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Field background odour should 
be taken into account when 
formulating a pest attractant based 
on plant volatiles
Xiaoming Cai, Lei Bian, Xiuxiu Xu, Zongxiu Luo, Zhaoqun Li & Zongmao Chen

Attractants for pest monitoring and controlling can be developed based on plant volatiles. Previously, 
we showed that tea leafhopper (Empoasca onukii) preferred grapevine, peach plant, and tea plant 
odours to clean air. In this research, we formulated three blends with similar attractiveness to 
leafhoppers as peach, grapevine, and tea plant volatiles; these blends were composed of (Z)-3-hexenyl 
acetate, (E)-ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene, benzaldehyde, and ethyl benzoate. Based 
on these five compounds, we developed two attractants, formula-P and formula-G. The specific 
component relative to tea plant volatiles in formula-P was benzaldehyde, and that in formula-G was 
ethyl benzoate. These two compounds played a role in attracting leafhoppers. In laboratory assays, 
the two attractants were more attractive than tea plant volatiles to the leafhoppers, and had a similar 
level of attractiveness. However, the leafhoppers were not attracted to formula-P in the field. A high 
concentration of benzaldehyde was detected in the background odour of the tea plantations. In 
laboratory tests, benzaldehyde at the field concentration was attractive to leafhoppers. Our results 
indicate that the field background odour can interfere with a point-releasing attractant when their 
components overlap, and that a successful attractant must differ from the field background odour.

Plant volatiles mediate plant–insect interactions1,2. Herbivores are attracted to plant volatiles to locate food, and 
female herbivores also use plant volatiles to select oviposition sites3,4. Many studies have shown that only a small 
subset (10 compounds or fewer) of volatile compounds is used by insects for host location, although plant vol-
atiles can contain hundreds of components3–5. Thus, a blend of few plant volatile compounds can be as attrac-
tive as host plant volatiles to herbivores6–13. Pests may recognize the host plant based on volatiles that are either 
species-specific compounds or species-specific blends, in which some compounds are ubiquitous and the specific 
proportions of compounds are important3,4. In host plant volatiles, some compounds are fundamentally impor-
tant for attracting herbivores (their absence eliminates attractiveness), while others are of secondary importance 
(their absence reduces attractiveness) for host location14. A current research topic is the identification of attractive 
components in plant volatiles. Identifying such compounds can aid in the development of effective attractants to 
monitor and control insect pests in an environmentally friendly manner15,16.

Because they can be used to trap both male and female insects simultaneously, attractants based on host 
plant volatiles have greater potential than sex pheromones for pest management17–19. Several studies have inves-
tigated optimal combinations of host plant volatiles to improve the monitoring or trapping of insect pests18,20–24. 
Attractants based on plant volatiles have also been used successfully to manipulate the host location behaviour of 
target insects25–31. However, the results of laboratory tests on insect olfactory orientation often differ from those 
observed in field tests, and attractants that are successful in laboratory tests have not always been successful in the 
field6,9,32,33. Factors that can affect the success of an attractant in the field include the breadth of the target insect’s 
diet, the mode of insect feeding, and the complexity of the synthetic blend31. However, most studies have not con-
sidered the impact of the complex background odour in the field on the efficiency of the attractant.

In field environments, insects are confronted with a rich olfactory landscape that contains abundant volatiles 
from the main crop plant. The odour from the main crop can mask the point-releasing volatiles from attractants, 
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thereby disrupting the attractiveness of attractants to the target pest34. If the components of the attractant and the 
crop volatiles overlap, the faint odour from 50 or 100 mg attractant (pure synthetic compounds) will not provide 
a distinct signal11. It was reported that the Manduca sexta moth’s ability to correctly navigate to Datura wrightii 
flower odour significantly decreased when the background odour contained benzaldehyde or creosote bush vol-
atiles, which overlapped with the odour from D. wrightii flowers35. Likewise, mass application of a synthetic sex 
pheromone was shown to mask the sex pheromone released from females and disrupt the sexual chemical com-
munication between insects36. Therefore, an attractant with specific components that differ from those of main 
crop volatiles, and the field background odour, will have a much better chance of attracting insect pests. Although 
there has been relatively little research on this topic, the effect of background volatile noise on attractants has been 
considered step-by-step in field validation tests of some attractants18,23,32,37.

The tea green leafhopper, Empoasca onukii (Hemiptera: Cicadellidae, previously named Empoasca vitis), is a 
cell-rupture feeder and a serious insect pest of tea, Camellia sinensis (L.) Kuntze (Theaceae), in China38,39. In our 
previous study, we found that E. onukii adults preferred grapevine, peach plant, and tea plant odours to clean air, 
and that the composition of volatiles differed among these three plant species40. These results raised the possibility 
of using peach plant and grapevine odours to develop specific attractants to monitor and manage this pest in tea 
plantations. In this study, our objectives were as follows: (1) to determine the attractive blends to leafhoppers in 
tea plant, peach plant, and grapevine volatiles; (2) to develop leafhopper-specific attractants based on grapevine 
and peach plant odours; and, (3) to test the efficacy and specificity of the attractants in tea plantations.

Results
Identification of attractive volatile blends from three plants.  To identify the attractive blends 
to leafhoppers in the tea plant, peach plant, and grapevine volatiles, the components of synthetic blends were 
removed one by one, and attractiveness was evaluated in Y-tube tests. The compositions of the blends are shown 
in Table 1. Blend 4 ((Z)-3-hexenyl acetate, (E)-ocimene, and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT)), blend 
7 ((Z)-3 hexenyl acetate, benzaldehyde, and (E)-ocimene), and blend 10 ((Z)-3 hexenyl acetate, (E)-ocimene, 
DMNT, and ethyl benzoate) were significantly more attractive than clean air to leafhoppers (P <​ 0.0001) (Fig. 1). 
The leafhoppers could not differentiate between blend 4 and tea plant volatiles, between blend 7 and peach plant 
volatiles, and between blend 10 and grapevine volatiles (blend 4, P =​ 0.7503; blend 7, P =​ 0.2858; blend 10, P =​ 1) 
(Fig. 1). In Y-tube tests, the emission amounts of compounds in blends 4, 7, and 10 were, respectively, similar 
to those in tea plant, peach plant, and grapevine volatiles (P >​ 0.05) (Fig. 2a–c). Therefore, blends 4, 7, and 10 
represented the attractive blends to leafhoppers in the tea plant, peach plant, and grapevine volatiles, respectively.

Development of two leafhopper attractants: formula-P and formula-G.  The compositions of 
formula-P and formula-G are shown in Table 1. In Y-tube tests, the leafhoppers significantly preferred formula-P 
and formula-G to tea plant odour (P <​ 0.0001) (Fig. 3a). Analyses of the volatiles used in Y-tube tests showed the 
emission amounts of (Z)-3-hexenyl acetate, DMNT, and (E)-ocimene in formula-P and formula-G were similar to 
those in tea plant volatiles (P >​ 0.05) (Fig. 2d and e). Benzaldehyde in formula-P and ethyl benzoate in formula-G 
were unique compounds that were not found in tea plant volatiles (Fig. 2d,e).

In the wind tunnel experiments, formula-P and formula-G showed similar attractiveness to leafhoppers 
(P >​ 0.05) (Fig. 3b). At 50 cm from the odour source, the percentages of leafhoppers attracted to formula-P and 
formula-G were 46.5% and 53%, respectively, both significantly higher than that in the control (15%, P <​ 0.05) 
(Fig. 3b). At 250–300 cm from the odour source, the percentages of leafhoppers in the formula-P and formula-G 
treatments were 17% and 13%, respectively, both significantly lower than that in the control (41.5%, P <​ 0.05) 
(Fig. 3b).

Field trapping tests.  Figure 4 shows the results of the field tests at Hangzhou (in 2014 and 2015) and 
Shaoxing (in 2015). Before the field trial, the leafhopper populations were at approximately equal densities in the 
different treatments (P >​ 0.05) (Fig. 4a–c). At 6 days after laying traps, about 1.5–1.7 times more leafhoppers were 
captured in the formula-G trap than in the control trap (P <​ 0.05) (Fig. 4a–c). At 8 days after laying traps, similar 

Volatile 
compounds

Tea plant Peach plant Grapevine Lure

B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11 F-P F-G

HA •​ •​ •​ •​ •​ •​ •​ •​ •​ •​ •​ •​ •​

HB •​ •​ •​

Oc •​ •​ •​ •​ •​ •​ •​ •​ •​ •​ •​ •​

Li •​ •​ •​

DM •​ •​ •​ •​ •​ •​ •​ •​ •​ •​

Fa •​

Be •​ •​ •​

EB •​ •​ •​ •​

Table 1.   Composition of 11 blends (B-1 to B-11) to detect attractive blends to adult Empoasca onukii in tea 
plant, peach plant, and grapevine volatiles, and composition of two attractants (F-P and F-G) for trapping 
E. onukii. Tea plant, peach plant, and grapevine volatiles have been described in detail by Cai et al.40. HA, 
(Z)-3-hexenyl acetate; HB, (Z)-3-hexenyl butyrate; Oc, (E)-ocimene; Li, Linalool; DM, (E)-4,8-dimethyl-1,3,7-
nonatriene; Fa, (E, E)-α​-farnesene; Be, benzaldehyde; EB, ethyl benzoate.
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numbers of leafhoppers had been captured by the formula-G and the control traps (P >​ 0.05) (Fig. 4a–c). Similar 
numbers of leafhoppers were captured by formula-P traps and control traps during the field trial (P >​ 0.05) 
(Fig. 4a–c).

Tea plantation background odour.  The background odour of tea plantations contained three com-
pounds that were components of formula-P or formula-G: (Z)-3-hexenyl acetate, benzaldehyde, and 
(E)-ocimene (Table 2). Benzaldehyde was detected in all tea plantation air samples at a concentration of approx-
imately 3.5 ng L−1, thousands of times higher than the concentrations of the other two detected compounds 
(Table 2). (E)-Ocimene showed the lowest detection rates (in 47% and 13% of background odour samples at 
Hangzhou and Shaoxing, respectively) (Table 2).

Attractiveness of benzaldehyde.  The results of the Y-tube tests showed that benzaldehyde in the con-
centration range of 790.1 to 3.4 ng L−1 was significantly more attractive than clean air to leafhoppers (P <​ 0.05) 
(Fig. 5). Benzaldehyde at various concentrations affected the attractiveness of formula-P to leafhoppers. 
Compared with benzaldehyde at 3.4 ng L−1 in air, the leafhoppers significantly preferred formula-P odour (con-
taining benzaldehyde at 350.6 ng L−1) (P <​ 0.05) (Fig. 5). However, when the concentration of benzaldehyde in air 
was increased to 20.1 ng L−1, the leafhoppers could not differentiate between benzaldehyde and formula-P odour 
(P >​ 0.05) (Fig. 5).

Discussion
Because the leafhoppers have a small body (body length about 3 mm) and short antennae (<​1 mm), it is diffi-
cult to screen for the attractive compounds in plant volatiles by GC-electroantennographic detection analysis. 
Therefore, the attractive blends to leafhoppers in tea plant, peach plant, and grapevine volatiles were identi-
fied by Y-tube tests via a process of elimination. The results of the elimination tests could not provide detailed 

Figure 1.  Behavioural responses of Empoasca onukii adults in Y-tube bioassays to 11 blends of volatile 
compounds (shown in Table 1). Blends were tested against tea plant volatiles (TV), peach plant volatiles (PV), 
grapevine volatiles (GV), and clean air (CA). Asterisks denote significant differences in attractiveness (χ​2 
goodness-of-fit test: P <​ 0.0001). Numbers in parentheses indicate numbers of tested leafhoppers followed by 
frequency (%) of non-responding individuals.
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information about the role of every compound in attracting the leafhoppers, but this is a topic worthy of further 
research. Previous studies have confirmed that the attractive blends in host plant volatiles include at least two 
types of volatile compounds; green leaf volatile compounds (such as (Z)-3-hexenol and (Z)-3-hexenyl acetate) 
and terpenes (such as ocimene and DMNT)3,4. In the present study, (Z)-3-hexenyl acetate was the only green 
leaf volatile compound present in all three plant volatiles. Therefore, we assumed that it was crucial for attract-
ing leafhoppers, and included it in all the test blends. In laboratory tests, the three reduced blends had similar 
attractiveness as the three respective plant volatiles. These attractive blends composed of three or four compo-
nents offered the opportunity to develop an effective leafhopper attractant. In the three blends, some compounds 
were fundamentally important for attracting leafhoppers. For example, removing ethyl benzoate from blend  
8 (to produce blend 9) decreased the attractive efficiency from 88.5% to 68.9%, confirming that ethyl benzoate 
was fundamentally important for leafhopper attraction in grapevine volatiles. Similarly, blend 5 (blend 4 with 
DMNT removed) (Table 1) was not attractive to the leafhoppers, indicating that DMNT was a fundamentally 
important compound in tea plant volatiles. However, our results suggested that DMNT played a minor role as an 
attractant in peach plant volatiles, because removing DMNT from blend 6 (Table 1) barely affected its attractive-
ness. This is probably because there was a very low concentration of DMNT in peach plant volatiles.

Two synthetic attractants for leafhoppers were developed by adding benzaldehyde (formula-P) or ethyl ben-
zoate (formula-G) at emission amounts similar to those in peach plant and grapevine volatiles, respectively, to 
the attractive blend in tea plant volatiles. The Y-tube tests showed that both attractants were significantly more 

Figure 2.  Emission amount (mean + SE, n = 4) of synthetic blends and three plant volatiles in different 
Y-tube tests. (a) Blend 4 (B-4) vs. tea plant volatiles (TV). (b) Blend 7 (B-7) vs. peach plant volatiles (PV). 
(c), Blend 10 (B-10) vs. grapevine volatiles (GV). (d) Formula-P (F-P) vs. tea plant volatiles. (e) Formula-G 
(F-G) vs. tea plant volatiles. B-4, B-7, B-10, F-P, and F-G were synthetic blends (see Table 1 for composition). 
HA, (Z)-3-hexenyl acetate; Oc, (E)-ocimene; DM, (E)-4,8-dimethyl-1,3,7-nonatriene; Be, benzaldehyde; EB, 
ethyl benzoate. Different letters on bars indicate significant differences (one-way ANOVA followed by Tukey’s 
multiple comparison test, P <​ 0.05).
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attractive than tea plant volatiles to leafhoppers. Volatile analyses confirmed that benzaldehyde and ethyl benzo-
ate were the main attracting components in formula-P and formula-G, respectively. Then, to simulate the con-
ditions in tea plantations, we used a wind tunnel containing tea plant shoots to test the attractiveness of the 
synthetic blends. In this assay, the tea plant shoots provided the visual and olfactory background of a tea planta-
tion for the tested leafhoppers. In the wind tunnel bioassay, the two attractants were significantly and similarly 
attractive to leafhoppers against the background odour of tea plant volatiles.

However, the field trapping trials produced different results. In the tea plantations, the leafhoppers were only 
significantly attracted to formula-G, which contained ethyl benzoate. This raised the question of why only one of 
the two attractants that were attractive in the laboratory was attractive to leafhoppers in the tea plantations. We 
speculated that the odour environment of the tea plantations might have affected the efficiency of the two attract-
ants differently, as a result of their composition. During the field tests, three components ((Z)-3-hexenyl acetate, 
(E)-ocimene, and benzaldehyde) of the two attractants were detected in the ambient air of the tea plantation. 
The concentration of benzaldehyde in tea plantation air was thousands of times higher than the concentrations 
of the other two detected compounds. The high concentration of benzaldehyde in the tea plantation background 
odour would strongly disrupt the attractive efficiency of formula-P, which had benzaldehyde as its main compo-
nent. The Y-tube bioassay showed that benzaldehyde at the concentration detected in tea plantation background 
odour was attractive to leafhoppers. This bioassay also showed that the leafhoppers did not distinguish between 
benzaldehyde and formula-P when the concentration of benzaldehyde in formula-P was less than about 20 times 
higher than that of benzaldehyde in air. In field conditions, the concentration of an odour decreases with increas-
ing distance from its source1. When the concentration of benzaldehyde from formula-P decreased to a similar 
level as that in the tea plantation background odour, the leafhoppers could not differentiate between benzalde-
hyde from the two sources. Our unpublished data indicated that the concentration of benzaldehyde in the tea 
plantation ambient air at 1 m from the formula-P attractant was similar to that in the control plot. Therefore, the 
high concentration of benzaldehyde in the ambient air of the tea plantation could lead to the very small control 
range of point-released formula-P. More experiments should be conducted to further investigate the effects of a 
high concentration of benzaldehyde in the background odour on the attractiveness of formula-P. Besides ben-
zaldehyde, (Z)-3-hexenyl acetate, (E)-ocimene, and DMNT were also detected in the background odour of the 
tea plantations. However, they were detected at very low concentrations, and were minor components of the two 
attractants. Therefore, we assumed that these compounds in the ambient air of the tea plantations had little effect 
on the trapping efficiency of the two attractants.

The field background odour includes the volatiles from the main crop and other plants, as well as vola-
tiles from motor vehicles and nearby industries. Our previous studies showed that tea plants infested by tea 
geometrid (Ectropis obliqua), tea weevil (Myllocerinus aurolineatus), and leafhoppers emitted large amounts of 
(Z)-3-hexenyl acetate, (E)-ocimene, and DMNT41,42. However, benzaldehyde was only emitted from the tea plants 
severely infested by tea geometrids and tea weevils, and its emission amount was tens of times lower than that of 

Figure 3.  Behavioural responses of Empoasca onukii adults in Y-tube (a) and wind tunnel (b) bioassays to 
two attractants (F-P and F-G; for composition, see Table 1). In Y-tube bioassay, TV denotes tea plant volatiles, 
and asterisks denote significant difference in attractiveness (χ​2 goodness-of-fit test: P <​ 0.0001). Numbers in 
parentheses indicate numbers of tested leafhoppers followed by frequency (%) of non-responding individuals. 
In wind tunnel test, percentages of leafhoppers (%, mean +​ SE) at different distances from odour source were 
compared among different treatments. In blank control (CK), rubber septa were loaded with liquid paraffin. 
Each treatment was tested five times. Different letters on bars indicate significant differences (one-way ANOVA, 
followed by Tukey’s multiple comparison test, P <​ 0.05).
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(E)-ocimene41,42. Thus, the high concentration of benzaldehyde detected in the tea plantation background odour 
in this study would not have originated from the tea plants. Benzaldehyde is a common toxic volatile compound 
in the atmosphere, and it can originate from motor vehicle and industrial emissions43,44. It is likely that these were 
the main sources of benzaldehyde in the tea plantation background odour. Because field background odours are 

Figure 4.  Mean number +​ SE of Empoasca onukii adults captured in each trap at tea plantations in Hangzhou 
(2014, (a); 2015, (b)) and Shaoxing (2015, (c)). Traps were baited with rubber septa with the two formulae (F-P 
and F-G; for composition, see Table 1) and a liquid paraffin control (CK). Each treatment was replicated five 
times. Leafhoppers were trapped on sticky yellow strips placed 1 day before trials. Traps were monitored at 3, 6, 
and 8 days after laying traps. Different letters on bars indicate significant differences (one-way ANOVA followed 
by Tukey’s multiple comparison test, P <​ 0.05).

Compounds

Detection rate (%) Concentration (mean ± SE, ng L−1)

Hangzhou Shaoxing Hangzhou Shaoxing

(Z)-3-Hexenyl acetate 100 80 0.004 ±​ 0.001 0.003 ±​ 0.001

(E)-Ocimene 47 13 0.001 0.001

Benzaldehyde 100 100 3.334 ±​ 0.135 3.674 ±​ 0.201

Table 2.   Concentrations and detection rates of three components of two attractants in background odour 
of tea plantation. Sampling was performed in all experiment plots 1 day before the field trapping test, and in 
control plots on days 3, 6, and 8 days after start of field trapping test. Air near tea bush canopy was collected at 
100 mL min−1 for 240 min (24-L samples). Detection rate is detection frequency of a volatile compound in all 
samples at Hangzhou or Shaoxing.
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more complex than crop volatiles, the components of an attractant that differ from those of main crop volatiles 
may not differ from those of the field background odour.

An essential factor for insect olfactory location is that the attractant must stand out from the background 
volatile noise. There are two ways to avoid disturbance by background odour31: (1) increase the amount of the 
attractant, or (2) increase the specificity of the attractant. If the composition of the attractant overlaps with that of 
the background odour, then increasing its amount will only slightly increase its detectability. However, if the com-
ponents of the attractant differ from those of the background odour, then even a small amount of the attractant 
will be highly detectable. Therefore, the specificity of attractant’s composition relative to that of the background 
odour is crucial for its attractiveness to the target pest in field conditions.

The long-term goal of our research is to develop the synthetic attractants based on plant volatiles to monitor 
and control tea leafhopper in tea plantations. In this study, we developed two formulae that differed from tea plant 
volatiles, and were more attractive than tea plant volatiles to leafhoppers in laboratory tests. However, one of them 
was not specific relative to the background odour of the tea plantation, and only the attractant with a specific 
component that stood out from the tea plantation background odour was attractive to leafhoppers in the field. 
These results indicated that a synthetic attractant should contain components that not only differ from those of 
the main crop, but also from those of the field background odour. Further research to develop a safe and effective 
method to monitor and control leafhoppers should focus on how to enhance the efficiency of formula-G in field 
conditions, and how to efficiently kill the attracted leafhoppers.

Methods
Plants, insects, and chemicals.  The tea plants (Camellia sinensis cv. ‘clone Longjing 43’​), peach plants 
(Prunus persica cv. ‘Hongtiantao’ (Rosaceae)), grapevine plants (Vitis vinifera cv. ‘Kyoho’ (Vitaceae)), and tea leaf-
hoppers (Empoasca onukii) used in this study were prepared as described previously40. Test compounds (Table 1) 
were high-purity grade, and were obtained from Sigma-Aldrich (China) except for DMNT, which was obtained 
by custom synthesis. All compounds were dissolved in liquid paraffin to different concentrations for Y-tube tests 
and wind tunnel bioassays, or in methanol for volatile analyses. Pure synthetic compounds were used in the field 
trapping tests.

Y-tube bioassay.  Odour sources.  Plant odour sources were prepared as described previously40. Synthetic 
compounds in liquid paraffin were mixed as shown in Table 1, and 20 μ​L solution of synthetic compounds or 20 μ​L  
liquid paraffin (clean air) was loaded onto each rubber septum (8 mm O.D. Sigma-Aldrich, China). According to 
the three plant volatiles40, the total loaded amount of the synthetic compounds was 0.1–0.6 ng per rubber septum.

Y-tube setup and bioassays.  The Y-tube hardware and the bioassay procedure were as described previously40. The 
proportions of tested male and female leafhoppers were random. The Y-tube and odour sources were replaced 
after testing 10 individuals. Bioassays were conducted between 15:00 and 19:00 h. On a given day, approximately 
30 leafhopper individuals were tested, and each insect was used only once.

Treatments.  To identify the attractive blends to leafhoppers among the volatiles of peach plants, grapevine, 
and tea plants, 11 blends (Table 1) of compounds were tested. The tea plant, peach plant, and grapevine volatiles 
shared five common compounds ((Z)-3-hexenyl acetate, (E)-ocimene, linalool, DMNT, and (E,E)-α​-farnesene), 
and the tea plant volatile blend was the simplest of the three plant volatile blends40. The attractive blend in tea 
plant volatiles was first identified, and the starting point was a blend of the five common compounds. Each blend 
and clean air or plant volatiles were provided as choices for the leafhoppers. Next, according to the composition 
of the tea plant volatiles, the emission amounts of (Z)-3-hexenyl acetate, DMNT, and (E)-ocimene in blend 6 

Figure 5.  Behavioural responses of Empoasca onukii adults in Y-tube bioassay in response to different 
concentrations of benzaldehyde in air, clean air (CA), or formula-P (F-P). Concentrations of benzaldehyde 
in air: 790.1 ±​ 37.1 ng L−1 (Be-1), 20.1 ±​ 4.2 ng L−1 (Be-2), 3.4 ±​ 0.3 ng L−1 (Be-3), and 0.4 ±​ 0.1 ng L−1 (Be-4).  
Benzaldehyde concentration in F-P in air was 350.6 ±​ 19.1 ng L−1. Asterisks denote significant difference 
in attractiveness (χ​2 goodness-of-fit test: P <​ 0.05). Numbers in parentheses indicate numbers of tested 
leafhoppers followed by frequency (%) of non-responding individuals.
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and 10 were adjusted to create two attractants (formula-P and formula-G). In formula-P, the relative ratio of 
(Z)-3-hexenyl acetate, (E)-ocimene, DMNT, and benzaldehyde was 1.5:1.9:1.0:8.1, and the total loaded amount of 
synthetic compounds was 0.2 mg. In formula-G, the relative ratio of (Z)-3-hexenyl acetate, (E)-ocimene, DMNT, 
and ethyl benzoate was 10.0:12.5:6.7:1.0, and the total loaded amount of synthetic compounds was 0.6 mg. To val-
idate their attractiveness to the leafhoppers, each of the attractants was compared with tea plant volatiles. Finally, 
to explore the attractiveness of benzaldehyde, four different concentrations of benzaldehyde in air (790.1, 20.1, 3.4 
and 0.4 ng L−1) were compared with clean air or formula-P. In this experiment, the odour sources were replaced 
after testing five individuals. In total, there were 22 treatments in the Y-tube bioassays. Each treatment was repeat-
edly tested for 3–4 days on approximately 100 adult leafhoppers. All Y-tube tests were completed within 80 days.

Wind tunnel test.  Hardware.  Leafhopper attraction was tested in a wind tunnel with a polycarbonate 
flight section (25 ×​ 20 ×​ 300 cm) consisting of six detachable segments, each 50 cm long (Fig. 6). Adjacent seg-
ments could be separated by inserting two baffles. Four tea shoots (the same as those used in the Y-tube test) 
in floral foam soaked with water were placed in the centre of each segment. Air was blown into the tunnel by a 
mini fan (15 cm high, 12 cm wide, LSF95, Lisuo, China) through three metal screens (100 mesh, 5 cm distance 
between screens) and a box (25 ×​ 20 ×​ 5 cm) filled with active charcoal. The air leaving the tunnel passed through 
a 100-mesh metal screen and a box filled with active charcoal before being released back into the room. The wind 
speed was calibrated to 20 cm s−1 by a hot-film anemometer (AR866, Dongguan Science & Technology Co. Ltd., 
Dongguan, China).

Odour sources.  In the wind tunnel experiments, 6 mg synthetic formula-P or 2 mg synthetic formula-G in liquid 
paraffin was loaded onto four rubber septa, which were threaded onto a string approximately 12 cm long with 
paper clips. The string was hung at the upwind end of the flight section of the tunnel. There was a 4-cm distance 
between the uppermost rubber septum and the top of the wind tunnel. In the blank control, the rubber septa were 
loaded with liquid paraffin.

Test protocol.  The wind tunnel was lit diffusely from above at about 200 lux. The room was kept at 20 ±​ 2 °C, 
70–80% R.H. Before the test, the flight sections were cleaned with ethyl alcohol and maintained in a ventilated 
environment for 8 h. The leafhoppers were the same as those used in the Y-tube test. Forty leafhoppers were 
placed in a 5-ml centrifuge tube and transferred to the downwind end of the wind tunnel at 16:00. All lights in 
the wind tunnel room were turned off 2 h after releasing the leafhoppers. After 6 h (at 00:00 on day 2), baffles were 
inserted between the segments of the wind tunnel, and the number of leafhoppers in each segment was counted. 
Each treatment was tested five times using 200 leafhoppers in total. Different treatments were tested on 3 consec-
utive days, and all of the wind tunnel tests were completed within 20 days.

Field trapping tests.  To test the attractiveness of the two formulae to leafhoppers, field tests were con-
ducted in October at two tea plantations: a 300-hectare tea plantation at the Tea Experimental Plantation of the 
Tea Research Institute (Chinese Academy of Agricultural Sciences, Hangzhou, China) in 2014 and 2015; and 
a 200-hectare tea plantation at the Ming Shan Tea Factory (Shaoxing, China) in 2015. The cultivar in both tea 
plantations was clone Longjing 43. The field trials included three treatments (formula-P, formula-G, and a blank 
control), and each treatment had five replicates. The 15 experimental plots were in a complete randomized design 
in each field trial. In each replication, 360 mg synthetic formula-P was loaded onto nine rubber septa, 120 mg 
synthetic formula-G was loaded onto three rubber septa, and nine blank rubber septa were used in the control. 
The rubber septa were mounted in a disposable paper cup, which was suspended upside-down at 0.10 m below 
the tea bush canopy. To monitor leafhoppers, a sticky yellow trap (25 ×​ 20 cm, Enjoy Technology, China) was 
placed approximately 0.35 m above each disposable paper cup45. One trap was used in each replication, and the 
distance between traps was at least 30 m to minimize interference between lures. To confirm that the leafhopper 
populations were at approximately equal densities in the different treatments, sticky yellow traps were placed at 

Figure 6.  Schematic illustration of wind tunnel used to test leafhopper attraction to odours. 
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the trap sites 1 day before the trials. The traps were monitored at 3, 6 and 8 days after the start of the experiment. 
The sticky yellow traps were replaced on each survey day.

Volatile collection and analysis.  Release of plant and synthetic volatiles in Y-tube tests.  Volatiles were 
collected and analysed as described previously40. The plant shoots and rubber septa loaded with synthetic com-
pounds were maintained in the holding chambers as in Y-tube tests. The collection lasted 0.5 h. Volatile collection 
for each odour source was replicated four times. After sampling, the traps were extracted with 500 mL methylene 
chloride, and 50 ng ethyl decanoate (internal standard) was added to the extract. The volatiles were analysed by 
gas chromatography-mass spectrometry (GC-MS) using a QP2010 GS-MS instrument (Shimadzu, Japan).

Tea plantations background odour.  During the field trapping tests, samples of tea plantation background odour 
were collected from all experimental plots (one sample per plot) 1 day before trapping, and from all control plots 
on days 3, 6, and 8 after the field trapping tests started. In total, 120 samples were collected at Hangzhou and 
Shaoxing in 2014 and 2015. The plant volatile compounds in ambient air at tea plantations were collected and 
analysed as described by Cai et al.46. Air near the tea bush canopy was collected at a flow rate of 100 mL min−1 for 
240 min (24-L samples) using a microprocessor-controlled air sampling pump (Mini-pump Σ​30; Shibata, Japan) 
at 13:00 h. After collection, all samples were taken to the laboratory and analysed immediately. All field samples 
were spiked with 5 ng ethyl decanoate (internal standard), and were analysed by a coupled thermal desorption 
(TD; TD100, Marks, UK) GC-MS (GCMS-QP2010, Shimadzu, Japan).

Statistical analysis.  All statistical tests were carried out using SAS v8.2 (SAS Institute, Cary, NC, USA). 
For the olfactometer test, the null hypothesis that E. onukii showed no preference for either olfactometer arm  
(a response equal to 50:50) was analysed with a χ2 goodness-of-fit test after correcting for continuity with Yates’ 
correction factor47. Differences in the amounts of volatile compounds emitted from odour sources in the Y-tube 
test were determined using two-sample t-test for means. Mean percentages of leafhoppers in different segments 
of the wind tunnel were analysed by one-way ANOVA. In field trapping tests, mean numbers of leafhoppers in 
different treatments before trapping and at 3, 6, and 8 days after laying traps were analysed by one-way ANOVA. 
Mean values were separated by Tukey’s multiple range tests (P <​ 0.05).
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