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A B S T R A C T

Despite the impact of the human microbiome on health, an appreciation of microbial ecology is yet to

be translated into mainstream medical training and practice. The human microbiota plays a role in the

development of the immune system, in the development and function of the brain, in digestion, and in

host defense, and we anticipate that many more functions are yet to be discovered. We argue here that

without formal exposure to microbiology and ecology—fields that explore the networks, interactions and

dynamics between members of populations of microbes—vitally important links between the human

microbiome and health will be overlooked. This educational shortfall has significant downstream effects

on patient care and biomedical research, and we provide examples from current research highlighting

the influence of the microbiome on human health. We conclude that formally incorporating microbiol-

ogy and ecology into the premedical curricula is invaluable to the training of future health professionals

and critical to the development of novel therapeutics and treatment practices.

K E Y W O R D S : premedical curricula; microbiology; human microbiome; ecology

INTRODUCTION

The influential American microbiologist D. H.

Bergey was an advocate for adding bacteriology as

an essential component of the general training of

biology students and those seeking to obtain med-

ical training as early as 1915 [1]. One hundred years

later, in 2015, it is clear that many organ systems and

physiological functions in the human body are

modulated by small molecules derived from the

microbiota and that the microbiome is a key deter-

minant of human health (Table 1). Moreover, the

human body can be viewed as a complex and

multifaceted ecosystem, and human health can be

interpreted in part as a product of the ecosystem

services that are delivered by its resident microbiota

[2]. As stressed by Zhou et al. [3], each of us is

composed of diverse habitats that are exposed to
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Table 1. Examples of medical specialties and organ systems where the microbiome has been suggested

to play a role in health and disease

Medical

specialties

Organ

systems

Function Role of microbiome Conditions associated

with altered

communities

Refs

Andrology/

Gynecology/

Obstetrics

Reproductive Production of sex hor-

mones, production of

gametes, milk pro-

duction, support of

embryo/fetus until

birth

Modification and

deconjucation of steroid

hormones in the gut, de-

fense against pathogens,

microbiota transfer to fetus

Possibly a role in male

infertility, bacterial

vaginosis, antibiotics

lead to lower estro-

gen levels

[4-10]

Cardiology,

Hematology

Cardiovascular Nutrient delivery, tem-

perature modulation

The gut microbiota contrib-

utes to the synthesis of

trimethylamines generated

from choline and carnitine,

which are further oxidized

to trimethylamineoxide

(TMAO) in the liver. TMAO

is correlated with cardiovas-

cular events

Cardiovascular disease [11-13]

Dermatology Integumentary Protection against

pathogens

Protective immunity: skin

microbiota interacts with

the immune cells in the

skin; antimicrobial peptide

production and colonization

resistance

Atopic dermatitis,

psoriasis

[14-19]

Endocrinology,

Psychiatry,

Neuroscience,

Neurology,

Ophthalmology,

Otolaryngology

Endocrine,

Brain and

Nervous

Hormone secretion,

detection, processing

and regulation of

many body processes

Regulation of host hormones,

gut-brain axis- modulation

of behavior, mood

Eating disorders,

neurodegenerative

and neurodeve-

lopmental disorders

[20-24]

Gastroenterology Digestive Processing and

digestion of food,

waste removal

Defense against pathogens,

digestion, synthesis of vita-

mins, breakdown of food

components and

xenobiotics

Mouth: periodontitis;

gut: diabetes, ulcera-

tive colitis, Crohn

disease

[25-28]

Immunology,

Oncology

Lymphatic/

Immune

Returns fluid to blood,

defense against

pathogens

Immune system development

and training, mucosal

immunity

Inflammatory bowel

disorders, allergies,

autoimmune

diseases

[29-33]

Nephrology,

Urology

Urinary Waste removal;

removal of excess

fluid

Unknown; in the past con-

sidered sterile

Gut microbiota link to

renal stone forma-

tion; bladder cancer

[34]

Orthopedics Musculo-

skeletal

Body support and

movement, tempera-

ture homeostasis

Bone mass regulation either

via the immune system,

hormones or microbial

metabolites

Infections due to

mislocalization of

microorganisms

[35]

Pulmonology Respiratory O2/CO2 gas exchange Defense against pathogens,

mucosal immunity

Chronic obstructive

pulmonary disorder

(COPD), asthma

[36-38]
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and subsequently can respond to variations in our

external environment. In addition, the dynamics of

microbial communities associated with these habi-

tats can be strongly modulated by local interactions

with our immune, endocrine and nervous systems

[3]. Each habitat provides a unique niche space for

the growth and survival of indigenous and invading

microbes [3], and shifts of the human body from a

‘healthy’ non-diseased state to a diseased condition

are often accompanied by major alterations in

microbial growth and community composition

(Table 1). We thus argue here that formal inclusion

of microbiology and ecology is essential in the pre-

medical biology curriculum because of the intricate

and interwoven relationships that we share with our

microbial partners: archaea, bacteria, viruses and

microeukaryotes such as fungi.

In this review, we highlight the role of ecological

and microbe–host interactions in human health, and

we outline how exposure to microbial ecology in pre-

medical curricula can affect clinical practice. The

broader topic of how the human ecosystem interacts

with environmental ecosystems, although equally

important, is not covered in this review as it has been

discussed elsewhere [39–41]. We also provide brief

examples that demonstrate the important potential

role of the human gut microbiome under four differ-

ent patient settings: (i) the administration of antibi-

otics, (ii) the presence of metabolic disorders, (iii)

the development of cancer and (iv) the pharmaco-

kinetics of drugs within the patient. For each of these

four examples, we highlight the potential integration

of practices in the clinic with discoveries in basic

microbiome research and ecology.

WHY INTEGRATE MICROBIOLOGY AND
ECOLOGY INTO THE PREMEDICAL
CURRICULA?

Efforts to characterize microbial communities

residing within the human body during the last dec-

ade have greatly increased our understanding of mi-

crobial community composition and diversity in

health and disease. However, despite characterized

connections between the human microbiota and

health, a profound disconnect currently exists be-

tween research on the human microbiome and the

applied health fields. This disconnect is reflected in

the limited exposure to the principles of microbiol-

ogy and ecology that medical professionals receive

during their premedical and medical education and

training. Here, when we refer to premedical training,

we are referring to undergraduate education.

Admission requirements to medical schools do

not include microbiology and ecology, and the

required biology coursework is mostly centered

around genetics and cell biology with an emphasis

on human biology. In medical school, microbiology

is often taught in the context of pathogenesis.

Moreover, the principles of ecology, which broadly

apply to the human microbiome [2], are not yet well

integrated into standard premedical courses.

Perhaps because formal classroom exposure to

the principles of microbiology and ecology is often

absent from premedical curricula (Table 2), many

human health professionals approach disease pri-

marily through the lens of mammalian anatomy

and physiology. This educational framework leads

to a lack of integration of clinical practices with basic

microbiological and ecological research.

Several examples of the diverse ecological prin-

ciples that apply to the human host and its

associated microbiome are outlined in Box 1, and

examples of the kinds of microbe–microbe and mi-

crobe–host interactions that can occur within the

human body are shown in Fig. 1. The integration of

ecology with (i) the biochemistry of microbial meta-

bolic processes and (ii) the interactions of the

microbiome with human physiology, e.g. immune

responses, is lacking in the more topic-segregated

courses taught currently. Teaching these concepts

concurrently will provide a common language to en-

courage communication and the exchange of ideas

among medical students, clinicians and basic re-

searchers. We also believe that there is great value

in combining reductionist approaches (e.g. a focus

on the molecular biology and biochemistry of the

Table 2. Current minimum

background needed for MCAT 2015

and acceptance to Medical School

in the United States [42]

Medical School

Prerequisites/MCAT

2015 Preparation

Number of

required semesters

of coursework

Biology 2

Biochemistry 1

General Chemistry 2

Organic Chemistry 2

Physics 2

Psychology 1

Sociology 1
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box 1 . key ecological topics and principles that apply to the

human host and its associated microbiome

Population Ecology. A population is a group of individuals of the same organism or cell type that co-occur in the same

location and time. For example, Costerton et al. [43] stress that most microbial pathogens must persist and multiply in

their infected system in order to cause deleterious effects. Thus, whether the initial infection event involves a single

virion, fungal propagule or bacterial cell, the invader typically must replicate to large population densities before its

presence significantly influences the health of its human host. Similarly, the replication and growth of immune cells (e.g.

protective B and T lymphocytes), as well as potential pathogen targets (e.g. uninfected red blood cells within the

bloodstream that can be targeted by the Plasmodium malaria parasite), are cellular populations [44]. Moreover, Smith

[45] discusses relationships for resource-limited growth of populations of a hypothetical pathogen (P) and of hypothetical

host cells (H), and Smith et al. [46] have recently demonstrated extremely strong effects of pre-infection T cell population

growth rate on virus replication following experimental infection with a hybrid HIV-SHIV retrovirus.

Metapopulation Ecology. Populations must also be considered in a spatial context. Multiple populations of the same

organism or cell type can co-occur in the same time, but at different locations: thus, a metapopulation is a ‘population of

populations’ [47]. These spatially dispersed subpopulations occur in patches of suitable habitat surrounded by areas of

unsuitable or as-yet uninvaded habitat. Individual subpopulations are connected by the spatial movements of migrating

individuals, and thus any given subpopulation within the entire metapopulation can be reestablished and rescued from

extinction by colonization events from distant subpopulations [47]. Mittelbach [47] provides important examples of

metapopulation dynamics such as source–sink interactions that we consider to be potentially relevant to human host–

human microbiome interactions.

Community Ecology. A community is defined as a group of different organisms, species, or cell types that co-occur in the

same location and time. Community ecologists thus grapple with and attempt to predict the structure and dynamics of

multispecies ensembles that live within the same habitat, landscape or region [48]. For example, the human circulatory

system contains a complex community of differentiated blood cell types that have different cell architectures and func-

tions. Similarly, the human gut contains trillions of coexisting and often closely interacting microbes of different phylo-

genetic origins. Every human can be viewed as a unique set of microbial assemblages occupying different habitats across

the human body governed by the fundamental processes of community ecology [2]. We know relatively little about how

within-host microbial communities respond to local and regional factors that affect key processes such as host repro-

duction, resistance to novel microbes or microbial transmission rates [49]. However, among the multiple community

modules outlined by Holt and Dobson 48], we suggest that at least six kinds of interactions potentially may apply to

humans and their microbiome: food chain (a linearly arrayed, hierarchical network of consumers and their resources);

exploitative competition, also known as resource competition (in which two or more species compete directly for a growth-

limiting nutrients); interference competition, also known as contest competition (in which individuals interfere with the

resource acquisition and survival of other individuals, e.g. via the production of toxins); niche partitioning (in which two or

more species reduce the magnitude of their interspecific competition by specializing upon different resources); predation

on competing prey (in which the outcome of resource competition between two prey species is influenced by the presence

of a shared predator); apparent competition (the appearance of resource competition between two non-interacting prey

species that are differentially consumed by a shared predator); and keystone predation (in which a shared predator

facilitates the coexistence of prey species). Robinson et al. [50] have recently reviewed the ecology of host-associated

microbial communities, and Fierer et al. [51] have applied concepts developed by plant and animal ecologists to better

understand and predict the spatial and temporal patterns of human microbial communities. Explicit theoretical and

empirical tests of the hypothesis that principles of community ecology directly apply to human biomedicine also can be

found in [44, 52, 53].

Metacommunity Ecology. Just as the dispersal of individuals may link the dynamics of subpopulations that are separated

in space, dispersal across communities can link local communities into a larger metacommunity. Mittelbach [47] has

provided important examples of metacommunity dynamics such as competition-coexistence tradeoffs in patchy environ-

ments that we consider to be potentially relevant to human host–human microbiome interactions, and Holt [54] has

explored the dynamics of human pathogens in a biogeographical and landscape context.
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box 1 . continued

Ecosystem Ecology. The human host can be viewed as an ecosystem composed of interacting populations and

communities [3]. Similar to other kinds of ecosystems, the human body exhibits strong and predictable flows of energy

and resources, in this case, the inputs and outputs of energy and nutrients that are derived from ingested food and water.

Analogous to the differences that exist between pre- and postinvasion nutrient and energy dynamics in pathogen-invaded

terrestrial ecosystems [55, 56], pathogen-invaded human bodies can be expected to exhibit changes in nutrient and energy

dynamics that vary strongly with the intensity and outcome of infectious disease. Moreover, we suggest that the prin-

ciples of resource-ratio theory and ecological stoichiometry, which considers how the balance of energy and chemical

elements is influenced by organisms and their metabolic activities [57], will apply to the human host and its microbiome.

For example, the guts of infants fed breast milk without supplemental iron have been found to develop a microbial

community composed primarily of non-toxigenic Lactobacillus species; in contrast, infants fed iron-supplemented formula

developed a different intestinal community that included potentially toxigenic bacteria such as those belonging to the

genera Clostridium, Salmonella, and Staphylococcus [52].

Shared
limiting

resources

Microbe Microbe

Microbe

Host cell Host cell

Neutrophil H

H
H

H
H

iv. Predation 

Shared 
limiting 

resources 

Microbe 1 

Microbe 2 

Susceptible 
microbe 

Viral 
predator 

i. Resource competition 

iii. Antibiosis 

ii. Nutrient cross-feeding 

Microbe 1 

Microbe 2 

Microbe 1 

Susceptible 
microbe 

A B

i. Resource competition

iii. Predation via phagocytosis iv. Physicochemical changes

ii. Metabolite production and
   conversion

Host cell

Figure 1. Examples of internal and external factors that can lead to conditions associated with altered microbial communities (modified from Fig. 4 in [58]). A. Key

microbe–microbe interactions. Four important kinds of ecological interactions can strongly regulate the growth and population dynamics of a microbial community

residing in or upon a human host. (i) Resource competition. The ability of multiple microbial species to compete for growth-limiting resources such as the essential

nutrient glucose (red circles) may in part determine their local survival and population dynamics. Note that microbes can also compete for space and for docking

sites. (ii) Nutrient cross-feeding. Microbial species 1 produces an essential nutrient such as folate (orange circles) that is in turn consumed by and enables the

persistence of a co-resident auxotrophic species (Microbe 2) that requires this resource for growth. (iii) Antibiosis. One microbial species or strain (Microbe 1) may

produce an antibiotic (yellow triangles) that is excreted and inhibits or kills another susceptible microorganism (Microbe 2). (iv) Predation. Attacks by a predator (in

this example, a bacteriophage virus) results in the infection and death of susceptible prey (in this case, a gut bacterium). (Inspired by and greatly revised from

Figure 1 by Seth and Taga [59]). B. Key microbe–host interactions. Four important kinds of ecological interactions can strongly influence the growth and population

dynamics of interacting microbial and host cells. (i) Resource competition. Members of the host’s resident microbiome may compete with host cells for growth-

limiting resources such as the essential nutrient glucose (red circles). (ii) Metabolite production, conversion and nutrient cross-feeding. One cell type (in this case, the

host cell) may produce an essential resource (orange circles) which is then consumed and metabolized to a new metabolite by microbial cells; this microbial

metabolite (purple circles) is excreted and is subsequently consumed and used by host cells. Microorganisms can generate metabolites and bacterial compo-

nents, either of which can interact with receptors on host cells, or have other pharmacological effects on multiple host pathways. (iii) Predation. Predation of

microbial cells (black rectangle) may occur by phagocytic host cells. (iv) Physicochemical changes. Microbial cells may excrete non-nutrient metabolic products (in

this case, protons) that can alter the local environment and influence the growth and reproduction of host cells. (Inspired by and greatly revised from Figure 1 by

Seth and Taga [59]).
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toxin A and B proteins which lead to Clostridium

difficile colitis) with broader systems-based

approaches (e.g. a focus on ecological responses

of the gut microbial community during C. difficile

infection) to better understand the human

microbiome’s contributions to health and disease.

THE HUMAN MICROBIOME IN HEALTH
AND DISEASE

The human–microbe partnership has coevolved and

coadapted into a remarkably stable and diverse bio-

logical ecosystem [60, 61], in which the abundance of

resident microbial cells exceeds that of our own body

cells by approximately 3- to 10-fold [62]. These host-

associated microorganisms provide vital ecosystem

services that include food processing and digestion

[61]; production of vitamins [63]; modulation of epi-

thelial barriers [64]; immune system development

and response [65–67]; and defense against invading

microbial pathogens [68–70]. The microbiome has

been suggested to play a role in modulating behav-

ior, cognition and mood [71, 72].

The community structure and activity of microbial

assemblages can vary strongly, both across different

sites on an individual body and across different

human populations, diets and health conditions

[63, 73–77]. While it is widely accepted that infants

receive their first major inoculation of microorgan-

isms during the birth process, recent research sug-

gests that initial microbial exposure may occur prior

to birth [58, 78, 79]. Both the method of delivery and

subsequent environmental exposures (e.g. breast-

feeding, skin-to-skin contact between mother and

newborn, level of early antibiotic exposure, diseases

and childhood diet) reshape the initial microbial com-

munity structure, and over time act to establish the

microbiota that are characteristic of adults [80–86].

The human microbiome is characterized by a net-

work of microbe–microbe and microbe–host inter-

actions that is typically resistant to modest

fluctuations in diet, hormones, immune response

and invasions by pathogenic and non-pathogenic

microbes [87–89]. Nonetheless, strong perturb-

ations such as treatment with antibiotics can lead

to profound changes in microbial community struc-

ture from which the microbiome sometimes never

completely recovers and can have a substantial in-

fluence on human health [90–92]. With the exception

of C. difficile-associated colitis, the instigating fac-

tors that lead to diseases and conditions associated

with altered microbial communities are poorly

understood. Examples of potential ecological inter-

actions that can occur between the microbial com-

ponents of the human microbiome and its host are

illustrated in Fig. 1.

Culture-independent methods, which permit dir-

ect analysis of DNA from a sample rather than

cultured microorganisms, enable investigations of

many aspects of microbial communities inhabiting

the human body. The evolution of knowledge and

technology in ecology, microbiology, biochemistry,

immunology as well as other fields makes integra-

tion of these disciplines with medicine a natural next

step. In the four sections later, we have chosen to

focus more detailed discussion on the clinical rele-

vance of the gut microbiota, but similar principles

can be applied to other human body sites where mi-

crobe–microbe and microbe–host interactions can

impact health and disease. We also acknowledge

that the microbiota of the gut can potentially modu-

late mental health, immunity and many other clinic-

ally relevant issues in human medicine. However,

these additional issues are not reviewed here.

ANTIBIOTICS PERTURB THE GUT
MICROBIOME

Historically, medical microbiology has focused pri-

marily on the eradication of pathogens. Common

medical practices include the prescription of antibi-

otics to treat bacterial infections. However, extended

use of antibiotics unintentionally perturbs the com-

position of the human microbiota by killing off indi-

genous bacteria in addition to pathogens [93]. The

removal of indigenous microorganisms invariably af-

fects community composition and the provision of

beneficial ecosystem services to humans. Although

broad-spectrum antibiotics have saved countless

lives and are a necessary tool in fighting off harmful

infections, they also select for resistant bacteria [94],

increase horizontal gene transfer (which can lead to

the spread of antibiotic resistance-associated genes)

[95], and are likely to alter microbial physiology and

behavior by acting as signaling molecules [96].

During microbial succession following antibiotic

treatment, opportunistic pathogens can easily colon-

ize the human body and proliferate without facing

intense competition for resources from other mem-

bers of the local microbial community [97]. Such op-

portunists include C. difficile, which commonly

appears in secondary infections in hospital patients

previously given antibiotic treatments [98–100].

Antibiotics can significantly influence the
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composition and function of the human microbiota;

the implications of these changes and the ability of

the community to resist change or rebound (resili-

ence) are still not fully understood.

Current clinical approaches to ameliorate recur-

rent C. difficile infections include reintroducing

microorganisms from a healthy individual to the pa-

tient’s perturbed microbiome via the provision of

probiotics and/or fecal microbiota transplants that

amend a C. difficile-colonized patient’s gut with

microbiota from a non-diseased donor [100]. Both

of these therapeutic approaches involve deliberate

ecological manipulations of the gut ecosystem.

Although the use of probiotics has shown limited

success in treating C. difficile infections, particularly

in patients with recurrent disease [101], fecal micro-

biota transplants, in contrast, can result in a dra-

matic decrease in the symptoms of C. difficile in

patients with chronic recurrent disease and provide

strong empirical support for fecal microbiota trans-

plants as a novel therapy [102, 103]. Moreover, fecal

microbiota transplants are being considered for ap-

proval by the U.S. Food and Drug Administration

[102–105], a compelling reason for this ecological

approach to be introduced to nascent medical

professionals.

OBESITY, METABOLIC DISORDERS AND
INFLAMMATORY DISEASES

Obesity affects 35% of American adults and ac-

counts for 10% of annual U.S. medical expenses

[106]. While human genetics, diet and environment

all strongly influence the incidence of obesity, a dec-

ade of research suggests that the gut microbiome

may also play a prominent role [107–109]. For ex-

ample, gut microbiota transplantation trials in

humans found that obese volunteers who received

a lean donor microbiota exhibited improved insulin

sensitivity over 6-week post-transplant period [110].

In addition, increasing evidence points to the pres-

ence of the inflammation-inducing microorganisms

in obese individuals, and it has been hypothesized

that the development of obesity and metabolic dis-

orders may be linked to chronic gut inflammation

[111–113]. Chronic inflammation is at the root of

different conditions, including allergies, periodon-

titis and autoimmune disorders. Inflammation is,

therefore, a common problem in almost every

branch of medicine, and as such, it is crucial to rec-

ognize and understand the ecological processes that

can lead to altered microbial community compos-

ition and function.

Just as gut microbes have evolved in the nutri-

tional environment of the human intestine, human

evolution has been driven by the services that gut

microbes provide to health, such as immune system

regulation, metabolism and defense against patho-

gen invasion. Thus, modulations to the gut micro-

bial composition that jeopardize these services

could adversely affect human health. Because modi-

fications in diet have been shown to rapidly alter

microbial community composition [114], diet ma-

nipulation could help treat a number of different

metabolic disorders, including inflammatory bowel

diseases, obesity and kwashiorkor, a maladaptive

phenotype of malnutrition common in the develop-

ing world [115]. Standard undergraduate microbiol-

ogy courses delve into cell physiology and

metabolism of microorganisms, topics essential to

understanding how our gut microbiota functions

and responds to external outputs. Adding instruc-

tional material related to microbial community com-

position and function is an important first step

toward understanding how nutrition and supple-

ments could potentially aid in treatment of meta-

bolic disorders.

POTENTIAL ROLE OF GUT MICROBIOTA
IN CANCER DEVELOPMENT

Formal inclusion of the concepts of microbe–mi-

crobe and microbe–host interactions during the pre-

medical education, as well as microbial physiology

and metabolism, would help to encourage phys-

icians to search for effective methods to impede or

prevent microbe-associated cancers. Carcinogens

and risk factors for cancer exist within the human

microbiome, and cancers induced by microorgan-

isms account for 20% of all fatal cancers in humans

[116]. Most known microbially induced cancers are

caused by human papilloma viruses, hepatitis B and

C viruses and the bacterium Helicobacter pylori

[117–119]. Recently, Zackular et al. [120, 121] have

shown that specific microbial communities can drive

tumor formation in the colon and that these

communities can serve as early biomarkers of tumors.

Cancer is a complex, multifactorial disease and its

susceptibility is highly dependent on interactions

between human cells and their surrounding environ-

ment. Research suggests that microorganisms can

potentially modulate tumor growth via three major

processes: (i) by metabolizing dietary nutrients into
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carcinogens or tumor-suppression agents [122,

123]; (ii) by inducing or suppressing inflammation

[124–128]; and (iii) by causing DNA damage to host

cells [129]. It is worth noting that while many foods

have been associated with a heightened risk of can-

cer, it is the resident microbial community that ac-

tively converts them into compounds that can cause

DNA damage or inflammation of host tissues [130].

For example, gut microbes produce DNA-damaging

compounds via fermentation, which may provide the

link between the previously established association

of red meat consumption and cancer development

[122, 130–132]. Likewise, it has been found that com-

mensal Clostridium species which, metabolize pri-

mary bile acids into carcinogenic deoxycholic acid

(DCA), may contribute to the oncogenesis of colo-

rectal and liver cancers [123, 133]. Although antibi-

otics could theoretically eliminate clostridia that

synthesize the unfavorable DCA, tumor suppression

was also accomplished in mouse models by inhibit-

ing enzymes in the DCA metabolic pathway [123].

Inflammation triggered by microorganisms is not

only a necessary defense mechanism against patho-

gens but also causes significant damage to host cells

and DNA by releasing high amounts of inflamma-

tory signaling molecules and reactive oxygen and

nitrogen species [124, 127]. Furthermore, inflamma-

tion and cancer are complex processes under the

control of many factors, and the underlying mechan-

isms of their interplay remain obscured. The recruit-

ment of leukocytes, lymphocytes and other

inflammatory cells to the site of inflammation re-

sults in the release of growth factors and cytokines

that could contribute to the progression of tumors

by stimulating cell proliferation, differentiation and

vascularization [33, 124, 127, 134].

Formal inclusion of the concepts of microbe–mi-

crobe and microbe–host interactions, as well as mi-

crobial physiology and metabolism during the

premedical education would encourage physicians

to search for effective methods to impede microbial

carcinogen metabolism. For example, negative con-

sequences of commensal microbial metabolism

may be better mitigated by targeting specific micro-

bial enzymes and cofactors through selective inhibi-

tors in combination with cancer drugs [135]. It is

important to note, however, that the biology behind

the microbe–host interaction in the cancer develop-

ment is complex. For example, while H. pylori is a

causative agent of gastric cancer, it might have a

protective role in esophageal cancer [136, 137].

We stress that our discussion of the human

microbiome’s role in cancer has neither touched

on the role that commensal microbes play in the

metabolism of compounds that reduce the risk of

cancers nor explained how commensal microbes

might influence inflammation or modify the efficacy

of chemotherapeutic agents. However, it does serve

to help demonstrate the potential benefits of a para-

digm shift in the way premedical and medical stu-

dents are educated about human-associated

microbes and how cancer is studied and treated.

GUT MICROBIOME EFFECTS ON DRUG
PHARMACOKINETICS

The human-associated microbiota also possess di-

verse metabolic pathways that allow them to directly

or indirectly metabolize xenobiotic substrates.

Currently, gut microorganisms are known to modu-

late the metabolism of more than 40 pharmaceutical

compounds [138, 139]. For example, Clostridium

sporogenes plays an important role in reductive me-

tabolism of the anti-seizure drug zonisamide [140],

while Eggerthella lenta can convert the cardiac glyco-

side digoxin into an inactive form [138, 141, 142].

Substrate competition between somatic and micro-

bial cells in the gut can also lead to undesirable toxin

buildup. For example, anaerobic taxa present in rat

feces can convert the analgesic phenacetin into a

toxic metabolite associated with methemoglobin-

emia and nephritis [143]. Furthermore, microbial

ß-glucuronidases convert a detoxified species of

the cancer drug irinotecan back into its active form,

facilitating drug toxicity [144]. Microbial metabolites

may also serve as competitive inhibitors to human

enzymes; this is the case with the popular over-the-

counter analgesic acetaminophen. In individuals

whose gut microbiota produce high levels of p-cre-

sol, the ability to detoxify acetaminophen is reduced

[145]. The microbial metabolite p-cresol competi-

tively inhibits a human sulfotransferase, which sul-

fonates acetaminophen into a non-toxic derivative.

The microbial metabolite p-cresol may competitively

inhibit human sulfotransferases. Unsulfonated or

unglucuronidated acetaminophen can be oxidized

by the cytochrome P450 system and potentially other

oxidative enzymes into hepatotoxic metabolites as

reviewed in [146].

It is important to view humans in intimate asso-

ciation with their microbiota, as these microorgan-

isms likely hold the key that explains some of the

observed person-to-person variability in drug
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metabolism and responses. One way to prevent

drug toxicity is to screen for the key microorganisms

or microbial genes that are involved in drug metab-

olism. For example, urinalysis can detect production

of bacterial metabolites such as p-cresol, the metab-

olite implicated in acetaminophen hepatotoxicity

[145]. Community sequencing platforms would be

used to screen for the abundance of Clostridium

sporogenes and Bifidobacterium bifidum, the taxa that

primarily reduce zonisamide into its inactive form

[140]. Matrix-assisted laser desorption/ionization-

time of flight (MALDI-TOF) and liquid chromatog-

raphy/mass spectrometry could detect protein

levels of microbial ß-glucuronidases or microbial

zonisamide reductases. Another strategy to predict

microbial drug transformations would be to admin-

ister a tiny dose of the drug and then to analyse pa-

tient’s urine or stool samples for microbial

derivatives. Physicians could also consider alternate

methods of drug administration that result in min-

imal to no direct contact with the gut microbiome. In

one study, inactivated microbial byproducts of di-

goxin were less abundant in patients with intraven-

ous delivery rather than ingestion [141, 147],

perhaps because the intravenous delivery pathway

of digoxin largely bypassed the intestinal microbiota.

We suggest that a solid foundation in microbial

ecology during premedical education would encour-

age physicians to be aware of potential microbial

influences on drug metabolism and to search for

effective means to activate or de-activate microbial

metabolisms that interfere with drug effectiveness in

their patients. This valuable microbiological per-

spective on drug administration could assist in the

evaluation of drug activity and efficacy and help to

prevent or diminish undesirable drug toxicity.

CONCLUSIONS

Our resident microbiota play important roles in

homeostatic physiology and a host of chronic dis-

ease conditions. Nearly all of these interactions are

mediated through energy and metabolite exchange

between human and microbial cells, and through the

modulation of human and microbial gene expres-

sion [91]. Physicians need access to specific, quan-

titative metrics that can objectively be used to assess

their patients’ health state (e.g. urinalyses; blood cell

counts and serum chemistry; concentrations of key

enzymes and hormones in tissues and fluids).

Physicians also may strongly benefit from analysing

their patients’ microbiome for biomarkers that can

be used to identify microbe-associated health con-

ditions. For example, we anticipate that microbial

methods such as community profiling,

metagenomics, RNA sequencing, and MALDI-TOF

spectrometry almost certainly will become standard

components of diagnostic testing. These important

new tools provide doctors with profiles of human

microbiome composition and gene expression that

can, in turn, be used for disease analysis, tracking

and treatment. We strongly believe that an improved

knowledge of microbiological concepts will contrib-

ute to the improved diagnosis and treatment of

human diseases in future.

In this review, we therefore strongly advocate for

the inclusion of microbiology and ecology in pre-

medical curricula. As noted by Dienstag [148], ‘A sick

patient does not represent a biochemistry problem,

an anatomy problem, a genetics problem, or an im-

munology problem; rather, each person is the prod-

uct of myriad molecular, cellular, genetic,

environmental, and social influences that interact

in complex ways to determine health and disease’.

Premedical teaching should reflect this diversity and

should cut across multiple disciplines.

Although the influences of our microbiota on our

health are not yet fully understood, one thing is clear:

our bodies cannot be viewed independently of the

diverse and highly active microbial inhabitants that

interact with us. Because the gut microbiota has glo-

bal effects on human physiology, the relationship

between commensal microbes and the human body

is expansive. Although we currently know the most

about the gut microbiome and its effects on our

health, future studies of the microbiomes of the skin,

mouth and other body habitats are equally import-

ant. Whether they occur within the gut or elsewhere,

the ecological processes that mediate microbial spe-

cies richness or even the survival of just one micro-

bial taxon, can potentially affect human health.

Finally, we want to state that while work in the

human microbiome field is exciting and rapidly pro-

gressing, many studies are preliminary and focus on

model systems. Further work is required to demon-

strate the utility of basic microbiome research to

patient populations, another reason that clinicians

are such a critical and missing piece of the puzzle.

In our opinion, enhancing undergraduate micro-

biology and ecology coursework on premedical

tracks will provide health professionals with valuable

new insights into the human body as a partnership

with its microbial inhabitants. With these important

foundations in microbial ecology, future medical
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professionals can pursue clinical training in post-

graduate programs with perspectives that will allow

them to reassess and reevaluate traditional proto-

cols and treat their patients with foundational

microbiome research in mind. Why not start by

building a strong understanding and appreciation

of the human microbiome in the undergraduate

classroom as a standard part of the premedical

curricula?
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