatory states [219]. Further studies are required to better understand the effects of
RAGE isoforms and sRAGE.

6. RAGE Inhibitors

Interestingly, RAGE KO mice are healthy and developmentally normal, which sug-
gests RAGE knockdown might be a safe therapeutic strategy [217]. Furthermore, ex-
tracellular ligand-based RAGE inhibitors have been shown to be effective in RAGE-
mediated diseases. RAGE inhibitors are summarized in Table 2. TTP488 (azeliragon, also
called PF-04494700; chemical name 3-[4-[2-butyl-1-[4-(4-chlorophenoxy) phenyl]imidazol-
4-yl]phenoxy]-N,N-diethylpropan-1-amine) is an orally bioavailable small molecule that
can cross the BBB [220]. TTP488 binds with multiple ligands, such as AGEs, HMGB1,
CML, S100B, and Aβ [4,220,221]. TTP488 administration inhibited inflammatory signaling
and neuronal Aβ accumulation in a mouse model of AD. While 10 weeks of treatment
with TTP488 was found to be safe and well-tolerated in subjects with mild-to-moderate
AD, TTP488 did not appear to show consistent effect on plasma levels of Aβ and inflam-
matory biomarkers [4,220,221]. Structurally, TTP488 presents two hydrophobic moieties,
an aliphatic chain, and an electron-deficient aromatic group. TTP488 was developed by
modifying the imidazole ring, the hydrophobic side group, and the aromatic core [222,223].
YS Lee et al. reported that a trisubstituted thiazole inhibited RAGE-Aβ interactions [222].
YT Han et al. discovered a novel series of 4,6-disubstituted 2-amino pyrimidines that act
as RAGE inhibitors. SPR showed these inhibitors directly bind to RAGE and predicted
the binding mode of 4,6-bis(4-chlorophenyl) pyrimidine analogs to the RAGE V-domain.
Pyrimidine analogs also Aβ-induced NF-κB signaling in C6 glioma cells [223]. In later
studies, a 4-fluorophenoxy analog improved RAGE inhibitory activity more than the par-
ent 2-aminopyrimidine in vitro, and SPR confirmed direct binding between this analog
and RAGE. Moreover, a 4-fluorophenoxy analog significantly reduced Aβ entry into the
brain [224]. Furthermore, 6-phenoxy-2-phenylbenzoxazole derivatives that inhibit the
RAGE- Aβ interaction in vivo and were not toxic to HT22 cells at 10 µM. These derivatives
appeared to block Aβ transport across the BBB but did not seem to affect Aβ or amyloid
plaque in the brain [225].

Table 2. RAGE Inhibitors.

Inhibitors Targeting of RAGE Domain Effects Ref.

TTP488 V AGEs, HMGB1, CML, S100B, and Aβ-RAGE
binding inhibition [4,220,221]

4,6-disubstituted 2-amino
pyrimidines V Aβ-RAGE binding inhibition [223]

4-fluorophenoxy analog V Inhibition of amyloid plaques inside the brain [224]

FPS-ZM1 V Aβ-RAGE binding inhibition and low cytotoxicity
in vitro and in vivo [186]

GM-1111 VC1C2 CML, GMGB1, and S100B-RAGE binding
inhibition [226]

S100-derived peptide VC1C2
Reduced RAGE-mediated activation of NF-κB,
inflammation, tumor growth, and metastasis in

various cancer cells
[227]

HMGB1-derived Peptide VC1C2 Suppressed the formation of pulmonary
metastasis and invasion in tumor cells [228]

Alagebrium AGE cross-link breaker Reduced AGE accumulation and atherosclerotic
plaque formation and lesions [73]
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Table 2. Cont.

Inhibitors Targeting of RAGE Domain Effects Ref.

DNA-aptamers against the AGE-RAGE axis in
diabetes-associated complications [229]

Group of 13 compounds cytoplasmic Inhibition of ctRAGE interaction with mDia1 [14]

Aptamer-based antagonist V inhibit interaction between RAGE and S100B [230]

AGEs: Advanced glycation end-products; HMGB1: High mobility group box-1 protein; CML: Nε-carboxymethyl-lysine; ctRAGE:
cytoplasmic domain of RAGE.

On the other hand, FPS-ZM1 (N-benzyl-N-cyclohexyl-4-chlorobenzamide) inhibits
the interaction between the RAGE V domain and Aβ and the ability of Aβ to cross the
BBB. FPS-ZM1 acts to block RAGE-mediated inflammatory signaling and inhibits nuclear
NF-κB levels and BACE1, a key enzyme involved in the generation of Aβ in mouse brains.
In addition, FPS-ZM1 had no toxic side effects in mice at doses up to 500 mg/kg [186].
Interestingly, treatment with FPS-ZM1 for 8 weeks attenuated cardiac remodeling and
dysfunction in mice subjected to transverse aortic constriction (TAC), and treatment of TAC
mice with FPS-ZM1 enhanced AMPK phosphorylation and reduced the phosphorylations
of mTOR and NF-κB in cardiac tissues. In addition, treatment of TAC mice with FPS-
ZM1 diminished endoplasmic reticulum stress, oxidative stress, and inflammation in
cardiac tissues [163]. In a mouse model of toluene diisocyanate-induced asthma, FPS-ZM1
attenuated airway inflammation and β-catenin signaling [231], and in another study, FPS-
ZM1 impaired primary tumor growth, prevented tumor angiogenesis and inflammatory
cell recruitment, and most importantly, inhibited metastasis to the lungs and liver [190].

Chondroitin sulfate and heparan sulfate strongly bind to RAGE and suppressed the
colonization of lungs by tumor cells [232], and GM-1111 inhibited interactions between
RAGE and CML, HMGB1, and S100B and exhibited anti-inflammatory activity [226]. S100-
derived peptide (ELKVLMEKEL) was found to compete for the RAGE site required for
binding ligands, such as S100P, S100A4, and HMGB1, and reduced RAGE-mediated NF-κB
activation, inflammation, tumor growth, and metastasis in different cancer cells [227].
In addition, peptides derived from the COOH-terminal motif of HMGB1 (150–183, 162–
177, 160–183) also bind RAGE, inhibit the interaction between RAGE and HMGB1, and
effectively suppressed the pulmonary metastasis and invasion of tumor cells [228].

Alagebrium (ALT7-11) is an AGE cross-link breaker, and treatment with alagebrium
reduced AGE accumulation and atherosclerotic plaque formation and lesions [73]. AGE-
RAGE signaling contributes to the development and progression of various diabetes and
aging-related disorders. Yamagishi et al. found that DNA-aptamers might provide a
potential treatment for vascular complications of diabetes and cancer by targeting the
AGE-RAGE axis [229].

The intracellular domain of RAGE is required for many types of RAGE signals and for
inducing downstream effects, and the disruption of RAGE-mDia1 binding is important for
the therapeutic targeting of RAGE-mediated chronic inflammatory diseases. In one study,
13 compounds with high affinity for the cytoplasmic domain of RAGE (ctRAGE) inhibited
the interaction between ctRAGE and mDia1 [14].

Recently found is that Src homology 2 domain-containing leukocyte protein of 76 kDa
(SLP76) interacts with a cytosolic tail of RAGE, resulting in prompt activation of down-
stream signaling and gene transcription of pro-inflammatory mediators, such as TNF,
CXCL10, HMGB1, and IL-6 in HEK 293 cells. Therapeutic targeting of interaction SLP76
with RAGE as a new approach for lethal sepsis [233].

Zheng et al. reported that aptamer-based antagonist against RAGE inhibits tumor
growth and microvasculature formation in colorectal tumor mice by suppression of the
RAGE/NF-κB/VEGF-A signaling [230].
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7. Conclusions

RAGE is a multi-ligand receptor of the immunoglobulin family. RAGE and its ligands
are present on most cell types and are involved in diabetes, diabetes complications, chronic
inflammation, neurodegenerative disorders, and cancer. Recent advances have revealed the
enormous breadth of the influence of RAGE and its ligands. Although, sRAGE and esRAGE
act as biomarkers and endogenous protection factors against RAGE-mediated pathologies,
sRAGE and esRAGE may not be ideal therapeutic means for targeting RAGE because
they are large recombinant proteins that are difficult to produce at therapeutic levels.
Accordingly, small-molecular inhibitors have been developed to target the extracellular
ligand-binding site of RAGE and its intracellular signaling pathway. Further, there are
critical issues that remain to be addressed of the understanding of RAGE-targeting therapy
and the long-term impact of RAGE blockade in humans. Future investigations are required
to improve understanding of the characteristics of efficient RAGE inhibitors to develop a
significant understanding of the impact of RAGE blockage.
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