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Abstract. Total score (TS) data is generated from composite scales consisting of several
questions/items, such as the Movement Disorder Society-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS). The analysis method that most fully uses the information gathered is
item response theory (IRT) models, but these are complex and require item-level data which
may not be available. Therefore, the TS is commonly analysed with standard continuous
variable (CV) models, which do not respect the bounded nature of data. Bounded integer
(BI) models do respect the data nature but are not as extensively researched. Mixed models
for repeated measures (MMRM) are an alternative that requires few assumptions and
handles dropout without bias. If an IRT model exists, the expected mean and standard
deviation of TS can be computed through IRT-informed functions—which allows CV and BI
models to estimate parameters on the IRT scale. The fit, performance on external data and
parameter precision (when applicable) of CV, BI and MMRM to analyse simulated TS data
from the MDS-UPDRS motor subscale are investigated in this work. All models provided
accurate predictions and residuals without trends, but the fit of CV and BI models was
improved by IRT-informed functions. The IRT-informed BI model had more precise
parameter estimates than the IRT-informed CV model. The IRT-informed models also had
the best performance on external data, while the MMRM model was worst. In conclusion, (1)
IRT-informed functions improve TS analyses and (2) IRT-informed BI models had more
precise IRT parameter estimates than IRT-informed CV models.

KEY WORDS: composite scale data; total score data; bounded integer model; mixed models for
repeated measures; IRT-informed total score analysis.

BACKGROUND

Composite scale data is made up of many questions/
items with categorical responses that can be summed up
through an algorithm into a total score (TS), which is discrete
and bounded. Parkinson’s disease is a therapeutic area where
no reliable biomarker exists to monitor disease progression
and treatment efficacy. Instead, composite scales designed for
diagnosis are used for these purposes.

Item response theory (IRT) models make use of item-
level information; therefore, well-constructed IRT models are
considered the most informative way of analysing such data.
They map the disease severity to one or several latent
variable(s) (Ψ). However, they are complex to develop, may
be difficult to estimate due to a large number of parameters,

may take long time to run and sometimes the item-level data
is unavailable. The modeller can then turn to alternative
models: continuous variable (CV), bounded integer (BI) (1)
or less mechanistic models such as mixed models for repeated
measures (MMRM).

Different models have different strengths and weak-
nesses; CV models are commonplace and easy to implement,
but they do not respect the scale boundaries nor the discrete
nature of the TS data; BI models respect the boundaries and
data nature by operating on a latent variable scale (Z) but
have not been used as extensively; MMRM is an appropriate
alternative to analysis of (co)variance (ANOVA/ANCOVA)
in the case of missing data (2–4), where few assumptions need
to be made about the response, but requires many parameters
to be estimated and the models do not lend themselves to
extrapolation. Beta regression (5), an alternative to standard
Gaussian CV models, is sometimes used for bounded
outcomes (6), which allows for flexible distributions (J- or
U-shaped) (7–12). However, this requires a transformation of
the data, and besides, the transformation is onto the open
interval (0,1) so that the boundaries are not included, which is
typically achieved through Y∗ = (Y ∙ (n − 1) + 0.5)/n, where n is
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the sample size (5). The choice of transformation or
correction factor has a large impact on the data at or close
to the boundaries, and beta regression has been shown to be
statistically non-rigorous (13) and behaves poorly at the
boundaries (14). Logit transformation (15) is another option
to constrain an outcome to (0,1), which also faces issues at the
boundary since these are only asymptotes.

If an IRT model exists for the scale in question, IRT-
informed functions of disease progression and standard
deviation (SD) can be computed through the item character-
istic curves. With these link functions, the goodness-of-fit of
CV and BI models for TS analyses can be improved, the
latent variable parameters for disease severity of an IRT
model can be captured and the relative information of
different model types can be compared (Wellhagen GJ,
Ueckert S, Kjellsson MC, Karlsson MO. An item response
theory-informed strategy to model total score data from
composite scales. Forthcoming 2020).

Comparisons of MMRM and CV models have been
performed on TS data within the field of Alzheimer’s disease
(16,17). It was found that MMRM models are often
overparameterised but provide tighter confidence intervals
around treatment effects. Since treatment effects are often
the primary interest in the late-stage drug development, this is
an appealing option to get more certain predictions of drug
effect sizes.

In this work, we illustrate the strengths and weaknesses
of CV, BI and MMRM models to analyse TS data in a phase 3
clinical trial setting in Parkinson’s disease via simulations
from an IRT model. The IRT-informed functions are also
evaluated in CV and BI models to improve fit, increase
precision and reduce bias of IRT parameters. Also, the
precision and bias in the drug effect at end-of-treatment is
investigated.

METHODS

Simulation Model

A previously published IRT model (18) was used to
simulate MDS-UPDRS motor data during 42 months, across
10 visits. AWeibull dropout model was added, see Eqs. (1-2):

ρ ¼ θ1e−θ2
t
12

P tð Þ ¼ 1−e− ln 2ð Þ tρð Þθ3
(

ð1� 2Þ

where ρ is the scale factor, θ1 is the baseline mean time to
dropout (120 months), θ2 is the hazard ratio for the time in
the study (0.03, i.e. ~ 3% per year), θ3 is the shape factor (set
to 2), t is time in months and P(t) is then the resulting
probability of dropping out at time t. The baseline hazard was
also associated with an inter-individual variability (IIV)
(proportional with variance: ω2 = 0.25). The resulting
dropout rate (~ 15%) was similar to previously reported in
studies of at least 10 weeks (19).

The disease progression was assumed to be linear on the
latent variable scale, as was reported in the published IRT
model (18).

Simulation Scenarios

Four different populations were simulated:

1. Relatively healthy (Ψbaseline = 0) with slow disease
progression (slope = 0.3/year)

2. Relatively healthy with fast disease progression
(slope = 0.6/year)

3. Relatively ill (Ψbaseline = 1.5) with slow disease pro-
gression (slope = 0.3/year)

4. Relatively ill with fast disease progression (slope = 0.6/
year)

For each population, three different kinds of drug effects
were implemented vs. placebo:

a. A disease-modifying effect of 30% reduction of the
slope

1 A symptomatic effect, e.g. offset, on the latent variable
with a reduction of 0.315 and 0.63, for patients with
slow and fast progression, respectively

2 A combination of (a) and (b) with 15% slope
reduction and a reduction of 0.1575 and 0.315, for
patients with slow and fast progression, respectively

The baseline and slope had additive IIVs with ω2 = 0.5
and ω2 = 0.025 respectively, while the drug effects all had
proportional IIVs with ω2 = 0.05. All drug effects were
titrated such that they would result in the same absolute
difference to placebo at month 42, independent of the drug
effect being disease-modifying or symptomatic and patients
having a high or low baseline: a difference of 0.315 or 0.63 for
patients with slow or fast disease progression, respectively.
Drug effects came into act immediately post-baseline. For
each scenario (4 × 3 = 12), 100 simulations were run, totalling
1200 studies.

A validation data set containing 1000 individuals (1:1
design) at 10 occasions each (with dropout) was also
simulated for each simulation scenario.

Titration of Study Size

The power was titrated to be the same in all studies. In
each of the 12 simulation scenarios, the number of individuals
needed per treatment group to identify a drug effect with
80% power at a 5% significance level at 42 months was
calculated and rounded up to the nearest 5. A 1:1 parallel
design placebo-controlled trial with n/arm set to the titrated
value was then analysed for each simulation number.

Estimation Models

The simulated data were analysed once with each of five
different models: (1) standard CV (S-CV), (2) IRT-informed
CV (I-CV), (3) standard BI (S-BI), (4) IRT-informed BI (I-
BI) and (5) MMRM with 1st-order autoregressive residual
correlation model (AR1). The definitions for all nonlinear
mixed-effects (NLME) models are the same as in (Wellhagen
GJ, Ueckert S, Kjellsson MC, Karlsson MO. An item
response theory-informed strategy to model total score data
from composite scales. Forthcoming 2020), while the MMRM
model is only described here.

The AAPS Journal (2021) 23: 99 Page 2 of 10



Continuous Variable Models

In the standard CV model (S-CV), the observation j for
subject i at time tij is described through:

Yij ¼ f θ;ηi; tij;Xi
� �þ εij

ηi∼N 0;ω2� �
εij∼N 0;σ2� �

where θ is the fixed effect parameters, ηi is the random effects
of the inter-individual, Xi is the covariates, εij is the residual
unexplained variability (RUV), ω2 is the variance of the IIV
and σ2 the variance of the RUV.

The fully IRT-informed CV model (I-CV) is expressed
as:

Ψij ¼ h θ; ηi; tij;Xi
� �

Yij ¼ pn1 Ψij
� �þ εij � pn2 Ψij

� �
ηi∼N 0;ω2� �
εij∼N 0; 1ð Þ

where Ψij is a latent variable described by the nonlinear
function h(·) and pn1 as well as pn2 are predetermined
polynomials (Wellhagen GJ, Ueckert S, Kjellsson MC,
Karlsson MO. An item response theory-informed strategy to
model total score data from composite scales. Forthcoming
2020). The other variables maintain their definition from
above.

Bounded Integer Models

The standard BI model (S-BI) is a discrete data model,
where the probability of an individual i to have the score k at
time tij is:

P Yij ¼ k
� � ¼ ϕ

Zk
n
− f θ; ηi; tij;Xi
� �

g σ;ηi; tij;Xi
� �

 !
−ϕ

Zk−1
n
− f θ; ηi; tij;Xi
� �

g σ;ηi; tij;Xi
� �

 !

ηi∼N 0;ω2� �

where ϕ is the cumulative distribution function for the
standard normal distribution, Zk/n and Z(k-1)/n are the cut
points between categories k and k-1 defined through the
probit function for an n-category scale, f(·) is the function
for the mean and g(·) the function for the variance on the
probit scale. For all BI models, the special cases for the
first and last categories (k = 1, k = n) apply:

P Yij ¼ 1
� � ¼ ϕ

Z1
n
− f θ; ηi; tij;Xi
� �

g σ; ηi; tij;Xi
� �

 !

P Yij ¼ n
� � ¼ 1−ϕ

Zn−1
n
− f θ; ηi; tij;Xi
� �

g σ; ηi; tij;Xi
� �

 !

The fully IRT-informed BI model (I-BI) is expressed as:

Ψij ¼ h Θ; ηi; tij;Xi
� �

P Yij ¼ k
� � ¼ ϕ

Zk
n
−pn3 Ψij

� �
pn4 Ψ ij
� �

 !
−ϕ

Zk−1
n
−pn3 Ψij

� �
pn4 Ψ ij
� �

 !

ηi∼N 0;ω2� �

where pn3 as well as pn4 are predetermined polynomials
(distinct from pn1 and pn2).

Mixed Models for Repeated Measures

The MMRM model is defined as:

Yijm ¼ θjm þ ηi þ εij
ηi∼N 0;ω2� �
εij∼N 0;σ j

2� �

where Yijm is the response of individual i at time j and dose
arm m, θjm the fixed effect, ηi the random effect of the inter-
individual variability (IIV), ω2 the variance of the IIV, εij the
residual unexplained variability (RUV) and σj

2 the variance
of the RUV. A 1st-order residual correlation was assumed.
Two alternative models were tested: either the variance was
allowed to vary between the dose arms (σm

2, 2 parameters) or
between each visit (σj

2, 10 parameters).

Evaluation Metrics

Precision and accuracy of estimated parameters were
investigated for the two IRT-informed models (I-CV and I-
BI), where the parameters were expressed on the same scale
as the IRT model, i.e. on the latent variable Ψ. The precision
and accuracy were illustrated by the distribution of the
parameter estimates.

Model fit was evaluated through Akaike information
criterion (AIC), computed from Objective Function Value
(OFV) as in Eq. (3):

AIC ¼ OFVþ 2p ð3Þ

where p is the number of parameters (including IIVs)
estimated in the model. The largest model was the MMRM
with variance per time point, while the smallest were the I-
CV and I-BI since no SD was estimated then. As an example,
given a symptomatic drug effect, the S-CV and S-BI models
had a total of 8 parameters, the I-CV and I-BI had 6, while
the MMRM models had 26 and 34, respectively. The AIC for
the S-CV model was used as a reference to compute relative
AIC for all other models. The performance on external data
of all estimation models, with the final parameter estimates
fixed, was also evaluated in the validation data set—via
relative OFV since no parameters were estimated.

The goodness-of-fit was also assessed by assessing the
proportion of observations, with a residual outside ± 2 SD.
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Under a standardised residual following N(0,1), this number
should be 5%. Different measurements of residuals were used
for different models due to the nature of the models. For the
CV and MMRM models (continuous models), the conditional
weighted residual (CWRES) (20) was used and for the BI
models (likelihood models), the Pearson individual weighted
residual (PIWRES) was used (21). PIWRES should be a
standardised residual (N(0,1)).

Lastly, the precision and bias of the predicted drug effect
at the end-of-study were evaluated with the final parameter
estimates; the placebo-corrected prediction of TS (ΔTS) was
simulated for each scenario with 500 individuals in a
crossover design.

Software

The CV and BI models were evaluated through nonlin-
ear mixed-effects modelling with NONMEM version 7.4
(ICON Development Solutions, Ellicott City, MD), executed
through PsN version 4.9 (22,23). The Laplacian estimation
method with η-ε interaction was used for all the CV and
MMRM models, while BI models were estimated with
stochastic approximation and expectation maximisation
(SAEM). Importance sampling with an expectation step was
added after the estimation step to generate comparable OFVs
for all models. Graphics were made with R version 3.6.2 (24)
and tidyverse (25). The piraid (26) package was used to
create the IRT-informed functions, including the
predetermined polynomials (pn1-pn4) and associated
NONMEM control streams.

RESULTS

The sample size, calibrated to ca 80% power, varied from
25 to 80 subjects/arm depending on the simulation scenario.
The lowest sample size was associated with a relatively
healthy population with fast disease progression and the
highest sample size was needed for the relatively ill popula-
tion with slow disease progression. In Supplemental Table SI,
sample sizes for all the scenarios are tabulated.

For the two MMRM models assessed, a different
variance per arm or per time point, the average AIC was
always lower for the larger, with variance per time point,
model (results not shown). The MMRM models were also
evaluated in R (results not shown), where an additional
model, with unconstrained residual correlation matrix, was
tested. This model did however not improve the fit compared
to the AR1 model. Hence, the MMRM model with AR1 and
variance per time was chosen for further comparison.

In Fig. 1, the averages of the observed and predicted
total score for all models are shown for one simulation to
exemplify: a symptomatic drug effect. There was no sign of
bias and the precision was similar for all models. Similar plots
with examples for the other drug effects are shown in
Supplemental Fig. S1 and Supplemental Fig. S2.

In Fig. 2 and Supplemental Fig. S3, the distributions of
the baseline and slope parameters in the IRT-informed
models are shown. Neither of the models showed a strong
bias in these parameter estimates; however, the I-BI model
has a few cases of overprediction of the slope—when
simultaneously showing overpredicted disease-modifying

drug effect parameter (Supplemental Fig. S6). The I-BI
model had more precise estimates of the baseline parameters
than the I-CV model. The relative bias of the IIV for these
parameters was comparable, shown in Supplemental Fig. S4
and Supplemental Fig. S5.

In Fig. 3 and Supplemental Fig. 6, the distributions of the
symptomatic and disease-modifying drug effect parameters in
the IRT-informed models are shown. The precision of the
estimates from the IRT-informed models was similar, but the
I-CV model tended to underpredict the symptomatic drug
effect parameter when the disease progression was slow, with
a more pronounced bias in the combined drug effect. As seen
in Supplemental Fig. S7 and Supplemental Fig. S8, both
models showed signs of positive bias in estimating the
variance of IIV; however, the I-BI model gave considerably
more precise estimates. The underprediction may also be a
result of these IIVs being implemented lognormally, which
means that the median is lower than the mean.

In Fig. 4, the residual diagnostic for all models across all
visits is shown for one example: a symptomatic drug effect. It
can be seen that the BI models typically show less than 5%
residuals outside 2 standard deviations, while the CV and
MMRM models target this number. There is no strong
temporal trend, but there are more outliers at the end of
the study. Similar plots for the other drug effects are shown in
Supplemental Fig. S9 and Supplemental Fig. S10.

In Fig. 5, the AIC of all models relative to the S-CV
model is shown. The IRT-informed models (I-CV and I-BI)
were superior to the standard models and on par with each
other. The S-BI offered a better fit than the S-CV model as
judged by the relative AIC. The MMRM model had the
poorest fit. In Fig. 6, the relative OFV of all models (again
compared to the S-CV model) to external data with the final
estimates is shown. The same trends were visible there: IRT-
informed models had the best fit and MMRM the worst.

In Fig. 7, the predicted and true difference from placebo
at end-of-study is shown. Mostly, the predictions were close to
the true values. The MMRM model always had unbiased
predictions, but they were the most imprecise of all, while the
S-CV had the most biased predictions. The I-CV model,
however, showed no signs of bias. The S-BI and I-BI had a
few cases of small bias. It should be noted that the BI models
are the only models that predict real life-like data: as integer
values.

DISCUSSION

All the investigated models provided similar predictions,
but the possibility to use IRT-informed functions provided
improvements in both goodness-of-fit (AIC), due to a better
description of the disease progression and SD, as well as
performance on external data. In addition, as the IRT-
informed functions transform the estimates of the model to
the IRT-disease progression scale, parameter estimates can be
compared between different model types. The I-CV model
was better than the I-BI model at predicting the size of the
drug effect without bias, while their respective precision was
similar.

For a modeller dealing with TS data, the purpose of the
analysis may lead to different model choices. If the goal is to
determine a statistical difference between two treatments at
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Fig. 1. Average and 95% prediction interval (PI) of observations and predictions at each time point for all models, following a symptomatic
drug effect for simulation number 1 of 100, stratified by population. The solid line represents the average of the observations and the shaded
area represents the PI of the observations. Points represent the average of the predictions for each model and error bars represent the PI of the
predictions for each model, with different colours. IRT, item response theory; I-BI, IRT-informed bounded integer model; I-CV, IRT-informed
continuous variable model; S-BI, standard bounded integer model; S-CV, standard continuous variable model; MMRM, mixed model for
repeated measures

Fig. 2. Distribution of the baseline parameter in IRT-informed models, stratified by drug effect and population. The dashed red line indicates
the true parameter value. IRT, item response theory; I-CV, IRT-informed continuous variable model; I-BI, IRT-informed bounded integer
model
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Fig. 3. Distribution of the symptomatic drug effect parameter in IRT-informed models, stratified by drug effect and population. The dashed red
line indicates the true parameter value. IRT, item response theory; I-CV, IRT-informed continuous variable model; I-BI, IRT-informed
bounded integer model

Fig. 4. Residual diagnostic showing the percent residuals outside ± 2 standard deviations for all models under a symptomatic drug effect,
stratified by population. Note that the y-axis has been cut for visibility. CWRES, conditional weighted residual; IRT, item response theory; I-BI,
IRT-informed bounded integer model; I-CV, IRT-informed continuous variable model; MMRM, mixed model for repeated measures;
PIWRES, Pearson individual weighted residual; S-BI, standard bounded integer model; S-CV, standard continuous variable model
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Fig. 5. Relative AIC of the investigated models, stratified by drug effect and population. The standard continuous variable (S-CV) model is
used as the reference model. Note that the y-axis has been cut for visibility. IRT, item response theory; I-BI, IRT-informed bounded integer
model; I-CV, IRT-informed continuous variable model; S-BI, standard bounded integer model; MMRM, mixed model for repeated measures

Fig. 6. Relative OFV of the investigated models on the validation data set, stratified by drug effect and population. The standard continuous
variable (S-CV) model is used as the reference model. Note that the y-axis has been cut for visibility. IRT, item response theory; I-BI, IRT-
informed bounded integer model; I-CV, IRT-informed continuous variable model; S-BI, standard bounded integer model; MMRM, mixed
model for repeated measures
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the end-of-study, an MMRM model might be the right choice
as it is unbiased and structurally simple. However, if anything
is to be said about the mechanistic properties of a system or if
the model will be used for clinical trial simulations, a full
longitudinal model (like CV or BI) should be chosen. The
standard BI model is an improvement over the standard CV
model, as it respects the bounded data nature and it also
allows the simulation of real life-like data. When adding IRT-
informed link functions, there was not as clear a difference
between I-CV and I-BI, but the simulation properties are still
the same. Also, it is then possible to combine information
from different model types. This could be valuable when
designing new clinical trials. However, the IRT-informed
models obviously require that there already exists an IRT
model for the scale, which may not always be the case. It
should also be a well-constructed IRT model; if it is
misspecified, then so will the IRT-informed models be too
since the link functions are exact. The pros and cons of the
models investigated in this work are summarised in Table I.

Coarsened grid or beta regression models could have
been investigated (15,27); coarsened grid models would likely
have similar properties to the BI model as they also map the
TS to a latent variable. Ordered categorical models could also
be applied to composite scale data, but they are parameter
heavy and cannot predict data categories not present in the
data. They do however respect the boundaries of TS data. In
scales with fewer categories one could entertain ordered
categorical models, but they are typically not considered for

Fig. 7. Predicted and true difference between drug and placebo at end-of-study, stratified by drug effect and population. The boxes represent
the distribution of differences across 100 predictions. The dashed red line indicates the true, simulated, average difference in 100 simulations.
Note that the y-axis has been cut for visibility. IRT, item response theory; I-BI, IRT-informed bounded integer model; I-CV, IRT-informed
continuous variable model; S-BI, standard bounded integer model; S-CV, standard continuous variable model; MMRM, mixed model for
repeated measures

Table I. The Pros and Cons of Different Methods of Total Score
Analysis

Model Pros Cons

S-CV Easy to implement Does not respect scale
boundaries nor data nature,
assumes homoscedastic SD

I-CV Better fit than S-CV, allows
to estimate IRT parameters,
unbiased predictions

Requires exist ing IRT
model, does not respect
data nature

S-BI Respects data nature and
s ca l e bounda r i e s , c an
simulate real life-like data

Assumes homoscedastic SD
(on Z scale)

I-BI Better fit than S-BI, respects
data nature and sca le
bounda r i e s , a l l ows to
estimate IRT parameters,
can simulate real life-like
data, better IRT parameter
precision than I-CV

Requires exist ing IRT
model

MMRM Unbiased, few mechanistic
assumptions needed, robust
to model misspecification

Man y p a r ame t e r s t o
estimate, does not respect
scale boundaries nor data
nature, cannot extrapolate

BI, bounded integer; CV, continuous variable; IRT, item response
theory; I-BI, IRT-informed BI; I-CV, IRT-informed CV; MMRM,
mixed models for repeated measures; Z, latent variable in BI model
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outcomes with more than maximally 10–20 categories. The
properties of a categorical MMRM model, which has been
described previously (28) but is not routinely used, would also
be highly interesting to explore.

The MMRM model provides a robust alternative where
no structural parameters except the mean at each time point
and the autoregressive parameters need to be estimated. This
means that they are robust to model misspecification.
MMRM models are inherently unbiased under dropout if
the correct (or an unconstrained) correlation structure is used
(2,29,30) and were also unbiased in this work—but had the
least precise predictions. Also, the fit was not as good as with
the other models in this comparison. This is likely because the
AR1 structure could be seen as a model misspecification, as it
does not offer the same flexibility as the nonlinear models
with IIV, especially IIV on SD. Also, since no slope or offset
parameter is estimated, it is not possible to directly make
inferences about drug effects in terms of these entities. Model
averaging across the investigated models, which is a possible
extension of this work, should have revealed the
misspecification of MMRM models by rendering low weights.
The MMRM models offer large flexibility with respect to the
time profile. Unconstrained correlation matrices are conven-
tional, while we used an AR1 matrix. However, both AR1
and unconstrained matrix models were evaluated in R and
provided a similar fit (results not shown). Notably, the AR1
model was much faster to run in NONMEM. We also
implemented an additive random effect in the model, which
does not constrain the predictions to be positive. We believe
this is the standard implementation that MMRM users would
adopt in statistical software since a lognormal distribution as
used in the S-CV model might not be easy to implement in
most software; however, the exponential model was also
evaluated in NONMEM (results not shown) with similar
results as the additive random effect.

As residuals are one important way to diagnose model
misspecification, the expected properties of residuals should
be known. For CV models, these have been studied
extensively while the discrete data models, like BI, are not
as well documented. In this work, we saw that the PIWRES
most often gave less than 5% outliers, defined as > ± 2 SD.
This may indicate that the behaviour of the PIWRES metric
does not follow that of the standard normal distribution,
where ~ 95% of the data should be within ± 2 SD and that
perhaps ± 1.5 SD is more reasonable to use with PIWRES, in
order to identify outliers or model misspecification. Alterna-
tively, simulation-based residuals such as normalised predic-
tion distribution errors (NPDE) (31) or quantile residuals
(32–34) could be considered, which rescale the residuals to a
normal (NPDE) or uniform (quantile) distribution.

The dropout model was only affected by time, and not by
disease severity, thus following a missing completely at
random (MCAR) mechanism. It is possible that patients
who experience severe symptoms of parkinsonism would be
more likely to drop out; however, no large differences in
dropout rates between treatment and placebo groups were
observed in the studies that formed the basis for the overall
dropout target of 15% (19). The MMRM models are valid
under missingness at random (MAR). If missingness was not
at random (MNAR), a model for the missingness would need
to be implemented in the analysis models to avoid bias and

imprecision, which can be done in the more mechanistic
models, but not in MMRM. This was however out of the
scope of this analysis. The amount of dropout also affects the
analysis: more dropouts would mean fewer individuals at the
end and hence more imprecise estimates for the MMRM
model, while the fully longitudinal models handle this
phenomenon better, at the cost of higher shrinkage.

We assumed a direct offset effect that was effective
immediately after baseline, a simple model, to clearly
illustrate the differences between the analysis models. Since
the analysis was based (and titrated to the same power via a t-
test) on the outcome at 42 months, this should have no impact
on the results. Also, the number of simulations could have
been greater than the 100 used here; however, it was
sufficient for detecting trends in the differences in precision
and bias between the investigated models.

CONCLUSIONS

There are many ways to model TS data, and their
respective strengths and weaknesses have been highlighted in
this work, along with recommendations for when to choose a
certain method. For unbiased statistical tests, MMRM
appears well suited, but the other methods were more precise
in their predictions. For simulations, NLME models, rather
than MMRM, need to be chosen. Standard CV models are
easy to implement, but BI models are the only ones that
respect the discrete data nature. The IRT-informed models (I-
CV and I-BI) models provided the best fit and also the best
performance on external data. Furthermore, the IRT link
functions allow IRT parameters to be retrieved with high
precision and low bias—especially in the I-BI model. This will
aid modellers analysing clinical trial data with total scores to
choose a fit-for purpose analysis method.
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