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Introduction
Hepatitis C virus (HCV) is a hepatotropic RNA 
virus, which belongs to the Flaviviridae family.1 
Chronic HCV infection is a major public health 
problem, affecting more than 150 million individ-
uals worldwide. Chronically infected patients are 
at high risk for developing liver fibrosis, cirrhosis 
and hepatocellular carcinoma (HCC). In many 
parts of the world, HCV infection is the major 
cause of HCC and the leading indication for liver 
transplantation (LT).2 There is no vaccine to pre-
vent HCV infection. In the past, interferon (IFN)-
based regimens were the standard of care for HCV 
infection, but only led to a sustained virologic 
response (SVR) in 50% of patients with serious 
adverse effects.3 Recent approval of novel antivi-
rals directly targeting the virus, named direct-act-
ing antivirals (DAAs), have enabled IFN-free 
treatments with considerable SVR improvement 
(SVR rates over 90%). Although the development 

of DAAs has revolutionized HCV therapy, several 
limitations remain: these include limited access to 
therapy in the majority of infected patients, treat-
ment failure in a subset of patients, potential 
adverse effects in patients with comorbidity and 
persistent HCC risk following SVR in patients 
with advanced fibrosis.4 Targeting host factors 
required for virus infection is an attractive com-
plementary strategy to address these challenges. 
An improved understanding of the viral life cycle 
based on the development of advanced HCV 
model systems has enabled the design of new mol-
ecules that target key factors of the HCV life cycle, 
named host-targeting agents (HTAs).5 HTAs pro-
vide a broad antiviral activity with very high 
genetic barrier to drug resistance due to the 
extremely low mutational rate occurring within 
host cells.5,6 Several HTAs are now being evalu-
ated in phase II and III clinical trials. Here, we 
review the different classes of HTAs in preclinical 
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or clinical development and highlight their future 
role in anti-HCV therapy.

Treatment of HCV infection in the era of 
DAAs
In recent years, the treatment of chronic HCV 
infection has dramatically improved with the 
development of IFN-free regimens based on 
DAAs. Indeed, a better understanding of the HCV 
life cycle has led to the development of multiple 
DAAs, with highly improved SVR rates, shortened 
treatment duration and reduced side effects.7 
DAAs are molecules that specifically target defined 
nonstructural (NS) viral proteins playing a crucial 
role in the HCV life cycle. At least four classes of 
DAAs are available in the US and Europe: NS3/
NS4A protease inhibitors (e.g. simeprevir, grazo-
previr, paritaprevir), NS5B nucleoside and non-
nucleoside polymerase inhibitors (e.g. sofosbuvir 
and dasabuvir, respectively) as well as NS5A 
inhibitors (e.g. daclatasvir, ledipasvir, ombitas-
vir).3 Combinations of DAAs are currently the 
standard of care for patients with HCV infection. 
In 2014, the combination of sofosbuvir and ledi-
pasvir (Harvoni, Gilead, Foster City, CA, USA) 
was approved for the treatment of HCV genotype 
1 infection, with a SVR of more than 95%.8–10 
Moreover, in the same year, the US Food and 
Drug Administration (FDA) also approved the 
combination of three DAAs, namely ombitasvir, 
paritaprevir and dasabuvir (Viekira Pak, Abbvie, 
North Chicago, IL, USA) for the treatment of 
HCV genotype 1 infection.11–13 In 2016, additional 
DAA-based regimens including sofosbuvir/vel-
patasvir (Epclusa, Gilead) and grazoprevir/elbasvir 
(Zepatier, Merck, Kenilworth, NJ, USA) were 
approved for the treatment of pan-genotypic HCV 
infection with a SVR rate of about 95%.14,15

Limitations of DAA-based therapies
Today, it is estimated that more than 90% of 
patients with chronic hepatitis C can be cured 
with DAA-based regimens. Clinical studies 
involving large numbers of patients confirmed 
excellent efficacy, safety and tolerability of the 
new DAA combinations. However, several chal-
lenges remain unsolved.

The most important limitation is probably the 
accessibility of DAA regimens. Indeed, access to 
DAAs is limited to less than 10% of patients  
with HCV infection, especially in low-resource 

countries.16 Moreover, the management of special 
populations, or ‘difficult-to-treat’ patients still 
requires special attention.17 One challenge remains 
the treatment of patients with advanced cirrhosis 
and decompensated liver disease. Recent studies 
revealed that patients with or without cirrhosis 
respond equally well to DAAs, whereas patients 
with advanced cirrhosis appear to have a reduced 
ability to clear the virus, leading to lower SVR rates 
in this population.18,19 For these patients, treat-
ment regimens should be adapted to higher doses 
or longer treatment duration. In this regard, it is 
important to note that patients with advanced cir-
rhosis (Child-Pugh classes B and C) were excluded 
in many phase II and phase III clinical trials and 
fewer studies were conducted in patients with 
decompensated liver disease in the past.8,10–12,20–22 
Consequently, the dosage of DAAs, either alone or 
in combination, their efficacy and their safety have 
only been partially addressed in these special pop-
ulations. Furthermore, several DAA-based regi-
mens (e.g. the NS34A protease inhibitors 
simeprevir and asunaprevir) cannot easily be used 
in patients with decompensated cirrhosis because 
of their impaired drug-metabolizing capacity, lead-
ing to severe adverse effects.19,23,24 DAA-based 
regimens can also be challenging for patients with 
advanced renal insufficiency who often need DAA 
dose adjustments.19 Furthermore, few treatment 
options are available for patients with end-stage 
renal disease. Indeed, current recommendations 
only allow the use of grazoprevir (NS3/NS4A 
inhibitor) and elbasvir (NS5A inhibitor) in combi-
nation in these patients.25,26 Despite overall prom-
ising results, the optimal DAA combination, the 
treatment duration and treatment dosages in these 
special populations require further investigations.

Limitations in the application of DAA regimens 
also include certain viral genotypes. HCV geno-
type 3 is considered to be the most difficult-to-
cure genotype with DAA-based therapy.27,28 
Currently available DAAs are less efficient against 
this genotype. Two regimens are recommended 
for the management of these patients: the combi-
nations of daclatasvir and sofosbuvir or sofosbu-
vir and velpatasvir. The SVR rates are lower 
compared with other genotypes, ranging from 
50% to 90% depending on the treatment history 
and the disease stage.27–31 Interestingly, HCV 
genotype 3 is the second most prevalent genotype 
worldwide with high morbidity and mortality 
rates compared with other genotypes.32 Therefore, 
additional studies are needed to improve new 
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therapeutic options for patients with HCV geno-
type 3 infection.

Another aspect that requires further studies is the 
persistent risk of HCC post cure in patients with 
advanced fibrosis or comorbidities. Although the 
risk of de novo HCC development is reduced after 
SVR, HCC can occur even more than 10 years 
following successful HCV clearance.4,33,34 
Evidence from several cohorts appears to suggest 
that post-SVR HCC development and recurrence 
may be more frequent after DAA treatment com-
pared with IFN-based therapy, potentially due to 
a difference in host immune modulation between 
IFN- and DAA-treated patients.4,35 Given the 
increasing incidence of HCC and the urgent 
unmet needs for prevention and detection of 
HCC, alternative strategies for these populations 
should be explored.7,34

Although not an issue in the majority of treated 
patients, HCV resistance to DAAs can occur in a 
small minority of patients. HCV has a quasispe-
cies distribution. The high replication rate of 
HCV (1010−1012 virions per day in patients with 
chronic infection) and the low fidelity of its RNA 
polymerase (1.5–2.0 × 10−3 base substitutions 
per genome site per year) result in a high degree 
of genetic variants. Therefore, patients are 
infected by a mix of distinct but closely related 
viral populations.36 Viral polymorphisms can nat-
urally appear in regions targeted by DAA and 
may confer DAA resistance. When a DAA treat-
ment is administered, sensitive wild-type popula-
tions are completely inhibited while drug-resistant 
variants are rapidly selected, leading to treatment 
failure (breakthrough) or relapse after therapy.17,37 
Moreover, DAAs from the same class share cross 
resistance, meaning that specific mutations can 
confer reduced susceptibility to all molecules 
from the same class, thereby limiting retreatment 
options.17,38 Consequently, more studies and 
clinical trials are ongoing to define the best 
retreatment strategies for patients with viral resist-
ance or treatment failure.

Targeting of viral host-dependency factors 
to prevent and cure HCV infection
The HCV life cycle can be divided into three 
major steps: viral attachment and cell entry; viral 
translation and replication; and assembly and 
release of the new infectious virions (Figure 1).1 
Numerous host cell factors are involved in each 

step of the HCV life cycle. A hallmark of HCV is 
the association of circulating viruses with very-
low-density and low-density lipoproteins (VLDL 
and LDL) forming infectious lipo-viro particles 
(LVPs).39 HCV infection of hepatocytes begins 
with a complex interaction between these LVPs 
and several cellular attachment or entry factors. 
After attachment, viral particles are then internal-
ized through clathrin-mediated endocytosis.40 
The viral RNA is released into the cytosol, and 
translated into a polyprotein that is targeted to 
the endoplasmic reticulum (ER) where it is sub-
sequently processed by host and viral proteases to 
generate three structural proteins (Core, E1 and 
E2) and seven NS proteins (p7, NS2, NS3, 
NS4A, NS4B, NS5A and NS5B).41 The NS pro-
teins form the replication complex at the surface 
of ER-derived membranes, the so-called mem-
branous web. Viral replication is catalyzed by the 
viral polymerase NS5B.42 Viral RNA and proteins 
accumulate and new virions are assembled in an 
ER-related compartment in close vicinity to 
hepatic lipid droplets (LDs). Finally, HCV uses 
the VLDL production and secretory pathways to 
generate and export infectious LVPs.43 As 
reviewed below, many of these host-dependency 
factors are targets for antiviral drugs. This review 
will focus on host factors that have been explored 
as targets of HTAs in antiviral therapies.

Inhibitors of HCV entry: prevention of HCV 
infection during transplantation
The HCV entry process has been particularly well 
characterized in the past few years. First, heparan 
sulfate proteoglycans (HSPGs) are involved in the 
attachment of viral particles to hepatocytes. Viral 
entry is then mediated by several entry factors. 
The main entry factors are the scavenger receptor 
BI (SR-BI), the tetraspanin CD81 and the  
tight-junction proteins Claudin 1 (CLDN1) and 
Occludin (OCLN).44 This process also involves 
numerous cofactors, notably the two receptor 
tyrosine kinases epidermal growth factor receptor 
(EGFR) and ephrin receptor A2 (EphA2) that 
promote CD81–CLDN1 interaction, as well as 
other tetraspanin-associated proteins.45,46 Finally, 
other regulators of the host lipid metabolism and 
innate immune responses such as the Niemann-
Pick C1 Like 1 protein (NPC1L1) and the sodium 
taurocholate cotransporting polypeptide (NTCP) 
are required for HCV entry.44–48 Furthermore, 
transferrin receptor 1 (TfR1) has recently been 
proposed as an HCV entry factor.44
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Targeting host proteins involved in virus entry is 
a particularly attractive strategy for the preven-
tion of organ infection in LT or during transplan-
tation of HCV-positive organs, as reviewed 
recently.49,50 Chronic HCV infection is a leading 
cause of LT. Infection of the engrafted organ is 
universal and patients exhibit accelerated pro-
gression to advanced liver disease following 
LT.49,50 A very appealing option to prevent HCV 
infection and viral-induced disease in the graft is 
blocking viral cell entry using entry inhibitors 
alone or in combination with other antiviral 
treatments.

The first HTA having entered clinical develop-
ment is the small molecule ITX-5061 that blocks 

the interaction of HCV with SR-BI. In vitro stud-
ies have shown efficient reduction of virus entry by 
ITX-5061 for HCV genotypes 1–6.51 Although 
SR-BI is a key component of the host lipid metab-
olism, ITX-5061 was well tolerated in clinical 
phase I studies with the only major adverse effect 
being elevated serum levels of high-density lipo-
proteins (HDLs).52 While ITX-5061 showed only 
limited efficacy in clinical phase I studies enrolling 
patients with chronic HCV infection, it signifi-
cantly limited viral evolution in patients undergo-
ing LT.52,53 Of note, long-term treatment with 
ITX-5061 in cell culture resulted in escape muta-
tions in HCV envelope glycoprotein E2, but these 
findings might be limited to in vitro settings, since 
the mutants also showed increased sensitivity to 

Figure 1.  The HCV life cycle and host targets for antiviral therapy.
The major steps of the hepatitis C virus (HCV) life cycle are shown schematically. Lipo-viro particle (LVP) interaction with 
cellular surface receptors initiates the viral entry process. After clathrin-mediated endocytosis and uncoating, the HCV 
genome is translated into a polyprotein that is processed into 10 viral proteins anchored in the endoplasmic reticulum (ER). 
Viral replication takes place in ER-derived membranes named the ‘membranous web’. The assembly process is triggered 
by core protein trafficking to lipid droplets (LDs). Virion morphogenesis is coupled to very-low-density lipoprotein (VLDL) 
synthesis. New virions are transported and maturated through the Golgi before being released as LVPs. The main inhibitors 
of viral entry, replication and assembly or release are highlighted in red squares. Examples of host-targeting agents (HTAs) 
in preclinical or early clinical development are indicated. These include miR-122 inhibitors: miravirsen/SPC3649, RG-101; 
cytochrome P450 A (CypA) inhibitors: alisporivir/Debio 025, NIM811, SCY-635 and CPI-431-32; lipid metabolism inhibitors: 
statins [3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) inhibitors], PF-429242 (SKI-1/S1P inhibitor); α-glucosidase 
inhibitors: celgosivir; Core protein trafficking inhibitors: LCQ908/pradigastat, quercetin (diglyceride acyltransferase I 
inhibitors); lipid metabolism inhibitors: naringenin and amiodarone (microsomal triglyceride transfer protein inhibitors), 
mipovirsen [apolipoprotein B (ApoB) inhibitor], resveratrol, pterostilbene; bezafibrate and torimefene (peroxisome 
proliferator-activated receptor α agonists). CLDN1, Claudin 1; EGFR, epidermal growth factor receptor; EphA2, ephrin 
receptor A2; HSPG, heparan sulfate proteoglycan; LDLR, low-density lipoprotein receptor; miR-122, microRNA 122; NPC1L1, 
Niemann-Pick C1 Like 1 protein; OCLN, Occludin; SR-BI, scavenger receptor BI.

https://journals.sagepub.com/home/tag


E Crouchet, F Wrensch et al.

journals.sagepub.com/home/tag	 5

antibody neutralization and thus might not arise in 
vivo.54 Limited potency of the compound com-
bined with viral escape may have been the reasons 
for incomplete protection.

Another attractive strategy to inhibit virus entry is 
to target host factors using specific monoclonal 
antibodies. These antibodies bind to host proteins 
and block their engagement by HCV, thereby 
blocking virus entry into hepatocytes. Antibodies 
targeting CD81, CLDN1 and SR-BI have been 
shown to elicit strong antiviral effects in preclini-
cal mouse studies.55–60 Of note, anti-CLDN1 anti-
bodies are also able to cure chronic HCV infection 
in the albumin enhancer-promoter-driven uroki-
nase-type plasminogen activator/severe combined 
immunodeficiency (uPA/SCID) liver chimeric 
mouse model, suggesting that entry inhibitors also 
hold potential to treat chronic hepatitis C.59,60 
Completion of preclinical development is the next 
step for clinical translation of these compounds. 
Further host factors involved in HCV entry that 
are subject to (pre-)clinical drug development 
include NPC1L1 and EGFR. Ezetimibe, a mole-
cule targeting NPC1L1, elicited only minor effects 
on HCV viral loads in a phase I clinical trial that 
enrolled two patients who underwent organ trans-
plantation.61 Additionally, a phase I/II clinical trial 
has been initiated to evaluate the potential of the 
clinically approved EGFR inhibitor erlotinib to 
treat chronic HCV infections [ClinicalTrials.gov 
identifier: NCT01835938].

Silymarin/silibinin is a clinically approved natural 
product isolated from milk thistle that is regularly 
used to treat liver damage after intoxications and 
chronic liver disease. In vitro studies have shown 
an inhibitory effect of this compound on clathrin-
dependent viral trafficking.62 Clinical phase I and 
phase II studies of patients with chronic HCV, 
including those who have had LT, revealed con-
flicting results. While some studies reported a sig-
nificant reduction in viral loads and alanine 
transaminase (ALT) levels, other studies reported 
viral rebound and treatment failure.63–66 Further 
studies are thus needed to clarify the potential of 
silymarin/silibinin for the management of chronic 
hepatitis C.

Another drug targeting virus entry that has been 
evaluated in a phase IV clinical study is the malaria 
drug chloroquine that affects clathrin-mediated 
endocytosis and virus-mediated autophagy.67,68 
Monotherapy with chloroquine of patients with 

chronic HCV infection not responding to IFN-
based regimens with chloroquine resulted in a sig-
nificant reduction of viral RNA and liver ALT 
levels. However, viral titers quickly relapsed after 
cessation of treatment, indicating that monother-
apy with chloroquine might not be sufficient to 
cure HCV infection.69

Interestingly, combinations of host-targeting 
HCV entry inhibitors and DAAs are character-
ized by synergistic antiviral effects.58,70 The pro-
phylactic properties of HTAs targeting virus entry 
could make them a valuable asset in the preven-
tion of graft infection during LT. Additional clini-
cal trials are required to establish the place of 
entry inhibitors in the management of HCV graft 
infection.

Inhibitors of HCV RNA replication

Cyclophilin A inhibitors
To facilitate its replication, HCV uses a plethora of 
host factors, including cyclophilins, that interact 
with the viral protein NS5A.42,71–73 It was demon-
strated that cyclosporine A (CsA), a common 
immunosuppressive drug targeting cytochrome 
P450 A (CypA), efficiently suppresses viral replica-
tion in vitro and in LT recipients.74,75 Based on 
these observations, CsA derivatives lacking immu-
nosuppressive activity but retaining antiviral activ-
ity have been developed.76–78 Three molecules have 
so far exhibited clinical efficacy in patients with 
HCV infection treated with both IFN-based and 
IFN-free regimens: alisporivir/Debio 025, NIM811 
and SCY-635.79,80 Safety limitations have delayed 
the clinical development and further studies are 
needed to investigate the role of these compounds 
in the management of patients with HCV infection. 
These compounds act through two distinct mecha-
nisms. On one hand, they inhibit HCV replication 
by disrupting and preventing Cyp–NS5A interac-
tion. On the other hand, CypA inhibitors can 
restore the host innate immune responses against 
HCV.79,81,82 Interestingly, it was demonstrated that 
alisporivir also restricts human immunodeficiency 
virus (HIV) replication in vitro and in vivo by inhib-
iting CypA–HIV capsid protein interaction.83–85 
Based on this knowledge, Gallay and collaborators 
described a novel CypA inhibitor, named CPI-431-
32, that simultaneously blocks HCV and HIV rep-
lication with a higher efficiency than alisporivir.86 
CypA inhibitors may thus be of interest to treat 
patients with HIV/HCV coinfection.
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MicroRNA-122 inhibitors
After viral entry, the stability of HCV RNA and its 
propagation in hepatocytes depend on the interac-
tions between the HCV genome and micro-
RNA-122 (miR-122), a miRNA highly expressed 
in the liver.87–89 It was demonstrated that seques-
tering miR-122 using miravirsen/SPC3649, a 
miR-122 antisense locked nucleic acid, strongly 
reduces HCV replication in vitro.87,90 Moreover, as 
the miR-122 binding sites are highly conserved 
across HCV genotypes, miravirsen exhibits a pan-
genotypic antiviral effect.91 It also appears safe and 
well tolerated and elicits a prolonged dose-depend-
ent reduction in HCV RNA levels in patients with-
out serious adverse effects.92,93 Although both in 
vitro and clinical data indicated that miravirsen 
provides a high barrier to viral resistance, some 
patients experienced viral rebound within 14 weeks 
after treatment cessation, suggesting that mira-
virsen may not be used as a monotherapy but 
rather in combination with other HTAs or 
DAAs.91,92 In this respect, promising results have 
already shown that miravirsen and DAAs exert an 
additive effect in vitro and that miravirsen is fully 
active against DAA-resistant HCV variants.74,94 
Finally, a recent phase I clinical study assessed the 
safety and the antiviral effect of RG-101, a hepato-
cyte-targeted N-acetylgalactosamine-conjugated 
oligonucleotide that antagonizes miR-122. A sin-
gle dose of this compound resulted in a significant 
decrease in HCV load and was well tolerated in 
patients with chronic HCV infection with various 
genotypes. However, viral rebound was observed 
in two patients, likely due to substitutions in miR-
122 binding sites in the HCV genome, which led 
to viral resistance.95 More studies are therefore 
needed to evaluate the potential of these antiviral 
strategies. A phase II study is now underway 
(EudraCT 2015-001535-21) to establish the effi-
cacy of RG-101 in combination with DAAs. Since 
HTAs target host factor functions and not the 
virus itself, these compounds may have adverse 
effects linked to their mode of action.3,83,96 Thus, 
although no side effects have been observed so far 
after administration of miR-122 inhibitors, the 
effect of a long-term use of such compounds must 
definitely be investigated because low hepatic miR-
122 levels have been associated with liver disease 
progression and HCC development.97–99

Inhibitors of lipid biosynthesis pathways
Statins are drugs widely used for the treatment of 
hypercholesterolemia. They act through the 

inhibition of the 3-hydroxyl-3-methylglutaryl 
coenzyme A (HMG-CoA) reductase, the rate-lim-
iting enzyme in cholesterol biosynthesis in the 
liver. HCV replication can be disrupted in vitro by 
several statins such as lovastatin, atorvastatin, fluv-
astatin and simvastatin.100–102 Thus, statins have 
been proposed as candidates for the treatment of 
HCV infection. Of note, all HMG-CoA reductase 
inhibitors do not affect HCV replication, such as 
apravastatin, which does not exhibit an anti-HCV 
activity.103 The precise mechanism of action is not 
yet fully understood. Some studies suggested that 
the anti-HCV activity of statins could be due to the 
inhibition of geranylgeranylation of cellular pro-
teins rather than to the inhibition of cholesterol 
biosynthesis.100,104 Geranylgeranylation is a post-
transcriptional modification that attaches gera-
nylgeranyl groups produced through the cholesterol 
biosynthesis pathway to host proteins to facilitate 
their association with the host-cell membrane, 
which is essential for viral replication.105 Initial 
clinical studies indicated that statin monotherapies 
do not significantly modulate viremia in patients 
with chronic infection.106–108 Broad retrospective 
studies subsequently demonstrated that statins 
constitute interesting adjuvants for anti-HCV ther-
apies. Fluvastatin and pitavastatin have been 
reported to increase SVR in patients with HCV 
infection treated with pegylated IFNα and ribavi-
rin.109–113 Moreover, statins have been suggested to 
offer chemoprevention against HCV-induced 
HCC by inhibiting cell growth and tumor spread, 
and by exerting immunomodulatory effects.114–116 
The use of statins as adjunctive therapy in HCV 
treatment has been limited to IFN-based thera-
pies. Although statins in combination with DAAs 
have been shown to increase antiviral efficacy 
against HCV infection in vitro, the clinical benefit 
of statins in the era of DAA is still uncertain. 
Moreover, concerns have been raised about possi-
ble statin–DAA interactions.102,117–119 Therefore, 
future studies are needed to better characterize the 
benefits of statins in anti-HCV therapies and for 
the prevention of HCC development.

Another example of a lipid biosynthesis pathway 
inhibitor is PF-429242, which inhibits the human 
subtilase SKI-1/S1P. SKI-1/S1P regulates a mas-
ter lipogenic pathway upstream of HMG-CoA 
reductase through the activation of the sterol-reg-
ulating element binding protein. It was shown 
that the antiviral activity of PF-429242 was higher 
than that of statins in cell culture and that this 
compound decreased virion production in 
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vitro.120,121 However, their suitability for antiviral 
treatment still needs to be investigated.

Inhibitors of HCV assembly and release

α-Glucosidase inhibitors
The HCV particle consists of a nucleocapsid con-
taining the viral RNA, surrounded by an 
ER-derived membrane where E1 and E2 glyco-
proteins are anchored as heterodimers.43 In the 
ER, E1 and E2 proteins are highly glycosylated by 
α-glucosidases I and II, which ensure proper fold-
ing of these proteins. Celgosivir, a glucosidase I 
inhibitor, was shown to reduce virion production 
and viral infectivity in vitro.122,123 It also exhibited 
antiviral activity in preclinical trials and was inves-
tigated in a phase II clinical trial. Although this 
compound is not efficient as a monotherapy, it 
demonstrated a synergistic effect in combination 
with IFN-based therapies [ClinicalTrials.gov 
identifier: NCT00332176].122 The clinical trials 
for celgosivir were stopped as stated in the 
Migenix financial report for 2010.

Inhibitors of HCV core protein trafficking
Since HCV circulates as a LVP in the blood of 
patients with infection, viral assembly and egress 
of infectious LVP rely on host factors, which are 
required for lipid metabolism and VLDL produc-
tion. Therefore, they represent potential targets 
for anti-HCV therapies.39,124,125 Virus assembly is 
triggered by core protein recruitment on LD by 
the diglyceride acyltransferase I (DGAT-I).126,127 
It was demonstrated that DGAT-I inhibitors effi-
ciently suppress production of infectious viral 
particles in vitro while LD formation is not 
affected. Interestingly, quercetin, a natural flavo-
noid that inhibits DGAT-I, was reported to have 
anti-HCV properties.128 In a phase I dose-escala-
tion study, quercetin exhibited both high safety 
(up to 5 g/day) and high antiviral efficacy in 
patients with chronic infection.129 Quercetin is 
widely available and cheap, and could thus be 
developed as an inexpensive adjuvant for HCV 
treatment. Recently, the antiviral efficacy of the 
DGAT-I inhibitor LCQ908/pradigastat was 
assessed in phase II clinical trials in patients with 
HCV infection. Pradigastat was also safe and well 
tolerated. However, the clinical study was prema-
turely interrupted for lack of efficacy: no signifi-
cant change in serum viral RNA levels was 
observed in patients after pradigastat treatment 

compared with the placebo group.130 More stud-
ies are now needed to determine whether the 
DGAT-I inhibitor could be beneficial for patients 
in combination with DAAs.

During HCV assembly, HCV core protein is 
recruited from LD to the viral assembly site. This 
process involves several host factors, including 
clathrin assembly protein complex 2 medium 
chain μ1 (AP2M1), which directly interacts with 
core protein. Furthermore, the adaptor-associ-
ated kinase 1 (AAK1) and the cyclin-associated 
kinase (GAK) are known to regulate core-AP2M1 
interaction and are essential for HCV assem-
bly.131–133 Accordingly, Neveu and colleagues dis-
covered that AAK1 and GAK inhibitors, including 
the approved anticancer drugs sunitinib and erlo-
tinib, can block HCV assembly.131,132 However, 
these compounds were initially developed to tar-
get other kinases and could have adverse effects 
due to their lack of specificity. To overcome this 
problem, a more specific GAK inhibitor, 
isothiazolo[5,4-b]pyridine, was recently devel-
oped. This new drug efficiently inhibits HCV 
entry and assembly in vitro with limited off-target 
effects and has been proposed as an antiviral 
strategy.133

Inhibitors of host lipid metabolism
During the later stages of assembly, HCV coopts 
the VLDL pathway.124,134 Formation of VLDL as 
well as LVP requires the microsomal triglyceride 
transfer protein (MTP). This host enzyme medi-
ates triglyceride incorporation into nascent LD 
and allows lipid loading of ApoB in the ER. 
Compounds that inhibit the VLDL assembly 
pathway, such as MTP inhibitors or ApoB inhibi-
tors, are therefore interesting candidates to block 
HCV assembly and release.124,134 In line with 
these observations, the MTP inhibitor naringenin, 
a grapefruit flavonoid, has been shown to inhibit 
VLDL secretion in vitro and in vivo as well as 
HCV secretion in cell culture.135 More recently, a 
study demonstrated that the MTP inhibitor ami-
odarone also downregulates HCV assembly and 
release.136 However, a recent report indicated that 
amiodarone could induce bradycardia in patients 
when administered in combination with DAAs.96 
Several other MTP inhibitors are currently  
being evaluated in clinical trials for the treatment 
of dyslipidemia but their in vivo efficacy  
against HCV remains to be demonstrated.137–139 
Interestingly, mipomersen, an antisense inhibitor 
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of ApoB synthesis used for the treatment of hyper-
cholesterolaemia was also shown to efficiently 
block HCV morphogenesis in vitro.140 Mipomersen 
now needs to be tested in vivo.

In 2011, Goldwasser and colleagues showed that 
naringenin blocks HCV assembly not only by 
inhibiting MTP but also by activating the peroxi-
some proliferator-activated receptor α (PPARα) 
in HCV-infected cells.141,142 PPARα is a nuclear 
transcription factor regulating several aspects of 
the lipid metabolism in the liver. Notably, its acti-
vation leads to increase of fatty acid oxidation and 
impairment of HCV assembly and release.143,144 
During chronic HCV infection, the viral core pro-
tein inhibits PPARα activity to promote HCV 
replication. Thus, restoring PPARα activity con-
stitutes an interesting strategy to inhibit HCV 
infection.145,146 Accordingly, several approved 
drugs targeting PPARα were shown to display 
antiviral activity against HCV. This holds true for 
resveratrol and its methylated form pterostilbene 
(two natural compounds extracted from grapes 
and blueberries) as well as for torimefene (a 
tamoxifene derivative).146,147 In addition, Fujita 
and collaborators demonstrated the efficacy of 
bezafibrate, another PPARα agonist commonly 
used against hyperlipidemia in patients with 
chronic HCV infection.148 However, in 2013, 
Knop and colleagues observed that the beneficial 
effect of bezafibrate in patients is not due to a 
decrease in HCV RNA levels but rather to a sig-
nificant reduction of liver enzymes and improved 
liver function in patients.149 Finally, more recent 
studies corroborated the efficacy of bezafibrate in 
the regulation of lipid metabolism and in the 
reduction of viral loads in cell culture, indicating 
that further studies are needed to ascertain its 
potential for anti-HCV therapies.150,151 Clinical 
trials are needed to investigate the clinical antivi-
ral efficacy of assembly inhibitors.

Future role of HTAs in HCV therapy
DAA-based treatment is standard of care for the 
management of patients with chronic HCV infec-
tion. Next-generation DAAs with an even higher 
barrier to resistance and pan-genotypic activity 
are currently under clinical development.3 In this 
context, one can wonder about the positioning of 
HTAs in anti-HCV therapy. A key advantage of 
HTAs could be linked to the question of whether 
next-generation DAAs can address the limitations 
of currently licensed combination therapies 

(patients who are difficult to treat, resistance, 
access and HCC risk). While it is expected that 
next-generation DAAs will indeed address several 
of these issues, it is likely that DAAs will not be 
able to address all of these remaining challenges.

Multiresistance, especially in patients with rein-
fection such as those who are drug abusers with 
limited compliance and have had multiple treat-
ment courses, may require complementary com-
pounds. This is already blatant for nosocomial 
bacterial infections in patients who are critically 
ill, in whom current antibiotics are no longer effec-
tive. HTAs may also prove useful to ameliorate 
current treatment approaches when combined 
with DAAs. Combinations of HTAs and DAAs 
may even further reduce treatment duration, 
increase efficacy and thus improve adherence and 
access to therapy. HTAs may also be used for the 
treatment of patients with advanced disease, to 
lower HCC risk since this is a limitation of current 
DAA regimens, which have been proven unable to 
prevent HCC, especially in patients with advanced 
fibrosis or comorbidity. Finally, host-targeting 
entry inhibitors are good candidates to prevent 
HCV infection during LT or transplantation of 
HCV-positive organs such as kidneys. It is clear 
that infection prevention is by far conceptually a 
better option than DAA treatment post transplan-
tation, since if the infection develops, it entails the 
risk of acute or chronic HCV-induced liver disease 
(with fibrosing cholestatic hepatitis or HCC as the 
most severe forms). If a short-term preventive 
approach can effectively prevent HCV infection 
during transplantation, this concept may also 
improve patient care as it will be administered 
perioperatively during hospitalization.

Taken together, further clinical trials are needed 
to define the place of HTAs in the management 
of patients with HCV infection and to determine 
their role in comparison to or in combination 
with DAAs.
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