
Opposing Pressures of Speed and Efficiency Guide the Evolution
of Molecular Machines

Jason A. Wagoner1 and Ken A. Dill*,1,2,3

1Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY
2Department of Chemistry, Stony Brook University, Stony Brook, NY
3Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY

*Corresponding author: E-mail: dill@laufercenter.org.

Associate editor: Banu Ozkan

Abstract

Many biomolecular machines need to be both fast and efficient. How has evolution optimized these machines along the
tradeoff between speed and efficiency? We explore this question using optimizable dynamical models along coordinates
that are plausible evolutionary degrees of freedom. Data on 11 motors and ion pumps are consistent with the hypothesis
that evolution seeks an optimal balance of speed and efficiency, where any further small increase in one of these
quantities would come at great expense to the other. For FoF1-ATPases in different species, we also find apparent
optimization of the number of subunits in the c-ring, which determines the number of protons pumped per ATP
synthesized. Interestingly, these ATPases appear to more optimized for efficiency than for speed, which can be ratio-
nalized through their key role as energy transducers in biology. The present modeling shows how the dynamical per-
formance properties of biomolecular motors and pumps may have evolved to suit their corresponding biological actions.
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Introduction
Biomachines carry out cargo transport, muscle contraction,
ATP synthesis, and other jobs in biology. Different jobs require
different balances between speed and efficiency. Machines
like FoF1-ATPase, which synthesizes an organism’s ATP, and
like myosin II, the motor responsible for muscle contraction,
use a large fraction of a cell’s energy. So, we expect a large
evolutionary pressure on their efficiencies. But speed matters,
too, in order to rapidly recharge ATP stores and to generate
fast muscle contractions in these examples.

Many biomolecular machines have mechanisms that enable
a high speed even at high efficiency: as examples, maintaining a
constant torque generation over the angular coordinate of a
rotary motor (Oster and Wang 2000), breaking a single large
work step into multiple smaller substeps (Anandakrishnan
et al. 2016; Wagoner and Dill 2019), the optimization of a
machine’s conformational free energy landscape (Wagoner
and Dill 2019), a transition state location close to the initial
state of a machine’s mechanical step (Schmiedl and Seifert
2008; Howard 2011; Wagoner and Dill 2016), and the optimal
distribution of free energy drops and barrier heights across a
cyclic landscape (Brown and Sivak 2017, 2018).

In terms of speed and efficiency, such mechanisms are
“win-win”: they increase speed without sacrificing efficiency,
or vice versa. But, other properties of the machine face a
tradeoff, where a faster speed comes at the price of lower
efficiency (Shoval et al. 2012). As a result, these machines
face tough evolutionary choices. For example, myosin II oper-
ates at �35% efficiency during muscle contraction when it

hydrolyzes ATP to exert a 6 pN force while taking a 6 nm step
(Capitanio et al. 2006; Piazzesi et al. 2007). If myosin II were to
instead exert a higher force, muscle contraction would have a
higher efficiency but slower speed. As another example, the
FoF1-ATPase of animal mitochondria operates at 80–90% ef-
ficiency as it pumps eight protons downhill to synthesize
three ATP molecules (Watt et al. 2010). As we show below,
if it were instead to pump nine protons, it could recharge
depleted ATP stores faster, but less efficiently.

Here, we use modeling to study these evolutionary trade-
offs: not just what is, but what could have been. We include
plausible evolutionary control parameters–such as the force
exerted by myosin II or the number of protons pumped by
FoF1-ATPase–to explore how molecular machines can be op-
timized. We derive expressions for the optimal work output
for simple machines. Comparing in vivo data across a range of
machines, we give evidence that evolution tends toward
mechanisms that give an optimal balance of speed and effi-
ciency, where any further small increase in one of these quan-
tities would come at great expense to the other. We show how
pressures on speed and efficiency have guided the evolution of
the c-ring of FoF1-ATPase, which determines the number of
protons pumped per ATP synthesized by the motor.

Results and Discussion

Calculating the Speed and Efficiency of a Simple
Molecular Machine
Figure 1 shows a model of a simple molecular machine. It
converts the free energy put into the system, Dl � 0, for
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example, from ATP hydrolysis, into work performed by the
system, w � 0. The machine has two steps: a nonmechanical
transition (Aj ! Bj), which may include chemical and/or
conformational changes, and a mechanical transition
(Bj ! Ajþ1), over which the machine performs work. The
cycle repeats periodically: the subscript j labels the position
along the track or the number of forward cycles completed.
Although simple, this model is able to capture essential fea-
tures of how a machine can best convert its input free energy
into output work (Wagoner and Dill 2019).

We model a machine’s operation in a nonequilibrium
steady state. Here, we call the difference between the input,
chemical work Dl and the output work w the net drop in
basic free energy across the machine cycle:
Dlnet ¼ ðDl� wÞ � 0. The net basic free energy Dlnet is
a measurable quantity. It resembles an equilibrium free en-
ergy, but it is corrected for nonequilibrium effects, such as a
difference in concentrations of species that are out of equi-
librium (e.g., [ATP]) (Hill 1977; Wagoner and Dill 2019)
(NOTE.—The decrease in basic free energy is referred to else-
where as the energy dissipation or sometimes free-energy dis-
sipation that maintains the nonequilibrium steady state. Here,
we use the term basic free energy exclusively.). We define the
thermodynamic efficiency of a machine as:

g ¼ w

Dl
¼ 1� Dlnet

Dl
: (1)

We also use this model to calculate the cycle flux J ¼ s�1,
where s is the cycle time of the machine (see Materials and
Methods). We use “speed” to refer to the flux, velocity, or
current of a machine. For a cytoskeletal walker like myosin,
the velocity is V ¼ Jd for a step size d. For an ion pump, the
current I ¼ nJ for n ions transported per cycle.

An important factor in determining the speed of a ma-
chine is how the basic free energy changes are distributed
across different transitions (Brown and Sivak 2017; Wagoner
and Dill 2019), see Materials and Methods. We define the
quantity k as the fraction of free energy from the input chem-
ical work that is expended across the mechanical step and
label two limiting cases. We call a small value of k � 0 a
ratchet machine because the basic free energy that is available
from input chemical energy is expended in the nonmechan-
ical (first) step and all the work is performed in the mechan-
ical (second) step. We call a large value of k � 1 a driven
machine because the available energy is expended across the
work (second) step (Wagoner and Dill 2019). Below, we use

this classification to describe the evolution of different types
of machines.

Capturing the Tradeoffs between Speed and Efficiency
in Molecular Machines
Figure 2 shows the in vivo efficiencies for 12 biomolecular
machines. The efficiency is >80% for four of the machines
shown and >50% for nine of them, meaning these machines
are as efficient as macroscopic electric motors and are more
efficient than heat engines. We have chosen to study these 12
machines because their values of input free energy Dl and
output work w, used to calculate efficiency, are known and
appear to be consistent over cell conditions and different
experimental measurements, see supplementary section I,
Supplementary Material online.

Although these machines are quite efficient in vivo, there is
considerable variation, and the in vivo work w is not well
correlated with Dl. We hypothesize that some of these differ-
ences may reflect an evolutionary optimization based on the
different jobs they perform and based on the tradeoff be-
tween speed and efficiency. We want a measure of machine
performance that can capture these effects. For macroscopic
thermal engines and molecular machines, a common mea-
sure of performance is the power output, the work per unit
time s (Van den Broeck 2005; Schmiedl and Seifert 2008).
Since the efficiency is g ¼ w=Dl, we can define the power
output per unit input energy as follows:

FðhÞ ¼ ðgðhÞÞ
a

sðhÞ ; (2)

where h indicates some variable of the machine to be opti-
mized, and a is a positive constant 0 < a < 1. Optimizing
F for an individual machine is equivalent to optimizing the
power output of a set of machines working together in some
function like muscle contraction, see supplementary section
II, Supplementary Material online. Equation (2) has the prop-
erties we seek in a performance function: F increases with
respect to greater speed and with respect to greater efficiency.
And, the constant a recognizes our ignorance about whether
speed or efficiency might be more important to biological

FIG. 1. A two-state machine with one nonmechanical step (c) and one
mechanical step (m). The first, nonmechanical step (Aj ! Bj) does
not perform work and includes chemical or conformational changes
of the machine. The second, mechanical step (Bj ! Ajþ1) performs
work and generates the machine’s output (e.g., the mechanical step of
myosin along an actin filament).

FIG. 2. The in vivo efficiencies of molecular machines. Included are Na-
K ATPase; SERCA; the proton PPi pump; PMCA; V-ATPase; myosin II;
NCX; NCKX; and animal, Escherichia coli, and chloroplast F0F1-
ATPase.
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evolution. The standard definition of performance as power
per unit energy input corresponds to a¼ 1.

We first ask, how much work w should a machine perform
in order to have optimal performance? Using the two-state
model above, we maximize F(w) with respect to the work w.
In the absence of an analytical solution, we determine ap-
proximate solutions for the two limiting cases of a ratchet
machine “r” (large Dl, small k, d > 0:2) and a driven ma-
chine “d” (large Dl, large k), see supplementary section III,
Supplementary Material online. The speed-efficiency trade-
offs for these two cases are shown in figure 3a. The optimal
work output for these cases is:

w
ðrÞ
opt �

kT

ad
; (3)

w
ðdÞ
opt � kDl� kTln½bkDl� þ kTln a

�kTln½1þ e�bð1�kÞDl�:
(4)

These equations show that the optimal work for a ratchet
machine is small (a few kT), while the optimal work for a
driven machine is large; see figure 3b. This is because a ratchet
machine has an unfavorable tradeoff: as shown in figure 3a, it
can be fast or efficient, but not both. Increasing the efficiency
greatly slows down the machine, and so the optimal work
output is small. In contrast, the driven machine has a favor-
able tradeoff: the machine can be both fast and efficient
simultaneously and the optimal work output is large.

Are these predictions valuable for real machines? That
depends on how much we know about the exact evolution-
ary pressures on speed versus efficiency. We express these
variable pressures with the parameter a in equation (2).
Because a ratchet machine can be fast or efficient, but not
both, w

ðrÞ
opt depends strongly on a, shown by the broad, red

contours of figure 3b. This does not give a useful prediction

for real machines unless we know the exact evolutionary
pressures on speed versus efficiency.

The driven machine, on the other hand, can achieve an
optimal balance of speed and efficiency. At this value of w

ðdÞ
opt,

any further slight increase in speed would come at great ex-
pense to efficiency, or vice versa, as shown in the blue tradeoff
curve of figure 3a. Therefore, w

ðdÞ
opt only weakly depends on a,

shown by the thin, blue contours of figure 3b. Here, w
ðdÞ
opt

changes by only 11% over the range a 2 ½1; 4� (maxima of
the blue contours in fig. 3b) while, for the ratchet machine,
w
ðrÞ
opt varies by 300% over the same range. We hypothesize

that driven machines will evolve toward this value of w
ðdÞ
opt

since the prediction does not require that we know much
about whether speed or efficiency is more important to evo-
lution, as long as the exact pressures are not too extreme.

We next test this prediction for 11 of the machines shown
in figure 2. We use the experimentally measured values of
standard (Dl0, w0) and chemiosmotic (Dl0; w0) contribu-
tions to input free energy and work and set k ¼ Dl0=Dl, see
Materials and Methods. We then split these machines into
two classes. Class 1 contains the driven motors myosin II,
NCX, NCKX, Animal FoF1-ATPases, and Escherichia coli FoF1-
ATPase. Class II contains the ratchet machines. These are ion
pumps that work primarily against chemiosmotic gradients:
Na-K ATPase, SERCA, the proton PPi pump, PMCA, and V-
ATPase. We now study the speed-efficiency tradeoffs of these
machines over different evolutionary degrees of freedom.

Motor Performance Is Controlled by the Demands of
Input Free Energy and Output Work
We computed the performance landscape FðDl0;w0Þ of a
driven motor as a function of degrees of freedom Dl0 and w0

by calculations detailed in supplementary section IIID,
Supplementary Material online. In addition, we are able to
calculate the peak performance ridgeline analytically, from
the two leading terms of equation (4):

w0
opt � Dl0 � kT ln½bDl0�: (5)

Our calculated performance landscape is shown in figure 4.
The red dots show the experimental data for five class I
(driven) biomolecular machines. The fact that the data fall
in such a tight cluster along the predicted ridgeline supports
the contention that evolution has sought an optimal balance
of speed and efficiency. Motors may have undergone struc-
tural evolution that systematically changes Dl0 or w0 to op-
timize their performance as given by F. And, the sharpness of
the ridgeline indicates how steeply the performance is pre-
dicted to fall off with small changes in those degrees of
freedom.

What are the properties of motors that evolve to achieve
these results? We assume a separation of evolutionary time-
scales, where some properties of these motors are fixed while
others are optimizable degrees of freedom. For FoF1-ATPase,
we might assume the work w0 of synthesizing ATP is fixed and
the evolutionary degree of freedom is the input Dl0, which
depends on the membrane potential and the number of
protons transported by the motor. For myosin II, we might

(a) (b)

FIG. 3. (a) Ratchet machines (dashed line) can be either fast or effi-
cient, but not both. Driven machines (solid line) can be fairly good at
both speed and efficiency. Here, k¼ 0 and 1 for the ratchet (dashed)
and driven (solid) machines, respectively. The regions highlighted in
red and blue correspond to the optimal values of work output over
the range a 2 ½1; 4�. For these machines, Dl ¼ 15 kT, d ¼ 0:5, and
g‡

c ¼ g‡
m. (b) Optimal ratchets perform less work than optimal driven

machines. The colors are shaded by the quantity a 2 ½1; 4�, which
defines a range of possible performance criteria in equation (2). The
narrow blue contours show that wopt for a driven machine is insen-
sitive to varying evolutionary pressures on speed versus efficiency,
while the broad red contours show that the ratchet machine is more
sensitive to these varying pressures.
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suppose that the input free energy Dl0 gained from ATP
hydrolysis is fixed. Then, evolution can change w0 ¼ fd by
changing the force f exerted or the step size d. During muscle
contraction, myosin II exerts a force f¼ 6 pN against a step of
d¼ 6 nm over a wide range of conditions (Piazzesi et al. 2007).
This gives w0 � 9 kT, which is in good agreement with the
predicted w0

opt ¼ 9:8 kT shown in figure 4. Cellular regulatory
mechanisms might further fine-tune motors to keep them
operating at this peak performance against varying conditions
of the cell, see Supplementary section IIIF, Supplementary
Material online.

The Performance of Ion Pumps Depends on the
Numbers of Ions Transported per Cycle
Now, in a similar fashion, consider the performance function
for ion pumps. These proteins pump against chemiosmotic
gradients, which indicates that they are ratchet-like, k � 0
(see Materials and Methods). What evolutionary degrees of
freedom should we consider in this case? If we were to again
assume that the output work w is a degree of freedom, then
equation (3) predicts that the optimal output work should be
small (a few kT, depending on model parameters). This is not
observed; SERCA, for example, pumps a Ca2þ ion against a
20,000-fold concentration gradient, w � 18 kT (Toyoshima
2009). We conclude that these large concentration gradients
are essential to cell function and that output work is not an
appropriate degree of freedom in this case.

Instead, we assume that ion pump stoichiometry is a relevant
evolutionary degree of freedom. For example, a calcium pump
could evolve to pump one, two, or more ions per ATP hydro-
lyzed. In this case, we take the total work to be w ¼ Mwion,
where wion is the work of pumping a single ion and M is the
number of ions pumped per cycle. We again assume a sepa-
ration of evolutionary timescales, where Dl (from ATP hydro-
lysis for all pumps studied here) and wion (from the large
concentration gradients) are important to cell function at their

given values and therefore fixed, while M is an evolutionary
degree of freedom that can be optimized by an ion pump.

So, for ion pumps, what is the optimal value M ¼ Mopt

that maximizes the performance F(M)? Figure 5 shows the
computed performance F as a function of Dl and wion, which
are fixed, and of M, which is the evolutionary degree of free-
dom. And, we are able to calculate the peak performance
ridgeline as (see supplementary section IIIE, Supplementary
Material online):

Dl
Mopt

� wion þ kTln½bwion� � kTln a: (6)

Equation (6) is the model’s prediction for the evolutionary
state toward which ion pumps will evolve. In this case, too,
the data from six ion pumps fall closely along the ridgeline,
indicating consistency with this evolutionary hypothesis. The
predicted values Mopt are found to be in exact agreement
with the true values of M for these pumps (see supplemen-
tary section IIIE, Supplementary Material online), except for
Na-K ATPase, which pumps five ions, in contrast to the model
prediction of Mopt ¼ 4. This predicted value may be off either
because the model is too simple or because there is a high
evolutionary pressure on efficiency, which would be sensible
given that Na-K ATPase consumes a particularly large
amount of a cell’s total ATP (Paul 1965; Buttgereit and
Brand 1995; Howarth et al. 2012).

These pumps have a favorable speed-efficiency tradeoff
with respect to the ion stoichiometry M (see supplementary
section IIIE, Supplementary Material online), and so once
again it appears that they evolve toward this value of Mopt

because it gives an optimal balance between speed and effi-
ciency. Pumping fewer ions per ATP cycle would sacrifice
efficiency at no gain to turnover speed because pumping
against a large chemiosmotic gradient (e.g., for SERCA,

FIG. 4. Driven biomachines appear to be optimized for performance
as a function of input free energy and output work. Performance is
given by FðDl0;w0Þ, the power output per energy input, equation (2).
The red dots show the in vivo observed values of input free energy
Dl0 and output work w0 for myosin II, NCX, NCKX, PMCA, Na-K
ATPase, Animal, and Escherichia coli F0F1-ATPase. The locations of the
red dots along the peak ridgeline indicate that these motors appear
evolutionarily optimized for performance.

FIG. 5. The performance landscape for ion pumps. We assume that
the total input Dl and work per ion wion are fixed, while the pump
stoichiometry M is an evolutionary degree of freedom. FðDl;wion;MÞ
is the power output per energy input, equation (2). The landscape is
calculated over the input free energy and output work per ion
pumped, Dl=M and wion. These ion pumps closely match our pre-
diction for optimal stoichiometry from equation (6). The landscape is
normalized over the axis of output work because we assume that wion

is not an evolutionary degree of freedom.
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binding intracellular Ca2þ at nanomolar concentrations)
cannot be sped up by dissipating more energy. For both
motors and ion pumps, the output power per unit free-
energy input resembles an evolutionary fitness because it
defines the positions of optimal balance between speed
and efficiency.

FoF1-ATPase Can Evolve Different Numbers of c-Ring
Subunits
Above, we considered what outputs are optimal to meet the
environmental and performance requirements of molecular
machines. Here, for FoF1-ATPase in particular, we give a more
granular model of how evolutionary changes can be encoded
in the motor’s molecular structure. FoF1-ATPase uses a rotary
mechanism to synthesize ATP, see figure 6. Fo, which is the
membrane domain, takes as input the downhill transport of
8–15 protons, depending on the species (Pogoryelov et al.
2012). During proton transport, Fo rotates to generate energy
that, through the central shaft c, is transmitted to the F1

domain. F1, which is peripheral to the membrane, synthesizes
three ATP molecules per full 360� rotation of Fo. The rotary
mechanism intersperses the downhill steps of proton trans-
port with the uphill steps of ATP synthesis, which are sub-
divided into separate work steps of reactant binding,
synthesis, and product release (Watanabe et al. 2011;
Adachi et al. 2012; Suzuki et al. 2014). The part of Fo that
rotates is the c-ring. The c-ring is composed of N identical c-
subunits, each of which transports one proton per 360� ro-
tation. Interestingly, the numbers of c-ring subunits vary
across different species, ranging from N¼ 8 (animal; Watt
et al. 2010) to N¼ 15 (Spirulina platenisis; Pogoryelov et al.
2009). The value of N is constant within a species (Pogoryelov
et al. 2012). The number N of c-ring subunits can be changed
by as few as one or two mutations (Pogoryelov et al. 2012;
Preiss et al. 2013). This implies that N is a key evolutionary
degree of freedom through which FoF1-ATPase adapts to dif-
ferent membrane environments across species (von Ballmoos
et al. 2009).

The efficiency and the ATP synthesis rate (i.e., the speed) of
FoF1-ATPase depends on its membrane environment, given
by the membrane potential Dw and the chemiosmotic gra-
dient across the membrane DpH. The components Dw and
DpH sum together to give the proton motive force (PMF),
that is, the free energy gained by transporting one proton
across the membrane:

DlHþ ¼ 2:3DpH� FeDw; (7)

where Fe is Faraday’s constant and the gradients Dw; DpH
are defined relative to outside. The efficiency of the motor can
be computed as follows:

g ¼ 3DlATP

NDlHþ
; (8)

where DlATP is the free energy of synthesizing an ATP
molecule.

The Performance of FoF1-ATPase Depends on
Membrane Environment and c-Ring Stoichiometry
To study the evolution of FoF1-ATPase across different spe-
cies, we calculate its efficiency and synthesis rate with respect
to different values of the c-ring stoichiometry N and with
respect to different membrane environments; see Materials
and Methods for a description of these calculations. For many
species, the total PMF is about the same, DlHþ � 180� 210
mV or 7–8 kT per proton that is pumped. But, the relative
contributions from DpH and Dw to this PMF vary, with Dw
¼ �30 to �150 mV (see supplementary section IVC,
Supplementary Material online).

Figure 7a shows the computed ATP synthesis rate of FoF1

with respect to two degrees of freedom: Dw and N. We take
the membrane potential Dw, with the total PMF held con-
stant at DlHþ ¼ 200 mV, to reflect the in vivo environments
of different species. So, a Dw of smaller magnitude signifies a
larger DpH. This figure shows two trends. First, synthesis rate
increases for larger magnitudes of Dw, then decreases. A

FIG. 6. The structure and function of FoF1-ATPase. The Fo domain is integral to the membrane and contains the c-ring, which rotates as it transports
protons downhill across the membrane. The energy gained from this rotation is transmitted through the intermediate elastic linker (the c subunit)
to F1, the peripheral membrane domain. F1 synthesizes three ATP molecules for each full 360� rotation of Fo. This illustrates one portion of the total
cycle. Across the first transition (left to center panels), Fo transports one proton and the c-ring rotates. This increases the elastic strain on the
central shaft. Across the second transition (middle to right panels), this tension is relieved as F1 undergoes a conformational change and releases
newly synthesized ATP.
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larger Dw gives a bigger free energy drop across the mechan-
ical step as Fo rotates and increases the elastic strain on the
central shaft (see Materials and Methods). This agrees with
our previous work, which showed that the fastest machines
are those having an optimal value of the free energy drop
across the mechanical step, because this overcomes the ki-
netic barriers of performing uphill work (Wagoner and Dill
2019). The second trend is that motors are faster if the c-ring
has more subunits (larger N). Larger N increases the motor’s
gear ratio. That is, greater synthesis rates can be achieved by
partitioning the total work of ATP synthesis into smaller sub-
steps (Anandakrishnan et al. 2016; Wagoner and Dill 2019).

Figure 7a also shows the experimentally determined N
values and in vivo membrane environments for five different
species. How should we interpret the positions of these data
points? First, we note that the data fall into a narrow (blue-
green) region of the plot, indicating evolution toward a spe-
cific synthesis rate, regardless of species. But based on what
principle? What property might these machines be optimiz-
ing? Following equation (2), we hypothesize again the impor-
tance of power output, a product of efficiency with speed,

FðN;DwÞ ¼
(

gðN;DwÞJðN;DwÞ J < Jc

gðN;DwÞJc J � Jc

; (9)

where J is the synthesis rate and Jc is a threshold constant.
This function F optimizes efficiency alone, as long as the
synthesis rate is above some threshold Jc, and punishes syn-
thesis rates that are below this threshold. Here, Jc ¼ 65635

s�1 (for sensitivity analysis, see Materials and Methods and
supplementary section IVB, Supplementary Material online).
So, this performance function reflects a greater importance of
efficiency. This makes sense since so much of an organism’s
ATP content is synthesized by this motor.

Figure 7b shows the landscape of this performance func-
tion F . The data fall along the peak ridgeline. We draw the
following conclusions. First, at high efficiencies, the highest

synthesis rates are given when Dw � �150 mV (fig. 7a). This
is the value of the membrane potential of animal mitochon-
dria. As a result, animal FoF1 sits near the global optimum of
the performance landscape in figure 7b. This suggests that, in
addition to c-ring stoichiometry N, the membrane potential
Dw may be an evolutionary degree of freedom that has been
optimized in some species. The data support this hypothesis
for animal mitochondria, as well as for E. coli and
Saccharomyces cerevisiae.

For chloroplast and Spirulina platensis, however, this does
not appear to be the case. Both of these species have a low
membrane potential. A larger magnitude Dw in chloroplasts
or Spirulina platensis appears to cause photoinhibition
(Checchetto et al. 2012) and so may not be an evolutionary
option. Therefore, it appears that these species have
evolved their c-ring stoichiometries for high efficiencies, while
avoiding synthesis rates that are too low. Figure 7a indicates
that a greater efficiency (a smaller c-ring) for chloroplasts or
Spirulina platensis would result in synthesis rates that may be
unacceptably low.

A Broader Context and Implications for Design and
Disease
Our work indicates what degrees of freedom–and what
constraints–might be active in evolution to optimize a
machine’s thermodynamic performance. Here, the free-
energy obtainable from ATP hydrolysis has been taken to
be fixed, while the c-ring stoichiometry of FoF1-ATPase is
known to be alterable by as few as one or two mutations
(Pogoryelov et al. 2012; Preiss et al. 2013). Similarly, myosin’s
step size can change through point mutations to the light
chain (Sherwood et al. 2004) or by changing number of IQ
motifs that compose the tail domain (Sakamoto et al. 2005).

Where there are degrees of freedom, a few mutations can
also, in principle, lead to disease states. Figures 4, 5, and 7b
show that a small change in a machine’s degree of freedom
can lead to a steep dropoff in its performance. Disregarding

(a) (b)

FIG. 7. (a) The speed and efficiency of FoF1-ATPase with respect to different membrane environments and with respect to the c-ring stoichiometry
N. The efficiency is inversely proportional to N, see equation (8). Plotted in red are the experimentally determined in vivo efficiencies (corre-
sponding to different values of N from 8 to 15) and membrane environments of FoF1 for five species, from left to right: Spirulina platensis, spinach
chloroplast, Saccharomyces cerevisiae, Escherichia coli, and animal mitochondria. (b) The performance landscape of FoF1-ATPase with respect to
different membrane environments and with respect to the c-ring stoichiometry N. The efficiency is inversely proportional to N, see equation (8).
On the z axis is the performance function of equation (9), with the peak ridgeline shown in black for the threshold Jc ¼ 65 s�1. Plotted in red are the
experimentally determined in vivo efficiencies and the membrane environments for the same five species. For both plots, the total PMF is DlHþ

¼ �200 mV, but with different contributions from Dw and D pH, and DlATP ¼ 18:0 kT.
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loss-of-function mutations, there are indeed diseases that re-
sult from mutations that diminish the performances of these
machines. Examples include Na-K ATPase (familial hemiplegic
migraine) (Spiller and Friedrich 2014; Clausen et al. 2017),
FoF1-ATPase (neurodegenerative syndromes) (Kucharczyk
et al. 2009; Dautant et al. 2018), SERCA (Darier Disease and
potentially Parkinson’s disease) (Ahn et al. 2003; Lee et al.
2019), NCX (cardiac fibrillation) (Langenbacher et al. 2005),
and myosin (cardiomyopathy, hearing loss) (Greenberg et al.
2010; Lin et al. 2011).

Finally, we note that the present model fits into a broader
context. Recently, other studies have given insight into prop-
erties of evolution by studying the thermodynamics of pro-
teins and cell machinery (Sikosek and Chan 2014; Kalapis et al.
2015). For example, the cellular machinery of proteostasis, the
cell’s network of biomolecules that fold and disaggregate and
chaperone the proteome to ensure its folding health, has
evolved to achieve a balance of energy and chaperone abun-
dances needed to make effective trafficking decisions (Santra
et al. 2017; Agozzino and Dill 2018). Further, this machinery
and a protein’s stability can affect genetic variation and the
speed of evolution (Sabater-Mu~noz et al. 2015; Agozzino and
Dill 2018). Protein stability also has tradeoffs with new protein
functions (Tokuriki et al. 2008; Sikosek et al. 2012) and with
enhanced enzymatic activities (Klesmith et al. 2017). Future
work that identifies the molecular mechanisms underlying
these different tradeoffs may give new therapeutic strategies
for the aforementioned diseases and may give a route for
directed evolution to optimize molecular machines for bio-
technology applications.

Conclusions
We have explored evolutionary tradeoffs of speed and effi-
ciency in biomolecular motors and ion pumps. Although
some machines, such as kinesin (not studied here), have broad
ranges of operating conditions of loads or forces, the machines
studied here all operate over relatively narrow ranges of input
free energy and output work in vivo. Using simple dynamical
models and plausible choices of evolutionary degrees of
freedom–such as the force exerted by myosin II, the number
of ions transported by an ion pump, and the c-ring stoichi-
ometry of FoF1-ATPase–we find that these machines achieve
an optimal balance of speed and efficiency. In many cases, the
property that appears to be optimized, serving the role of
evolutionary fitness, is the power out per unit energy in.

Materials and Methods

Calculating the Speed of the Two-State Molecular
Machine
Figure 1 shows the two-state molecular machine. We can
calculate the cycle flux J (number of full cycles per unit
time) of this machine as (Wagoner and Dill 2019):

J ¼ fcfm � rcrm

fc þ fm þ rc þ rm
¼ s�1; (10)

where the rate constants are shown in figure 1. We use rate
definitions that we have shown can accurately reproduce

experimentally measured dynamics for a range of molecular
machines (Wagoner and Dill 2019):

fc ¼ k0e�bðg‡
c�ð1�kÞDlÞrc ¼ k0e�bg‡

c

fm ¼ k0e�bðg‡
m�kDlþwdÞrm ¼ k0e�bðg‡

m�wð1�dÞÞ
(11)

where k0 is a frequency factor, and g‡
c ; g‡

m are intrinsic barriers
common to both the forward and reverse transitions.

The dimensionless parameters d and k are descriptors of
the shape of the machine’s landscape. The parameter d rep-
resents the location of the transition state along the mechan-
ical step, which dictates how a change in w effects the forward
and reverse barrier heights of the mechanical step (Howard
2011; Wagoner and Dill 2016). The parameter k gives the
fraction of free energy from the input chemical work that is
expended within the mechanical step (Wagoner and Dill
2019). k describes an inherent feature of the machine–how
free energy changes are distributed across the machine’s cyclic
landscape, independent of the amount of work w it performs.
The value of k implicitly includes two contributions, from the
input chemical energy Dl and from changes in conforma-
tional free energy, which must sum to zero across the full cycle.

As described in the main text, we define two limiting cases
of a ratchet machine (a small value k � 0) and a driven ma-
chine (a large value k � 1). In some literature, our term ratchet
is what others call a Brownian or Feynmann ratchet, and our
term driven machine is what others call a power stroke motor
(Astumian et al. 2016). We do not use these terms here in
order to avoid confusion with their other multiple definitions
in the field. We define ratchet and driven machines narrowly, in
terms of small and large value of k, respectively.

Modeling the Evolutionary Changes in Speed and
Efficiency of Biomolecular Machines
In order to study the optimization of biological machines over
different evolutionary degrees of freedom, we first define a
simple model for their dynamics. For the 12 machines listed in
figure 2, the in vivo values of input free energy Dl and output
work w are known. However, other details–such as the dis-
tribution of basic free energy changes expressed through k in
equations (11), and how k would change over different evo-
lutionary degrees of freedom–are generally not known. To
find a simple model to estimate k, we note that the available
free energy can be written as Dl ¼ Dl0 þ kTlnc2=c1, where
the first term is a standard contribution and the second is a
chemiosmotic term due to concentration differences. We
assume that only the first term Dl0 is extractable here in
the mechanical step, and thus we set k ¼ Dl0=Dl and use
the two-state model to calculate machine speeds. To calcu-
late the landscape in figure 4, it is important to also
separate the output work into standard w0 and chemios-
motic w0 contributions, see supplementary section IIID,
Supplementary Material online.

In short, for a machine driven by an ionic gradient, this
model assumes that the free energy gained from pumping
one charge downhill (Dl0) can be used to lower the electro-
static barrier of pumping another charge uphill (w0). For a
machine driven by ATP hydrolysis, this model sets the free
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energy drop across the mechanical step to the intrinsic free
energy available in the chemical bond, Dl0

ATP, independent of
concentration differences. This matches the intuition of early
models that Dl0

ATP is the maximum free energy that can
contribute to a motor’s power stroke (Hill et al. 1975; Fisher
and Kolomeisky 1999; Howard 2006; Purcell et al. 2011). This
is not a rigorous physical constraint; rather, it is a sensible,
first-order approximation that allows us to study evolutionary
effects across a wide range of biological machines. We later
use a more refined model of FoF1-ATPase in order to ask more
specific questions about that motor’s evolution.

We use this model to study the in vivo operation of 11 of
the machines in figure 2, which we split into two classes. Class
1 contains the driven machines, classified by the criteria w0

� 4:5 kT and Dl0 � w0. These are myosin II, NCX, NCKX,
Animal FoF1-ATPases, and E. coli FoF1-ATPase. The machines
in Class II are ratchet machines. Here, they are all ion pumps
that work primarily against chemiosmotic gradients: Na-K
ATPase, SERCA, the proton PPi pump, PMCA, and V-
ATPase (NOTE.—The only machine we do not classify or an-
alyze is chloroplast FoF1-ATPase, which has a large value of
Dw0, which would place it in class I, but a very small value of
Dl0.). We calculate the performance landscapes for these
two classes of machines in figures 4 and 5.

A Mechanistic Mesoscale Model of FoF1-ATPase
We use a discrete, 2D model (for the Fo and F1 domains) to
represent the dynamical steps of FoF1-ATPase. The Fo domain
rotates as it transports protons downhill, see figure 6. The F1

domain undergoes cycles of reactant (ADP and Pi) binding,
ATP synthesis, and ATP release. The two domains are joined
by the elastic linker c, which has the energy:

Ecðhi;ujÞ ¼
1

2
jðhi � ujÞ2; (12)

where j is a spring constant, hi is the angular position of Fo,

and uj is the preferred angle (that which gives maximal sta-
bility) for the jth chemical state of F1.

Figure 6 illustrates the steps of the FoF1 mechanism in-
cluded in our dynamical model. The Fo domain has three
transitions in which Fo binds a proton on the periplasmic
(P) side of the membrane, rotates from hi to hiþ1, and releases
a proton on the cytoplasmic (N) side. The basic free energy
changes across each of these three steps are as follows:

g
HþP
on ¼ 2:3

�
pK
ðPÞ
a � pHðPÞ

�
;

grotðhi;ujÞ ¼ 2:3
�

pK
ðNÞ
a � pK

ðPÞ
a

�
� FeDw;

þEcðhiþ1;ujÞ � Ecðhi;ujÞ

g
HþN
off ¼ 2:3

�
pHðNÞ � pK

ðNÞ
a

�
;

(13)

with the apparent pKa’s of the P- and N-sides labeled. The
total change in basic free energy across these three steps,
found by summing the three equations (13), is equal to
DlHþ , the free energy gained by transporting one proton
across the membrane, plus DEc, the change in elastic energy

of the c-subunit. During ATP synthesis, Fo rotation (the sec-
ond step) acts as a mechanical step that increases the strain
from the elastic linker DEc. The elastic strain is transmitted to
F1, and then relieved when F1 undergoes a chemical transition
such as ADP binding or ATP release. The basic free energy
change of an F1 transition is as follows:

gF1
¼ DGF1

j;jþ1 þ Ecðhi;ujþ1Þ � Ecðhi;ujÞ; (14)

where j indexes the F1 state and DGF1

j;jþ1 is the free energy
associated with the component of ATP synthesis
from j to jþ 1. Over a full cycle these changes sum
to the work of synthesizing three ATP molecules:P8
j¼0

DGF1

i;ðiþ1Þmod 8 ¼ 3DlATP.

The model is well constrained by experimental data, in-
cluding the apparent pKa’s of the c-ring on both sides of the
membrane (Gr€aber 1994; Wiedenmann et al. 2009), the elas-
ticity of the c-subunit (W€achter et al. 2011), and the angular
dependence of rates for the different components of ATP
synthesis by the F1 domain (Watanabe et al. 2011; Adachi
et al. 2012; Suzuki et al. 2014). There is a range of final pa-
rameter values that affects the absolute synthesis rates but do
not affect the qualitative features of figure 7; that is, the syn-
thesis rates in these figures are scaled systematically over a
small window. See supplementary section IV, Supplementary
Material online, for full details of parameterization and
sensitivity analysis.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
We thank Sasha Levy and Vageli Coutsias for comments and
suggestions. We are grateful for support from the Laufer
Center for Physical and Quantitative Biology and from NIH
Grant GM06359217.

References
Adachi K, Oiwa K, Yoshida M, Nishizaka T, Kinosita K. 2012. Controlled

rotation of the F1-ATPase reveals differential and continuous binding
changes for ATP synthesis. Nat Commun. 3(1):1022.

Agozzino L, Dill KA. 2018. Protein evolution speed depends on its sta-
bility and abundance and on chaperone concentrations. Proc Natl
Acad Sci U S A. 115(37):9092–9097.

Ahn W, Lee MG, Kim KH, Muallem S. 2003. Multiple effects of SERCA2b
mutations associated with Darier’s disease. J Biol Chem.
278(23):20795–20801.

Anandakrishnan R, Zhang Z, Donovan-Maiye R, Zuckerman DM. 2016.
Biophysical comparison of ATP synthesis mechanisms shows a ki-
netic advantage for the rotary process. Proc Natl Acad Sci U S A.
113:11220–11225.

Astumian RD, Mukherjee S, Warshel A. 2016. The physics and
physical chemistry of molecular machines. ChemPhysChem
17(12):1719–1741.

Brown AI, Sivak DA. 2017. Allocating dissipation across a molecular
machine cycle to maximize flux. Proc Natl Acad Sci U S A.
114(42):11057–11062.

Wagoner and Dill . doi:10.1093/molbev/msz190 MBE

2820

Deleted Text: <xref ref-type=
Deleted Text:  
Deleted Text: eleven 
Deleted Text:  
Deleted Text: <sup>3</sup>
Deleted Text: m
Deleted Text: m
Deleted Text: m
Deleted Text:  
Deleted Text: two-dimensional
Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text:  
Deleted Text: l
Deleted Text:  
Deleted Text: <xref ref-type=
Deleted Text: i.e.
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz190#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz190#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz190#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz190#supplementary-data


Brown AI, Sivak DA. 2018. Allocating and splitting free energy to max-
imize molecular machine flux. J Phys Chem B. 122(4):1387–1393.

Buttgereit F, Brand MD. 1995. A hierarchy of ATP-consuming processes
in mammalian cells. Biochem J. 312(1):163–167.

Capitanio M, Canepari M, Cacciafesta P, Lombardi V, Cicchi R, Maffei M,
Pavone FS, Bottinelli R. 2006. Two independent mechanical events in
the interaction cycle of skeletal muscle myosin with actin. Proc Natl
Acad Sci U S A. 103(1):87–92.

Checchetto V, Segalla A, Allorent G, La Rocca N, Leanza L, Giacometti
GM, Uozumi N, Finazzi G, Bergantino E, Szab�o I. 2012. Thylakoid
potassium channel is required for efficient photosynthesis in cyano-
bacteria. Proc Natl Acad Sci U S A. 109(27):11043–11048.

Clausen MV, Hilbers F, Poulsen H. 2017. The structure and function of
the Na, K-ATPase isoforms in health and disease. Front Physiol. 8:371.

Dautant A, Meier T, Hahn A, Tribouillard-Tanvier D, Rago JP D,
Kucharczyk R. 2018. ATP synthase diseases of mitochondrial genetic
origin. Front Physiol. 9(329):1–16.

Fisher ME, Kolomeisky AB. 1999. The force exerted by a molecular mo-
tor. Proc Natl Acad Sci U S A. 96(12):6597–6602.

Gr€aber P. 1994. The Hþ-ATPase from chloroplasts: energetics of the
catalytic cycle. Bioenergetics 1187(2):171–176.

Greenberg MJ, Kazmierczak K, Szczesna-Cordary D, Moore JR. 2010.
Cardiomyopathy-linked myosin regulatory light chain mutations
disrupt myosin strain-dependent biochemistry. Proc Natl Acad Sci
U S A. 107(40):17403–17408.

Hill T. 1977. Free energy transduction in biology: the steady-state kinetic
and thermodynamic formalism. New York: Academic Press, Inc.

Hill TL, Eisenberg E, Chen YD, Podolsky RJ. 1975. Some self-consistent
two-state sliding filament models of muscle contraction. Biophys J.
15(4):335–372.

Howard J. 2006. Protein power strokes. Curr Biol. 16(14):R517–R519.
Howard J. 2011. Motor proteins as nanomachines: the roles of thermal

fluctuations in generating force and motion. In: Rivasseau V, editor.
Biological physics. Basel: Springer. p. 47–59.

Howarth C, Gleeson P, Attwell D. 2012. Updated energy budgets for
neural computation in the neocortex and cerebellum. J Cereb Blood
Flow Metab. 32(7):1222–1232.

Kalapis D, Bezerra AR, Farkas Z, Horvath P, B�odi Z, Daraba A, Szamecz B,
Gut I, Bayes M, Santos MAS, et al. 2015. Evolution of robustness to
protein mistranslation by accelerated protein turnover. PLoS Biol.
13(11):e1002291–e1002328.

Klesmith JR, Bacik JP, Wrenbeck EE, Michalczyk R, Whitehead TA. 2017.
Trade-offs between enzyme fitness and solubility illuminated by
deep mutational scanning. Proc Natl Acad Sci U S A.
114(9):2265–2270.

Kucharczyk R, Zick M, Bietenhader M, Rak M, Couplan E, Blondel M,
Caubet SD, di Rago JP. 2009. Mitochondrial ATP synthase disorders:
molecular mechanisms and the quest for curative therapeutic
approaches. Biochim Biophys Acta. 1793(1):186–199.

Langenbacher AD, Dong Y, Shu X, Choi J, Nicoll DA, Goldhaber JI,
Philipson KD, Chen JN. 2005. Mutation in sodium-calcium ex-
changer 1 (NCX1) causes cardiac fibrillation in zebrafish. Proc Natl
Acad Sci U S A. 102(49):17699–17704.

Lee JH, Han J, Kim H, Park SM, Joe E, Jou I. 2019. Parkinson’s disease-
associated LRRK2-G2019S mutant acts through regulation of SERCA
activity to control ER stress in astrocytes. Acta Neuropathol
Commun. 7(68):1–19.

Lin T, Greenberg MJ, Moore JR, Ostap EM. 2011. A hearing loss-
associated myo1c mutation (R156W) decreases the myosin duty
ratio and force sensitivity. Biochemistry 50(11):1831–1838.

Oster G, Wang H. 2000. Reverse engineering a protein: the mechano-
chemistry of ATP synthase. Biochim Biophys Acta. 1458(2–
3):482–510.

Paul J. 1965. Carbohydrate and energy metabolism. In: Willmer E, editor.
Cells and tissues in culture. New York: Academic Press. p. 239–276.

Piazzesi G, Reconditi M, Linari M, Lucii L, Bianco P, Brunello E, Decostre
V, Stewart A, Gore DB, Irving TC, et al. 2007. Skeletal muscle

performance determined by modulation of number of myosin
motors rather than motor force or stroke size. Cell 131(4):784–795.

Pogoryelov D, Klyszejko AL, Krasnoselska GO, Heller EM, Leone V, Langer
JD, Vonck J, Muller DJ, Faraldo-G�omez JD, Meier T. 2012. Engineering
rotor ring stoichiometries in the ATP synthase. Proc Natl Acad Sci U
S A. 109(25):E1599–E1608.

Pogoryelov D, Yildiz €O, Faraldo-G�omez JD, Meier T. 2009. High-resolu-
tion structure of the rotor ring of a proton-dependent ATP synthase.
Nat Struct Mol Biol. 16(10):1068–1073.

Preiss L, Klyszejko AL, Hicks DB, Liu J, Fackelmayer OJ, Yildiz O, Krulwich
TA, Meier T. 2013. The c-ring stoichiometry of ATP synthase is
adapted to cell physiological requirements of alkaliphilic Bacillus
pseudofirmus OF4. Proc Natl Acad Sci U S A. 110(19):7874–7879.

Purcell TJ, Naber N, Franks-Skiba K, Dunn AR, Eldred CC, Berger CL,
M�aln�asi-Csizmadia A, Spudich JA, Swank DM, Pate E, et al. 2011.
Nucleotide pocket thermodynamics measured by EPR reveal how
energy partitioning relates myosin speed to efficiency. J Mol Biol.
407(1):79–91.

Sabater-Mu~noz B, Prats-Escriche M, Montagud-Mart�ınez R, L�opez-
Cerd�an A, Toft C, Aguilar-Rodr�ıguez J, Wagner A, Fares MA. 2015.
Fitness trade-offs determine the role of the molecular chapero-
nin GroEL in buffering mutations. Mol Biol Evol.
32(10):2681–2693.

Sakamoto T, Yildez A, Selvin PR, Sellers JR. 2005. Step-size Is determined
by neck length in myosin V. Biochemistry 44(49):16203–16210.

Santra M, Farrell DW, Dill KA. 2017. Bacterial proteostasis balances en-
ergy and chaperone utilization efficiently. Proc Natl Acad Sci U S A.
114(13):E2654–E2661.

Schmiedl T, Seifert U. 2008. Efficiency of molecular motors at maximum
power. Europhys Lett. 83(3):30005.

Sherwood JJ, Waller GS, Warshaw DM, Lowey S, Spudich JA. 2004. A
point mutation in the regulatory light chain reduces the step size of
skeletal muscle myosin. Proc Natl Acad Sci U S A.
101(30):10973–10978.

Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E,
Kavanagh K, Alon U. 2012. Evolutionary trade-offs, Pareto
optimality, and the geometry of phenotype space. Science
336(6085):1157–1160.

Sikosek T, Chan HS. 2014. Biophysics of protein evolution and evolu-
tionary protein biophysics. J R Soc Interface. 11(100):20140419.

Sikosek T, Chan HS, Bornberg-Bauer E. 2012. Escape from adaptive con-
flict follows from weak functional trade-offs and mutational robust-
ness. Proc Natl Acad Sci U S A. 109(37):14888–14893.

Spiller S, Friedrich T. 2014. Functional analysis of human Naþ/Kþ-
ATPase familial or sporadic hemiplegic migraine mutations
expressed in Xenopus oocytes. World J Biol Chem. 5(2):240–253.

Suzuki T, Tanaka K, Wakabayashi C, Saita E, Yoshida M. 2014.
Chemomechanical coupling of human mitochondrial F1-ATPase
motor. Nat Chem Biol. 10:930–936.

Tokuriki N, Stricher F, Serrano L, Tawfik DS. 2008. How protein stability
and new functions trade off. PLoS Comput Biol. 4(2):e1000002.

Toyoshima C. 2009. How Ca2þ-ATPase pumps ions across the sarco-
plasmic reticulum membrane. Biochim Biophys Acta.
1793(6):941–946.

Van den Broeck C. 2005. Thermodynamic efficiency at maximum power.
Phys Rev Lett. 95(19):190602.

von Ballmoos C, Wiedenmann A, Dimroth P. 2009. Essentials for ATP
synthesis by F1Fo ATP synthases. Annu Rev Biochem. 78(1):649–672.

W€achter A, Bi Y, Dunn SD, Cain BD, Sielaff H, Wintermann F,
Engelbrecht S, Junge W, Walker JE. 2011. Two rotary motors in F-
ATP synthase are elastically coupled by a flexible rotor and a stiff
stator stalk. Proc Natl Acad Sci U S A. 108(10):3924–3929.

Wagoner JA, Dill KA. 2016. Molecular motors: power strokes outperform
Brownian ratchets. J Phys Chem B. 120(26):6327–6336.

Wagoner JA, Dill KA. 2019. Mechanisms for achieving high speed and
efficiency in molecular machines. Proc Natl Acad Sci U S A.
116(13):5902–5907.

Opposing Pressures of Speed and Efficiency Guide the Evolution of Molecular Machines . doi:10.1093/molbev/msz190MBE

2821



Watanabe R, Okuno D, Sakakihara S, Shimabukuro K, Iino R, Yoshida M,
Noji H. 2011. Mechanical modulation of catalytic power on F1-
ATPase. Nat Chem Biol. 8(1):86–92.

Watt IN, Montgomery MG, Runswick MJ, Leslie AGW, Walker JE. 2010.
Bioenergetic cost of making an adenosine triphosphate molecule in

animal mitochondria. Proc Natl Acad Sci U S A.
107(39):16823–16827.

Wiedenmann A, Dimroth P, von Ballmoos C. 2009. Functional asymme-
try of the Fo motor in bacterial ATP synthases. Mol Microbiol.
72(2):479–490.

Wagoner and Dill . doi:10.1093/molbev/msz190 MBE

2822


