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Abstract
Axial SpA (axSpA), encompassing AS, is a multifactorial disease that localizes to sites of high spinal biomechanical

stress. Much has been written on T cells and adaptive immunity in axSpA, which is understandable given the very

strong HLA-B27 disease association. Extra-axial disease characteristically involves the anterior uveal tract, aortic

root, lung apex and terminal ileum. Under recent classification, axSpA is classified as an intermediate between

autoimmunity and autoinflammatory disease, with the latter term being synonymous with innate immune dysregula-

tion. The purpose of this review is to evaluate the ‘danger signals’ from both the exogenous intestinal microbiotal

adjuvants or pathogen-associated molecular patterns that access the circulation and endogenously derived dam-

aged self-tissue or damage-associated molecular patterns derived from entheses and other sites of high biomech-

anical stress or damage that may serve as key drivers of axSpA onset, evolution, disease flares and eventual

outcomes.
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Introduction

Axial SpA (axSpA) predominantly affects the spine and

sacroiliac joints and encompasses AS and non-

radiographic axSpA (nr-axSpA), the chronic prototypic

seronegative inflammatory rheumatic disease belonging

to the family of SpAs [1]. The enthesis is defined as a re-

gion of tough fibrous tissue where tendon, ligament or

joint capsule inserts into bone [2, 3]. Enthesitis is

understood to be the cardinal lesion in axSpA, with

synovitis and osteitis being intimately associated [4].

The innate and adaptive immune system are function-

ally integrated and usually act together. Much has been

written about the role of adaptive immunity in axSpA,

which is understandable given the HLA-B27 association

and many other genetic pointers towards adaptive im-

munity [5]. Given the proclivity for simultaneous inflam-

mation in extra-axial biomechanically stressed sites,

including the aortic root, lung apex and terminal ileum,

and the fact that these tissues are antigenically diverse,

it is hard to explain disease in terms of an arthritogenic

peptide theory, thus the role of local tissue factors and

innate immune responses merits greater consideration.

The purpose of this review is to summarize the evidence

on the role of innate immunity in disease initiation in

axSpA. We will split the role of innate immunity into two

major categories, innate immunity in the gut in axSpA

and its role at physically stressed sites (Figs 1 and 2).

Rheumatology key messages

. Subclinical gut barrier dysfunction is an early axial SpA (axSpA) feature, thus incriminating innate immunity.

. Entheseal biomechanical stress and resident innate cells also implicate musculoskeletal innate immunity in
early axSpA.

. Genetics, intestinal permeability/dysbiosis and axSpA tissue tropism collectively incriminate extensive innate
immune ‘danger signals’.
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Gut, barrier regulation and axSpA

It is increasingly clear that a relationship between intes-

tinal inflammation and axSpA exists. A total of 5–10% of

axSpA patients develop clinically diagnosed IBD and up

to 60% have evidence of subclinical gut inflammation

[6]. A cause-and-effect relationship is best established

in reactive arthritis, a member of the SpA family, where

enthesitis and synovitis develop after a distant infection,

usually genitourinary or gastrointestinal with

Campylobacter, Salmonella, Yersinia or Shigella [7].

Severe acute presentations of sacroiliitis have been

reported mimicking infection, supporting innate-driven

mechanisms [8]. The first line of innate immunity is not

the immune cells, but the barrier tissue itself, and there

is compelling evidence for barrier dysfunction in animal

models and in AS. Increased gut permeability has been

demonstrated among patients and first-degree relatives

of axSpA [9, 10]. The leakage of epithelial and endothe-

lial membrane forming the gut–epithelial barrier and gut–

vascular barrier can result in bacterial translocation with

bacterial products such as lipopolysaccharide (LPS),

LPS binding protein and fatty acid binding proteins, thus

activating resident immune cell populations and inducing

inflammation, osteitis and synovitis [11]. In addition to

gut-resident myeloid cells and infiltrating neutrophils,

Paneth cells, a subset of specialized secretory host-

defence epithelial cells located in the small intestines,

have been shown to secrete IL-23 and activate key IL-

23 responsive cells such as innate lymphoid cells of

group 3 (ILC3), cd T cells and mucosal-associated in-

variant T (MAIT) cells, which can recirculate from the gut

and seek axSpA relevant sites of inflammation [12–16].

While the exact mechanism linking the gut to axSpA

pathogenesis is not completely understood, it is

believed that the interplay between the microbiome and

the intestinal immune system contributes to intestinal in-

nate immune cell activation [17]. It also remains unclear

when gut barrier dysfunction with abnormal permeability

occurs. However, it is evident that axial disease evolu-

tion might be related to changing spinal biomechanics in

the later teenage years [18].

FIG. 1 Intestinal and gut barrier involvement in early SpA

These bacterial molecules are known as PAMPs and may directly enter the circulation and potentially trigger inflam-

mation at sites of high mechanical stress. Secondly, the impact of DAMPs may activate local innate immune cells to

produce pro-inflammatory cytokines and other molecules that may enter the circulation. Thirdly, the possibility

remains that the activated innate immune cells may circulate to entheses and bones as part of a gut–enthesis axis.

PRR: pattern recognition receptors; PAMPs: pathogen-associated molecular patterns; NLR: nucleotide-binding oligo-

merization domain (NOD)-like receptors; TLR: Toll like receptors; RIG-I-like: retinoic acid-inducible gene-I-like

receptors.
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It is not understood exactly how intestinal inflamma-

tion leads to axial inflammation, but possibilities include

innate and adaptive cell circulation and skeletal homing,

translocation of adjuvants to the gut or shared dysregu-

lated immune mechanisms [17]. It has been postulated

that while IL-23 acts directly on tissue-resident enthe-

seal immune cells, IL-23 might activate circulating im-

mune populations that then migrate and seek entheses,

inducing inflammation [4]. Translocation of bacterial

products into the gut submucosa and circulating blood

provides evidence of the concept of so-called leaky gut,

linking bacteria to activation of immune cells in circulat-

ing blood and/or enthesis resident immune cells [11].

Similarly, observations highlight the role of the gut as

the primary site for the differentiation, expansion and

priming of innate cells prior to recirculation to axSpA

target sites [19]. Reported de novo severe SpA in ame-

liorated IBD following a4b7 integrin blockade is further

clinical evidence of the intimate connection intertwined

at the gut–joint axis and innate-driven mechanisms [20].

Perhaps upregulation of the mucosal vascular cell

adhesion molecule 1 (MADCAM-1), the homing integrin

(a4b7) ligand, in the gut and inflamed bone marrow of

patients with axSpA provides additional evidence of

the importance of recirculation of gut-primed innate

cells [20]. Finally, microbial products, also known as

pathogen-associated molecular patterns, act as adju-

vants, defined as substances enhancing antigen-specific

immune response [21]. It is possible that bacterial

adjuvants act synergistically with mechanical factors in

activating innate immune responses and providing ne-

cessary co-stimulatory signals [21].

The role of HLA-B27 in shaping the gut microbiome

was investigated in an HLA-B27 transgenic rat (murine

SpA model) using biome representational in situ

karyotyping and 16S rRNA gene sequencing, revealing

significant differences in caecal microbiota [22]. A larger

proportion of radiographic axSpA patients express HLA-

B27 as compared with non-radiographic axSpA [23].

The robust association of HLA-B27 with axSpA provides

a strong indication that adaptive immunity may be able

to sculpt intestinal innate immunity and hence might

provide insights into the molecular influence on pheno-

type (i.e. radiographic vs non-radiographic axSpA), but

adaptive immune mechanisms are not discussed further

in this article. Moreover, intestinal dysbiosis is

FIG. 2 Mechanisms involved in early phases of SpA

Injured tissue may activate innate immune responses in many ways. These include fragments of extracellular matrix

proteins that collectively activate TLRs, among others. Injured or stressed cells secrete or release proteins that once

outside the nucleus can also prime innate immunity. Necrotic cell death also releases nuclear contents that once

in the extracellular environment may serve as strong activators of innate immunity and includes RNA and DNA, pro-

teins including HMGB1, and uric acid and HSP, among others. Collectively these likely activate enthesis and bone

resident immune cell populations. It is considered that the dysregulated innate immunity in the gut and the spine in-

crease the chances of innate immune dysfunction and clinical development of AS. DAMPs: danger associated mo-

lecular patterns; PRR: pattern recognition receptors; HMGB-1: high mobility group protein B1; ILC: Innate lymphoid

cells; MAIT: mucosal associated invariant T cell.
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accompanied by alterations of tight junctions between

epithelial cells forming the lining of the gut, which is a

hot area of research [11].

Pattern recognition receptors in innate
immunity in the gut and the enthesis

Pathogen-associated molecular patterns in the gut

The innate immune system possesses a repertoire of

germ-line encoded receptors that recognise conserved

molecular structures found in pathogens [so-called

pathogen-associated molecular patterns (PAMPs)].

Somewhat surprisingly, it was discovered that the same

family of receptors become activated on engaging the

products released from stressed and damaged cells

[termed damage-associated molecular patterns

(DAMPs)] [24]. These pattern recognition receptors

(PRRs) are subdivided into four major families: Toll-like

receptors (TLRs), nucleotide-binding oligomerization do-

main (NOD)-like receptors (NLRs), retinoic acid–inducible

gene 1-like receptor (RLR) and C-type lectin receptor

(CLR). Signalling through PRRs triggers a downstream

cascade of pro-inflammatory programs within innate im-

mune cells that can initiate antigen-specific adaptive im-

mune responses [24].

TLRs are a group of transmembrane-spanning recep-

tors each having several distinct ligand and cellular

localizations. TLRs signal through myeloid differentiation

factor 88 (MyD88), except TLR3, which utilizes Toll/IL-1

receptor domain containing adapter-inducing IFN-b
(TRIF) for signalling [25]. Subsequent activation of down-

stream proteins results in upregulation of genes involved

in the inflammatory process, antigen presentation, acti-

vation of adaptive immunity or induction of cell death

[25]. Given the essential role of microbiota and bacter-

ium in axSpA, TLR4, which recognizes LPS from Gram-

negative bacteria, was investigated for its association

with axSpA, with gene expression profiling showing

TLR4 and TLR5 upregulation in axSpA patients [26].

Polymorphisms in TLR4 were associated with axSpA,

further adding to the evidence supporting their role in

increasing susceptibility to disease [27, 28].

Several reports have identified a nominal association

between polymorphisms in caspase recruitment

domain-containing protein-9 (CARD-9) and axSpA, plac-

ing it as a strong functional candidate [29]. CARD-9 is

an adaptor protein expressed exclusively on myeloid

cells that mediates downstream signalling of Dectin-1,

the NK receptor C-type lectin-like PRR recognizing b-

glucan (fungal cell wall polysaccharide) in response to

fungal infection, resulting in secretion of pro-

inflammatory cytokines including TNF, IL-6 and IL-23,

among other cytokines [30]. The strongest evidence for

the importance of gut barrier cells in SpA comes from

the striking NOD2 association with distal ileal inflamma-

tion in Crohn’s disease [31] and it is noted that 50% of

AS cases have subclinical ileocolonoscopic or histologic

changes reminiscent of Crohn’s disease [32]. NOD2 is

an intracellular cytosolic PRR belonging to the NLR fam-

ily, which mediates the activation of mitogen-activated

protein kinase signalling components such as p38 and

the c-Jun N-terminal kinase pathway through the amino-

terminal CARD domain. NOD2 has two CARD domains

and is readily activated by mumaryl dipeptide (MDP), a

ubiquitously present peptidoglycan motif found among

both Gram-positive and negative bacteria (Fig. 3) [33].

CARD-9 is an essential component of the NOD2 signal-

ling pathway and induces the maturation of dendritic

cells (DCs) to antigen presenting cells and priming naı̈ve

cells to Th-1 or Th-17 phenotypes [31].

DAMPs at the enthesis or circulating blood

Parallel to its role in identifying non-self and defence

against pathogens, the innate immune system has

evolved to serve a housekeeping role, including repair

and removal of damaged tissue from structures releas-

ing signals, also known as DAMPs [34]. Several mole-

cules that behave as DAMPs have a primary

endogenous role, including transport or chaperoning.

However, upon release from damaged cells and arriving

within the incorrect extracellular compartment they bind

to PRRs and activate an innate immune cascade, a re-

sponse that is identical to that activated by PAMPs. An

example of such molecules includes molecules derived

from the intracellular compartment, including high-

mobility group box 1 (HMGB1) proteins, S100 protein,

uric acid, adenosine triphosphate, heat shock proteins

(HSPs), DNA and RNA, among others [34]. Following tis-

sue injury, DAMPs can be secreted from extracellular

matrix due to degradation; such products include hep-

aran sulphate, low molecular weight hyaluronan, fibrino-

gen, fibronectin and biglycan, among others, which are

capable of directly activating TLRs and even some NLR

receptors (Fig. 4) [35].

HSP70 plays a central role by acting as a chaperone

and folding catalyst, including the folding of synthesized

proteins, refolding of aggregated proteins and transloca-

tion of secretory proteins and control of activity of regu-

latory proteins. Extracellular HSPs activate the innate

immune system through activation of TLR2, TLR4 and

CD91 [36]. The association between HSP70 gene poly-

morphisms in axSpA was investigated and showed a

significant difference in HSP70-1 and HSP70-2 geno-

types between axSpA patients and healthy controls [37].

Also, it is possible that impairment of HSP function

could result in the accumulation of unfolded protein

responses that have been incriminated in SpA patho-

genesis [38]. Another important intracellular DAMP,

HMGB1, is located in the nucleus and plays an import-

ant role in gene expression. When HMGB1 is secreted it

binds to TLR2, TLR4, TLR9 and RAGE and results in nu-

clear factor (NF)-jB activation and inflammation induc-

tion [36]. Serum levels of HMGB1 in axSpA patients

were reportedly higher than those of controls [39].

Another report demonstrated an association between

serum levels, disease activity and inflammatory markers

[40]. While these factors may all be linked to axSpA,
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their role in disease pathogenesis requires further

elucidation.

Cytokines as danger signals in both the
gut and enthesis

Tissue microdamage, including bone microcracks, and

soft tissue microscopic inflammatory and reparative

changes have been reported in normal healthy entheses.

Injury to tissue is capable of innate immune system activa-

tion by the liberation of so-called DAMP receptors, result-

ing in cytokine release, including IL-23, IL-1b and TNF [41,

42]. Independent of DAMPs, liberation tissue injury, dam-

age or stress may directly liberate key innate immune sys-

tem cytokines that can also act as danger signals and

drive inflammation. The best example of a cytokine danger

signal in the experimental setting is the TNF model, where

physical stress on the enthesis drives stromal liberation of

TNF, resulting in enthesitis, synovitis and also colitis that

localizes to the terminal ileum.

Resident immune cells including cd T cells and ILC3,

known targets of IL-23, then respond by producing IL-

17 and TNF, among other cytokines [42]. This response

drives homeostatic repair at entheseal sites. However,

in SpA, repair circuits are dysregulated and failure to

resolve inflammation results in disease initiation.

Currently >100 gene polymorphisms have been iden-

tified to be associated with axSpA, several of which are

associated with innate immune signalling, including

interferon regulatory factor 5 (IRF5), TNF, NOS and IL-

12B, or are potentially involved in innate immune sens-

ing, such as IL-1R, IL-6R, IL-23R and prostaglandin E2

receptor 4 [43, 44].

IL-1b is a prototypic pro-inflammatory cytokine mainly

produced by macrophages in response to PAMPs and

FIG. 3 Role of CARD-9 in innate signalling

(A) A simplified schematic representation of CARD-9 signalling in response to fungal infection through Dectin-1, which

results in recruitment of SYK kinase and the formation of signalosome composed of CARD-9, BCL10 and MALT1,

resulting in NF-jB and ERK activation and subsequent production of pro-inflammatory cytokines including IL-6, IL-12,

IL-1b among other cytokines. (B) Intracellular NOD2 receptor recognizes MDP (a component of bacterial cell

walls) and couples with CARD-9, driving activation of p38 and JNKs and resulting in pro-inflammatory cytokine

secretion. MALT1: mucosa-associated lymphoid tissue lymphoma translocation protein 1; BCL10: B cell lymphoma/

leukaemia 10.
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exerts pleiotropic effects including immune cell recruit-

ment and activation [45]. Deficiency of IL-1 receptor an-

tagonist (DIRA) is accompanied by joint swelling and

inflammatory arthritis, including axial new bone forma-

tion, a finding that parallels the development of spontan-

eous inflammatory arthritis in murine models deficient in

IL-1R antagonist [46–48]. Moreover, several single-

nucleotide polymorphisms (SNPs) involving the IL1 gene

cluster have been associated with axSpA, including

IL1a, IL1b, IL-1RN (coding for IL-1RA) and IL-1R [49,

50]. Despite the association of the IL1R SNP with

axSpA, IL1R2 gene polymorphism was only demon-

strated among patients of European descent, in contrast

to the Asian population [51, 52].

Evidence from genetic studies, animal models and

therapeutic studies firmly implicates the IL-23–IL-17 axis

in the pathogenesis of SpA [53]. Entheseal immune cells,

which were only recently discovered, can produce TNF-

a transcripts and upregulate IL-17, IL-22 and IL-23

in vitro [54–56]. IL-23, a heterodimeric cytokine of the

IL-12 family, is mainly produced by innate cells including

macrophages, DCs and monocytes. IL-23 induces IL-17

production from a wide range of cells, including Th-17,

CD8þ T cells and cd T cells, which results in stromal

cells and immune cell activation and promotion of in-

flammation [2]. It is becoming increasingly evident that

IL-17 can be independent of IL-23, probably explaining

the ineffectiveness of IL-23 targeting in axSpA [57, 58].

Moreover, IL-23 has been shown to play an important

role in the initiation but not the persistence of experi-

mental SpA in the HLA-B27 transgenic murine model

[59].

In a recent report, CD14þ cells with the ability to se-

crete IL-23 were confirmed in the human enthesis [55].

IL-23 overexpression through minicircle DNA injection

induced experimental SpA and is essential for enthesitis

and entheseal new bone formation by acting on cd T

cells [4]. It is hypothesized that misfolding of HLA-B27

triggers a stress response in the endoplasmic reticulum

(ER), known as unfolded protein response, resulting in

IL-23 production; however, conflicting reports exist

regarding ER stress response [60]. Furthermore,

FIG. 4 Some DAMPs

Several DAMPs have been identified and are released from both extracellular and intracellular compartments follow-

ing stress, tissue injury or cell death, all of which might occur at sites of high physical stressing, including the enthe-

ses in early SpA. Upon release, DAMPs bind to their respective pattern recognition receptors and induce

inflammatory responses that are essential in driving normal repair and homeostasis. Uncontrolled, DAMPs result in

hyperactivation of innate immune signals and responses driving and exacerbating inflammatory diseases.
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activation of prostaglandin E2 receptor 4 (EP4), the pro-

tein product of prostaglandin EP4 receptor (PTGER4)

promotes development of Th17 cells by increasing the

IL-23 expression level. PTGER4 polymorphisms have

been shown to be associated with axSpA [61]. In add-

ition to the increase in IL-23 secretion, it has been

shown that prostaglandin E2 (PGE2) levels were signifi-

cantly elevated in mice patellar and Achilles tendons in

response to rigorous treadmill training [62]. Moreover,

treatment of tendon stem cells with PGE2 decreased

their proliferation ability but induced both adipogenesis

and osteogenesis [62]. It is clear that PGE2 plays a

central role as a mediator of inflammation, as evi-

denced by the clinical efficacy of NSAIDs (PGE2 inhibi-

tor) in diminishing the inflammation and pain in

patients with axSpA [63].

Innate immune cells involved in axSpA

Macrophages are a heterogeneous population and

are broadly subdivided into M1 (classical/pro-

inflammatory) and M2 (alternative, anti-inflammatory).

Histological assessment of early and active sacroiliitis

showed abnormal entheseal architecture with

increased vascularity and cellular infiltration with a pre-

dominant macrophage cell infiltration in the fibrocar-

tilage [64]. Recently, human enthesis was shown to

harbour a population of CD14þ myeloid cells capable

of IL-23 and TNF production [55]. Stimulation of

CD14þ cells with adjuvants induced chemokine ligand

20 (CCL20) from the enthesis, which functions as a

chemoattractant to IL-17-producing cells expressing

its ligand chemokine receptor 6 (CCR6) [55]. DCs link

innate and adaptive immunity and impaired DC func-

tion has been linked to a predisposition to experimen-

tal SpA [65], impaired T cell interactions with impaired

co-stimulation and altered cytoskeletal dynamics in

early disease [66].

The cellular function of NK cells, a major component

of the innate immune system, is defined by the balance

of activating and inhibitory signals that recognize the

MHC class through the highly polymorphic killer cell

FIG. 5 Innate cell response during cellular stress

(A) MICA is a gene located on chromosome 6 close to the HLA-B locus and is upregulated during stress response to

heat shock and DNA damaging conditions and is influenced by some infectious agents, including Escherichia coli,

among others. (B) NKG2D is an activating receptor of the C-type lectin-like family and is expressed on NK cells,

CD8þ T cells, cd T cells and NK T cells. Upon activation, it has been associated with a pro-inflammatory response.

(C) MICA serves as a ligand to NKG2D and upon engagement during a stress response, the complex results in the

activation of effector cytolytic function of NKG2D-expressing cells against MICA-expressing cells.
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https://academic.oup.com/rheumatology iv73



immunoglobulin-like receptor (KIR) [67]. The role of HLA-

B27 in disease induction is not well understood. One

plausible hypothesis implicates the observed ability of

HLA-B27 to form heavy chain homodimers and cell sur-

face expression of heterodimers that bind to innate

immune receptors on NK cells, including KIR3DL1,

KIR3DL2 and LILIRB2 [68, 69]. This interaction results in

a downstream pro-inflammatory response in both NK

cells and KIR3DL2-expressing T cells, including Th17

and cd T cells [70, 71]. NKG2D, an activating receptor of

CLR, is expressed on NK cells, CD8þ T cells, cd T cells

and NK T cells and has been associated with pro-

inflammatory response when activated. MHC class I

chain A related (MICA) is a gene located on chromo-

some 6 close to the HLA-B locus and codes for stress

inducible glycoprotein that results in the activation of

NKG2D (Fig. 5). Polymorphisms in MICA-129 have been

associated with spondylitis, and homozygosity to MICA

A5.1 conferred increased risk for axSpA after adjustment

for HLA-B27 status [72].

Invariant NK T (iNKT) cells represent a small subset of

T cells expressing a restricted T cell receptor repertoire,

and unlike T cells, iNKT cells recognize glycoproteins

through the non-polymorphic MHC class 1 molecule

CD1d. iNKT cells secrete IL-17 upon stimulation of

either T cell receptor or the constitutively expressed

IL-23R, pointing towards an independent and conver-

gent pathway [72]. Interestingly, iNKT cells have been

shown to be natural regulators of murine SpA. iNKT cell

depletion aggravated gut and joint inflammation in a

TNF adenylate–uridylate-rich regulatory element mouse

model, which was linked to a greater number of inflam-

matory DCs [73].

cd T cells are another distinct subset of the unconven-

tional T cell subpopulation expressing the cd form of the

T cell receptor and capable of recognizing a broad

range of antigens through pattern recognition receptors,

including TLRs and Dectin-1, supporting their role in

the early response to microbes [74]. Several cd T cell

subsets have been identified and have been shown to

TABLE 1 Summary of the role of innate immune cells in the pathogenesis and progression of axSpA

Immune cell
population

Role in axSpA Reference

Macrophages Active sacroiliitis shows predominant cellular infiltration with macrophages 64

CD163þmacrophages and CD68þmacrophages from fibrous tissue of axSpA facet
joints secrete IL-23

85

Normal enthesis harbours a population of CD14þ cells capable of IL-23 and TNF
production

55

Dendritic
cells

Impaired formation of conjugates between dendritic cells and T cells due to impaired
accessory molecule function

65

Defects in co-stimulation, decreased expression of MHC II and altered cytoskeletal
dynamics in axSpA patients

66, 86, 87

NK cells HLA-B27 heavy chain homodimers and heterodimers bind and activate NK cells
through killer cell immunoglobulin like receptor

68, 69

High NK cell cytotoxicity in SpA patients compared with controls 88

Lower expression of A20, responsible for NF-jB inhibition on CD56bright cells in
patients with axSpA

89

MICA serves as a ligand to NKG2D and the complex results in the activation of ef-
fector cytolytic function of NKG2D-expressing cells against MICA-expressing cells

71

Invariant
NK T cells

iNKT depletion worsened joint inflammation in TNF AU-rich regulatory element
mouse model

73

iNKT cells secrete IL-17 upon stimulation of the TCR or IL-23R 72

cd T cells cd T cells population has been shown to be the predominant IL-17A producers at the
enthesis in the IL-23-dependent mouse model

4

cd T cells are resident in the enthesis and express transcripts associated with the IL-
23–IL-17 pathway, including RORC, CCR6 and IL-23R

58

cd T cells has been shown to drive IL-17 secretion independent of IL-23 stimulation 58
cd T were enriched within inflamed joints of SpA and acts as a major IL-17 secretors 90

Innate
lymphoid
cells

ILC3 groups are relevant to SpA due to secretion of IL-17 and IL-22 in response to
activation by IL-23

77

Gut-derived ILC3 were expanded in the synovial fluid and bone marrow of patients
with axSpA

77

Normal enthesis harbours a population of resident ILC3 79
Psoriatic arthritis is characterized by a skewed ILC homeostasis, with elevated levels

of ILC3s, which are potent source of IL-17/IL-22
91

MAIT Enriched population in the synovial fluid of patients with axSpA 16

Secretion of IL-17 independent of IL-23. Role in IL-22 secretion and regulation of
bone formation

82

The number of IL-22þ and IFN-cþ/IL-17AþMAIT cells was higher in axSpA as com-
pared with healthy controls

82
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be potent producers of IL-17, promoting wound healing

and osteogenesis in mice [74, 75]. Recently cd T cells

were described in normal human enthesis, with evidence

supporting their entheseal residency and expression of

transcripts associated with IL-23/IL-17 signalling, includ-

ing retinoic acid receptor–related orphan receptor C

(RORC), IL-23R and CCR6 [58]. Furthermore, IL-17 se-

cretion from cd T cells was shown to be driven in the

absence of IL-23, providing a potential explanation for

anti-IL-23 inefficacy in axSpA [58].

ILCs are a family of heterogeneous resident effector

cells at the epithelial barrier surfaces of the gut and

are involved in tissue remodelling and maintenance of

organ homeostasis and inflammation [76], with ILC3

being most relevant in SpA due to IL-17 and IL-22 se-

cretion in response to activation by IL-23 [77]. It has

been demonstrated that gut-derived IL-17-producing

ILC3 is increased in the peripheral blood, synovial fluid

and bone marrow of patients with axSpA and expressed

the homing integrin a4b7 [78]. Recently it was shown

that peri-entheseal bone and entheseal soft tissue har-

boured a population of ILC3 that was entheseal resident

[79]. The frequency of entheseal ILC3 was lower than

that reported in the gut, possibly due to the lack of ex-

posure of enthesis to the external environment [79].

Another innate immune source of IL-17 are MAIT cells,

a population of unconventional innate T cells

that recognise non-peptide antigens presented by

monomorphic MHC class I molecules through a semi-

invariant T cell receptor [80]. As the name suggests,

MAIT cells are abundant at barrier surfaces, such as

mucosal surfaces, and act as part of the first line of de-

fence against bacteria and yeasts by producing inflam-

matory cytokines, including IFN-c, TNF, IL-17A and IL-

22, among other cytokines [80]. Evidence from a

collagen-induced arthritis murine model highlighted the

effector role of MAIT cells in augmenting joint inflamma-

tion during the effector phase of arthritis, suggesting

arthritogenic potency [81]. MAIT cells have also been

shown to be enriched in the synovial fluid of patients

with axSpA and expression of IL-17 was dependent on

priming with IL-7 but not IL-23 or antigen stimulation

[16]. IL-22 secretion by MAIT cells has been docu-

mented and associated with the induction of genes

implicated in the regulation bone formation and osteo-

genesis [82].

A strong translational perspective in innate immunity

in SpA comes from clinical and experimental studies

where anti-IL-17A is effective in axSpA but ineffective

for gut inflammation. This was shown to be due to cd T

cell intestinal production of IL-17A independent of IL-23

expression, with IL-17A mediating normal barrier func-

tion [83, 84].

Conclusions

Innate immune system dysregulation plays a critical role

in the pathogenesis of axSpA (Table 1). Evidence from

murine models highlight the role of innate immunity in

the induction of axSpA. IL-23/IL-17 pathways provide

clues to how HLA-B27 contributes to disease pathogen-

esis through innate immune activation. Several innate

immune cells have been identified and their role in the

production of disease-relevant cytokines and disease

propagation is evident. However, certain areas remain

undefined, including the exact role of gut inflammation

in axSpA, and further studies are needed to better eluci-

date the role of innate immunity in the initiation and

propagation of inflammation in axSpA.
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