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The current clinical diagnosis of COVID-19 requires person-to-person contact, needs variable time to produce 

results, and is expensive. It is even inaccessible to the general population in some developing countries due to 

insufficient healthcare facilities. Hence, a low-cost, quick, and easily accessible solution for COVID-19 diagnosis is 

vital. This paper presents a study that involves developing an algorithm for automated and noninvasive diagnosis 

of COVID-19 using cough sound samples and a deep neural network. The cough sounds provide essential informa- 

tion about the behavior of glottis under different respiratory pathological conditions. Hence, the characteristics 

of cough sounds can identify respiratory diseases like COVID-19. The proposed algorithm consists of three main 

steps (a) extraction of acoustic features from the cough sound samples, (b) formation of a feature vector, and (c) 

classification of the cough sound samples using a deep neural network. The output from the proposed system 

provides a COVID-19 likelihood diagnosis. In this work, we consider three acoustic feature vectors, namely (a) 

time-domain, (b) frequency-domain, and (c) mixed-domain (i.e., a combination of features in both time-domain 

and frequency-domain). The performance of the proposed algorithm is evaluated using cough sound samples 

collected from healthy and COVID-19 patients. The results show that the proposed algorithm automatically de- 

tects COVID-19 cough sound samples with an overall accuracy of 89.2%, 97.5%, and 93.8% using time-domain, 

frequency-domain, and mixed-domain feature vectors, respectively. The proposed algorithm, coupled with its 

high accuracy, demonstrates that it can be used for quick identification or early screening of COVID-19. We also 

compare our results with that of some state-of-the-art works. 
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. Introduction 

According to the global database maintained by John Hopkins Uni-

ersity, more than 270 million COVID-19 (and its variants) cases and

.3 million deaths have been reported till December 13, 2021 [1] . So-

ial distancing, wearing masks, widespread testing, contact tracing, and

assive vaccination are all recommended by the World Health Organi-

ation (WHO) to reduce the spreading of this virus [2] . To date, reverse

ranscription-polymerase chain reaction (RT-PCR) is considered the gold

tandard for testing coronavirus [3] . However, the RT-PCR test requires

erson-to-person contact to administer, needs variable time to produce

esults, and is still unaffordable to most global populations. Sometimes,

t is unpleasant to the children. Not least, this test is not yet accessible

o the people living in remote areas, where medical facilities are scarce

4] . Alarmingly, the physicians suspect that the general people refuse

he COVID-19 test in fear of stigma [5] . 

Governments worldwide have initiated a free massive testing cam-

aign to stop the spreading of this virus, and this campaign is costing
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hem billions of dollars per day at the average rate of $23 per test [6] .

ence, easily accessible, quick, and affordable testing is essential to limit

he spreading of the virus. The COVID-19 detection method, using hu-

an audio signals, can play an important role here. 

Researchers and clinicians have suggested using the recordings of

peech, breathing, and cough sounds to detect various diseases. The

esults published in the literature show that the speech samples can

elp clinicians to detect several diseases, including asthma [7-10] ,

lzheimer’s disease [11-13] , Parkinson’s disease [14-16] , depression

17-19] , schizophrenia [20-22] , autism [23-24] , head or neck cancer

25] , and emotional expressiveness of breast cancer patients [26] . A

omprehensive survey on these works can be found in [27] . Among

hese diseases, respiratory diseases like asthma have some similarities

o COVID-19. An extensive investigation on the detection of asthma us-

ng audio signal processing can be found in [7-10] . These works show

hat asthma causes swollen and inflamed vocal folds, which do not vi-

rate appropriately during voice generation. Hence, the voice samples

f asthma patients differ from that of healthy (i.e., control) subjects. For
 Engineering, University of Windsor, Canada 
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xample, it is shown in [7] that asthmatic subjects show longer pauses

etween speech segments, produce fewer syllables per breath, and spend

 more significant percentage of time in voiceless ventilator activity than

heir healthy counterpart. 

Recently, researchers have been suggesting using cough sounds for

he early detection of the COVID-19. However, there are still some chal-

enges as the cough is also a symptom of 30 other diseases [28-29] .

ence, it is very challenging to discriminate the cough sound of the

OVID-19 patients from that of other patients. In [28] , the authors con-

idered three diseases: bronchitis, pertussis, and COVID-19. Investiga-

ion of 247 normal cough samples and 296 pathological samples was

erformed. The authors used a convolutional neural network (CNN)

o implement a binary classifier and a multiclass classifier. The binary

lassifier discriminates pathological cough sounds from normal cough

ounds, and the multiclass classifier categorizes the pathologies into

ne of the three pathology types. In a similar work [30] , the authors

onsidered bronchitis, bronchiolitis, and pertussis. They used a CNN to

iscriminate against these pathologies. 

Various human audio samples, namely, sustained vowel ‘/a/’, count-

ng (1-20), breathing, and cough samples, have been used in [31] . The

uthors considered nine acoustic voice features: spectral contrast, mel -

requency Cepstral Coefficients (MFCCs), spectral roll-off, spectral cen-

roid, mean square energy, polynomial fit, zero-crossing rate, spectral

andwidth, and spectral flatness. They used a random forest (RF) algo-

ithm to discriminate the COVID-19 samples from the control/healthy

amples, and they have achieved an accuracy of 66.74%. 

In [32] , the authors used large samples (5320 samples) selected from

he MIT open voice COVID-19 cough dataset [33] . They extracted the

FCC features from the cough sounds and classified them by using a

NN. The network consists of one Poisson biomarker layer and three

re-trained ResNet50s. The results showed that their proposed system

chieved an accuracy of 97%. 

Cough and breathing sounds have also been used in [34] . In that

ork, the authors used eleven acoustic features: RMS energy, spec-

ral centroid, roll-off frequencies, zero-crossing rate, MFCC, Δ-MFCC,

ˆ2-MFCC, tempo, duration onsets, and period. In addition, they used

GGish (a pre-trained CNN from Google) to classify the samples into

OVID-positive/non-COVID, COVID-positive with cough/non-COVID

ith cough, and COVID-positive with cough/non-COVID asthma with

ough. The achieved accuracy of that system was 80%, 82%, and 80%,

espectively, for the classification tasks mentioned above. 

In [35] , the authors used Computational Paralinguistic Challenge

COMPARE) [36] features and extended Geneva Minimalistic Acoustic

arameter Set (eGeMAPS) [37] to discriminate the COVID-19 samples

rom the healthy samples. These features were extracted by using the

penSMILE [38] tool kit. The voice samples were collected by using five

entences uttered by the patients. The authors classified the COVID-19

atients into three categories, namely, high, mild, and low. In that study,

hey used 260 samples, including 52 COVID-19 samples. The authors

ave used a support vector machine (SVM) and achieved an accuracy of

9%. 

Three acoustic feature sets have been used in [39] . The first one

as the COMPARE acoustic features, which were collected by using

he OpenSmile software. The second one was a combination of acous-

ic feature sets extracted by freely available software, PRAAT [40] and

IBROSA [41] . The third one was an acoustic feature set consisting of

024 embedded features extracted by a deep CNN. The samples used in

he investigation comprised of three vowels (i.e., ‘/a/’, ‘/s/’, and ‘/z/’),

ough sounds, six symptomatic questions, and counting from 50 to 80.

he authors have used the SVM with radial basis function (RBF) and RF

s the classifiers. Experimental results showed an average accuracy of

0% in discriminating the COVID-19 positive patients from the COVID-

9 negative patients based on the features extracted from the cough

ound and vowel ‘/a/’ recordings. They achieved even more accuracy

83%) by evaluating six symptomatic questions. 
2 
In [42] , the authors used voice features, namely, cepstral peak

rominence (CPP), harmonic-to-noise ratio (HNR), first and second har-

onic (H1H2), fundamental frequency and its variations (F0SD), Jitter,

himmer, and maximum phonation time (MPT) to discriminate the voice

amples of the COVID-19 patients from that of the healthy subjects. The

uthors collected the sustained vowel sample ‘/a/’ from 70 healthy and

4 COVID-19 patients of Persian speakers. They revealed significantly

igher F0SD, Jitter, shimmer, H1H2, and voice break numbers in the

OVID-19 patients than the control/healthy group. 

Vowels in ‘/ah/’, snoring consonants in ‘/z/’, cough sound, and

ounting samples from 50 to 80 have been used in [43] . The authors

ave used a recurrent neural network (RNN) based expert classifier in

ork. The authors have used three techniques: pre-training, bootstrap-

ing, and regularization to avoid the over-fitting problem of RNN. They

lso used the leave-one-speaker-out validation technique to achieve a

ecall of 78%. In a similar work [44] , the authors used the RNN al-

orithm with long short-term memory (LSTM) to detect the COVID-19

atients. In that investigation, the authors used several features, includ-

ng spectral centroid, spectral roll-off, zero-crossing-rate, MFCCs, and

MFCCs from the cough sound, breathing sound, and voice samples of

he COVID-19 patients. The authors used 60 healthy and 20 COVID-

9 patients in the work. To improve accuracy, they removed the silence

art from the samples using the PRAAT software. As a result, the authors

chieved an accuracy of 98.2%, 97.0%, and 77.2% by using breathing,

ough, and voice samples, respectively. 

In [45] , the authors have used the MFCC features of cough, breath-

ng, and voice sounds to discriminate the COVID-19 patients from the

on-COVID-19 patients. The authors concluded that the MFCCs of cough

nd breathing sounds for the COVID-19 patients and non-COVID-19 pa-

ients are similar. However, the MFCCs of voice sounds are very distinct

etween the COVID-19 and non-COVID-19 patients. 

A cloud computing and artificial intelligence-based early detection

f the COVID-19 patients have been presented in [46] . The authors

sed three-voice features, namely, HNR, Jitter, and Shimmer. In addi-

ion, they used the RBF algorithm as a classifier. The authors suggested

hat the HNR, Jitter, and Shimmer can be used to differentiate between

ealthy and asthma patients. They also indicated that the same param-

ters can be used to discriminate the healthy and COVID-19 patients. 

Recurrence quantification measures in the MFCCs have been intro-

uced in [47] to detect the COVID-19 patients using sustained vowel

/ah/’ and cough sounds. The authors have used several classifiers,

amely, decision trees, SVM, k-nearest neighbor, RF, and XGBoost.

mong these classifiers, they achieved the best results with the XGBoost

lassifier. That model achieved accuracies of 97% (with an F1 Score of

1%) and 99% (with an F1 Score of 89%) for coughs and sustained vow-

ls, respectively. 

In [48] , the authors used crowdsourced cough audio samples that

ere acquired on a smartphone from around the world. They collected

hree acoustic features: MFCCs, mel-frequency spectrum, and spectro-

ram from the cough sounds. The authors used an innovative ensem-

le classifier model (consisting of three networks) to discriminate the

OVID-19 patients from the healthy subjects. The highest accuracy

chieved was 77.1%. 

This work is a preliminary investigation of Artificial Intelligence’s

AI’s) capability to detect COVID-19 by using acoustic features. The pro-

osed algorithm has been developed based on the available data which

s limited. Rigorous testing of the algorithm is required with more data

efore deploying the algorithm in practice for COVID-19 pre-screening.

he main contributions of this paper are as follows: 

• To develop a novel algorithm based on signal processing and a deep

neural network (DNN). 

• To compute the acoustic features and compare their uniqueness for

the cough sound samples of control (i.e., healthy) and COVID-19

patients. 
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Fig. 1. A typical cough sound signal [52] . 

Fig. 2. Comparison of the cough sounds for a healthy subject and a COVID-19 

patient collected from the Virufy database [53] . 
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• To form the feature vectors using three domains: time-domain,

frequency-domain, and mixed-domain, to investigate the efficacy of

these feature vectors. 

• To achieve a high classification accuracy (compared to other related

works) without overwhelming computation burden on the system. 

• To use a dropout strategy in the proposed algorithm to make the

training process faster and to overcome the overfitting problem. 

• To provide a detailed performance analysis of the proposed system in

terms of the confusion matrix, Accuracy, Precision, Negative predictive

value ( NPV ), and F1-Score . 

The rest of the paper is organized as follows. The related background

s presented in Section 2 . The models, materials, and methods are ex-

lained in Section 3 . Simulation results and discussions are presented

n Section 4 . Research applicability is explained in Section 5 , and the

aper is concluded with Section 6 . 

. Background 

The human voice generation system mainly consists of lungs, lar-

nx, and articulators. Among them, the lungs are considered the power

ource of the voice generation system. Respiratory diseases prevent the

ungs from working properly and hence affect the human voice genera-

ion system. Respiratory diseases can be classified into two main classes,

amely, (a) obstructive and (b) restrictive [49] . Obstructive lung dis-

ases make the pulmonary airways narrow and affect a patient’s ability

o expel air from the lungs completely. Hence, a significant amount of

ir remains in the lungs all the time. On the other hand, people suffer-

ng from restrictive lung diseases cannot fully expand their lungs to fill

hem with air. Hence, the lungs fail to fully expand. Some patients may

uffer from a combination of both obstructive and restrictive respiratory

iseases. Cough is the common symptom of obstructive, restrictive, and

ombined lung diseases. Hence, cough sounds are considered useful for

etecting lung diseases caused by respiratory issues [50] . 

COVID-19 is also considered a respiratory disease. Like other respi-

atory diseases, COVID-19 can cause the lungs to fill with fluid and get

nflamed. As a result, patients can suffer from breathing difficulty and

eed treatment at the hospital with severe onset. Untreated COVID-19

an progress and lead to acute respiratory distress syndrome (ARDS),

 form of lung failure [51] . Although coughing is a common symptom

f any respiratory illness, including COVID-19, recent studies suggest

hat the COVID-19 cough is characterized by dry, persistent, and hoarse

t the earliest stage of coronavirus infected patients. Hence, the cough

ound samples of COVID-19 patients differ from those of other patients

uffering from some other respiratory diseases. Human cough samples

ontain three phases: explosive phase, intermediate phase, and voiced

hase [52] , as shown in Fig. 1 . These phases represent the glottal airflow

ariation in the vocal cord, and they differ depending on the patholog-

cal conditions of the patients. 

Two segmented cough sound samples are randomly selected from the

irufy database [53] to investigate the differences between the cough

ound samples of a COVID-negative (i.e., healthy/control) subject and a

OVID-positive patient. The cough sound samples of a healthy subject

nd a COVID-positive patient are shown in Fig. 2 . This figure demon-

trates that the healthy sample is similar to the typical human cough

ound signal presented in Fig. 1 . However, the cough sound sample of

he COVID-19 patient varies significantly from the typical human cough

ound sample. For example, both the intermediate and voiced phases are

onger for the COVID-positive patient than for the healthy subject. 

Moreover, the signal amplitude during the voiced phase is higher

or the COVID-positive patient than for the healthy subject. The ampli-

udes in the explosive phase also differ between these two cough sound

amples, as depicted in Fig. 2 . The differences mentioned above indi-

ate that the cough sound can be used as a valuable tool to discriminate

he COVID-positive patient from the healthy subject. The power spectral

ensities (PSDs) of these two samples are plotted in Fig. 3 . It is observed
3 
n the figure that the healthy cough sound has prominent frequencies of

ontinuously decreasing magnitudes. On the other hand, the COVID-

ositive cough sound samples do not contain very distinct frequencies. 

. Models, materials, and methods 

The proposed system model is presented in Fig. 4 . It consists of

our major steps: pre-processing, feature extraction, formation of fea-

ure vectors, and classification. The main functions of the pre-processing

tage are audio segmentation and windowing. Afterward, the frames are

ormed. In the next step, the features are extracted from the framed sam-

les. The extracted features are then grouped to form the feature vec-

ors. Finally, the feature vectors are applied as the input to the classifier.

he most crucial component of the proposed system is feature extraction

also called the data reduction procedure). It involves extracting features

rom the cough sound of interest. The main advantage of using features
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Fig. 3. Comparison of the power spectral densities (PSDs) of the cough sounds 

for a healthy subject and a COVID-19 patient. 
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𝑒  
s that the analysis algorithm (i.e., classifier) needs to deal with small

nd transformed data compared to original voluminous cough sound

ata. 

In practice, acoustic features are extracted, and a feature vector is

ormed, representing the original data. However, the selection of fea-

ures and the formation of the appropriate feature vector is an open

ssue for ongoing research in pattern recognition. In this investigation,

3 acoustic features are considered to form three feature vectors. The

coustic features used in this work can be broadly classified into two

ajor classes: time-domain and frequency-domain features. In this in-

estigation, the cough sound samples are divided into small frames using

 rectangular window, and the features are extracted from these frames.

hese features are explained in the following subsections. 

.1. Time-domain features 

In this investigation, we consider the following time-domain fea-

ures: (i) short-term energy, (ii) zero-crossing rate, and (iii) entropy of
Fig. 4. Block diagram of th

4 
nergy [54] . The short-term energy of the 𝑖 th frame is calculated by 

 ( 𝑖 ) = 

𝑊 𝐿 ∑
𝑛 =1 

||𝑥 𝑖 ( 𝑛 ) ||2 , (1)

here, 𝑥 𝑖 ( 𝑛 ) is the 𝑖 th frame, with 𝑊 𝐿 being the length of the frame.

he energy expressed in (1) is normalized as 

 𝑛 ( 𝑖 ) = 

𝐸 ( 𝑖 ) 
𝑊 𝐿 

= 

∑𝑊 𝐿 

𝑛 =1 
||𝑥 𝑖 ( 𝑛 ) ||2 
𝑊 𝐿 

, (2)

The normalized energy contents of the COVID-positive and healthy

ough sounds are plotted in Fig. 5 (a). This figure shows that the energy

ontents of both samples are concentrated in a few frames, and they

xhibit a high variation over successive frames. However, the energy

ontent of the COVID-positive patient is much higher than that of the

ealthy subject. It indicates that the cough sound sample of the COVID-

ositive patient contains weak phonemes and a short period of silence

etween two coughs. Hence, the energy content also varies rapidly be-

ween two successive frames. 

The zero-crossing rate of a cough sound signal can be defined as the

ate of sign changes of the movement over the frames. It is calculated

y using the following equation 

 ( 𝑖 ) = 

1 
2 𝑊 𝐿 

𝑊 𝐿 ∑
𝑛 =1 

|||𝑠𝑔 𝑛 
[
𝑥 𝑖 ( 𝑛 ) 

]
− 𝑠𝑔 𝑛 

[
𝑥 𝑖 ( 𝑛 − 1 ) 

]|||, (3)

here, 𝑠𝑔𝑛 (∙) is the sign function defined by sgn [ 𝑥 𝑖 ( 𝑛 )] = 1 , when 𝑥 𝑖 ( 𝑛 ) ≥
 and sgn [ 𝑥 𝑖 ( 𝑛 )] = −1 , when 𝑥 𝑖 ( 𝑛 ) < 0 . The zero-crossing rates of the

OVID-positive patient and the healthy subject are plotted in Fig. 5 (b),

hich shows that the healthy cough sound sample has a more zero-

rossing rate than that of the COVID-positive patient. Since the zero-

rossing rate measures the noisiness of a signal, it exhibits a higher

ero-crossing rate for the unvoiced part of the cough sound sample and

 lower zero-crossing rate for the voiced samples. As shown in Fig. 2 ,

he voiced phase of the cough sound samples for the COVID-positive pa-

ient is longer than that of the healthy subject. Hence, the zero-crossing

ate is lower for the COVID-positive patient than for the healthy sub-

ect, as depicted in Fig. 5 (b). The short-term entropy of energy can be

nterpreted as a measure of the abrupt changes in the energy level of an

udio signal. To compute it, we first divide each short-term frame into 𝐾

ub-frames of fixed duration. Then, for each sub-frame, 𝑗, the energy is

alculated by using (1) and divide it by the total energy, 𝐸 𝑠ℎ𝑜𝑟𝑡 _ 𝑓𝑟𝑎𝑚 𝑒 𝑖 
of

he short-term frame. Then, the sub-frame energy values, 𝑒 𝑗 , for j = 1,2,

, K , is computed as a sequence of probabilities and is defined as 

 𝑗 = 

𝐸 𝑠𝑢𝑏 _ 𝑓𝑟𝑎𝑚 𝑒 𝑗 

𝐸 𝑠ℎ𝑜𝑟𝑡 _ 𝑓𝑟𝑎𝑚 𝑒 
, (4)
𝑖 

e proposed algorithm. 
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Fig. 5. The time-domain features (a) Short time energy distribution, (b) Short 

time zero-crossing rate, and (c) Energy entropy. 
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here, 𝐸 𝑠ℎ𝑜𝑟𝑡 _ 𝑓𝑟𝑎𝑚 𝑒 𝑖 
= 

𝐾 ∑
𝑘 =1 

𝐸 𝑠𝑢𝑏 _ 𝑓𝑟𝑎𝑚 𝑒 𝑘 
. At the final step, the entropy, 𝐻( 𝑖 ) ,

s calculated from the sequence 𝑒 𝑗 by 

 ( 𝑖 ) = − 

𝐾 ∑
𝑗=1 

𝑒 𝑗 lo 𝑔 2 
(
𝑒 𝑗 
)
, (5) 
5 
The short-term entropy of energy for the COVID-positive patient and

he healthy subject are plotted in Fig. 5 (c). The short-term entropy of

nergy for the COVID-positive patient is greater than that of the healthy

ubject for most of the frames. Since the energy content of the COVID-

ositive patient varies more abruptly than that of the healthy subject,

he energy entropy tends to be higher for the COVID-positive patient

fter frame 20, as shown in Fig. 5 (c). 

.2. Frequency domain features 

Frequency-domain acoustic features are extracted from the discrete

ourier transform (DFT) of a signal. The DFT of a frame of audio signal

an be expressed as 

 𝑖 ( 𝑘 ) = 

𝑁−1 ∑
𝑛 =1 

𝑥 𝑖 ( 𝑛 ) 𝑒 
− 𝑗 2 𝜋

𝑁 
𝑛𝑘 
, (6)

here, 𝑁 is the size of the DFT, 𝑋 𝑖 ( 𝑘 ) is the value of the DFT coefficients,

nd 𝑘 = 1 , 2 , ... 𝑊 𝐿 . The spectral centroid dictates a noise-robust estimate

f the dominant frequency for the cough sound signal that varies over

ime. It is also called the center of gravity of the spectrum. The value of

he spectral centroid, 𝐶 𝑖 , for the 𝑖 th audio frame is calculated by 

 𝑖 = 

∑𝑊 𝐿 

𝑘 =1 𝑘 𝑋 𝑖 ( 𝑘 ) ∑𝑊 𝐿 

𝑘 =1 𝑋 𝑖 ( 𝑘 ) 
, (7)

The spectral centroids of the COVID-19 positive and the healthy per-

on are shown in Fig. 6 (a). It is shown in the figure that the spectral cen-

roids of the cough sound for the healthy person are higher compared to

hose of the COVID-19 cough sound samples until approximately frame

umber 50. The highest value corresponds to the brightest sound prac-

ically. Usually, the existence of noise, silence, etc. signifies the lower

alues of the spectral centroid. This is noticeable for COVID-positive pa-

ient as opposed to the healthy person for the range mentioned above.

rom nearly 50-80 frames, the COVID-positive patient exhibits higher

alues of the spectral centroid. After frame number 80, both the samples

how insignificant spectral components. 

Spectral entropy is a measure of irregularities in the frequency do-

ain. The spectral entropy features are computed from the short-time

ourier transform (STFT) spectrum. Spectral entropy is widely used to

etect the voiced regions of an acoustic signal. The flat distribution of

ilence or noise induces high entropy values. The spectral entropy is

omputed with the same method that follows to calculate the cough

ignal’s energy entropy. First, the spectrum of the short-term frame is

ivided into 𝐿 sub-bands. The energy, 𝐸 𝑓 , of the 𝑓 th sub-band, where

 = 0 , 1 , 2 , … , ( 𝐿 − 1 ) , is normalized by the total spectral energy. The

ormalized energy is defined as 𝑛 𝑓 = 

𝐸 𝑓 ∑𝐿 −1 
𝑓=0 𝐸 𝑓 

, 𝑓 = 0 , 1 , 2 , … , ( 𝐿 − 1 ) . Fi-

ally, the entropy of the normalized spectral energy, 𝑛 𝑓 , is computed

y 

 = − 

𝐿 −1 ∑
𝑓=0 

𝑛 𝑓 lo 𝑔 2 
(
𝑛 𝑓 

)
, (8) 

The spectral entropies of the COVID-positive and the healthy person

re shown in Fig. 6 (b). This figure shows that the spectral entropy of the

ealthy person is higher than that of the COVID-positive patient for most

f the frames. The reason is that the voiced part of the signal contains

ess spectral entropy than the unvoiced one. 

The spectral flux measures the spectral change between two succes-

ive frames. The spectral flux is computed as the squared difference be-

ween the normalized magnitudes of the spectra for the two subsequent

hort-term windows. It is defined by 

 𝑙 ( 𝑖,𝑖 −1 ) = 

𝑊 𝐿 ∑
𝑘 =1 

[
𝐸 𝑁 𝑖 ( 𝑘 ) − 𝐸 𝑁 𝑖 −1 ( 𝑘 ) 

]2 
, (9)

here, 𝐸𝑁 𝑖 ( 𝑘 ) = 

𝑋 𝑖 ( 𝑘 ) ∑𝑊 𝐿 
𝑙=1 𝑋 𝑖 ( 𝑙) 

. The spectral fluxes of the cough sound

ample for the COVID-positive and the healthy person are plotted in



R. Islam, E. Abdel-Raheem and M. Tarique Biomedical Engineering Advances 3 (2022) 100025 

Fig. 6. The frequency-domain features (a) Spectral centroid, (b) Spectral en- 

tropy, and (c) Spectral flux 
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ig. 6 (c). The magnitudes of the spectral flux are higher for the healthy

erson compared to the COVID-positive patient for most frames. The

eason is the more frequent local spectral changes in the healthy cough

ound samples than in the COVID-positive ones. This indicates more
6 
apid spectral alternation among phonemes in the healthy cough sound

ample than in the COVID-positive patient. 

The spectral roll-off is the frequency below which a certain percent-

ge (usually around 90%) of the magnitude distribution of the spectrum

s concentrated. Therefore, if the 𝑚 th DFT coefficient corresponds to the

pectral roll-off of the 𝑖 th frame, then it satisfies the following equation

𝑚 

 =1 
𝑋 𝑖 ( 𝑘 ) = 𝐶 

𝑊 𝐿 ∑
𝑘 =1 

𝑋 𝑖 ( 𝑘 ) , (10)

here, 𝐶 is the adopted percentage (user parameter). The spectral roll-

ff frequency is usually normalized by dividing it with 𝑊 𝐿 , so that

t takes values between 0 and 1. The spectral roll-offs of the cough

ound samples for the healthy person and the COVID-positive patient

re shown in Fig. 7 (a). It can be easily observed that the cough sound

amples of the healthy person show a higher spectral roll-off value than

hat of the COVID-positive patient for most of the frames. It means that

he cough sound sample of the healthy person has a wider spectrum

ompared to that of the COVID-positive patient. 

We also include the MFCCs to form the feature vector. The MFCCs

ave been widely used in respiratory disease detection algorithms for a

ong time [55-57] . The main advantage of the MFCCs over other acous-

ic features is that they can completely characterize the shape of the

ocal tract configuration. Once the vocal tract is accurately character-

zed, we can estimate an accurate representation of the phonemes being

roduced by the vocal tract. The shape of the vocal tract manifests itself

n the envelope of the short-time power spectrum, and the MFCCs accu-

ately represent this envelope [58] . The following procedure is used to

ompute the MFCCs [59] . The voice sample, 𝑥 [ 𝑛 ] is first windowed with

n analysis window 𝑤 [ 𝑛 ] and the STFT, 𝑋( 𝑛, 𝜔 𝑘 ) , is computed by 

 

(
𝑛, 𝜔 𝑘 

)
= 

∞∑
𝑚 =−∞

𝑥 [ 𝑚 ] 𝑤 [ 𝑛 − 𝑚 ] 𝑒 − 𝑗𝜔 𝑘 𝑚 , (11) 

here, 𝜔 𝑘 = 

2 𝜋𝑘 
𝑁 

, with 𝑁 being the DFT length. The magnitude of

( 𝑛, 𝜔 𝑘 ) is then weighted by a series of filter frequency responses whose

enter frequencies and bandwidth are roughly matched with the au-

itory critical band filters called mel scale filters. The next step is to

ompute the energy using the STFT, weighted by each mel scale filter

requency response. The energy for each speech frame at time, 𝑛 and for

he 𝑙th mel -scale filter is given by 

 𝑚𝑒𝑙 ( 𝑛, 𝑙 ) = 

1 
𝐴 𝑙 

𝑈 𝑙 ∑
𝑘 = 𝐿 𝑙 

|||𝑉 𝑙 
(
𝜔 𝑘 

)
𝑋 

(
𝑛, 𝜔 𝑘 

)|||
2 
, (12)

here, 𝑉 𝑙 ( 𝜔 ) is the frequency response of the 𝑙th mel -scale filter, and

 𝑙 and U l are the lower and upper-frequency indices, respectively, over

hich each filter is nonzero, while 𝐴 𝑙 is defined as 

 𝑙 = 

𝑈 𝑙 ∑
𝑘 = 𝐿 𝑙 

|||𝑉 𝑙 
(
𝜔 𝑘 

)|||
2 
, (13) 

The cepstrum, associated with 𝐸 𝑚𝑒𝑙 ( 𝑛, 𝑙 ) , is then computed for the

peech frame at time, 𝑛 by 

 𝑚𝑒𝑙 [ 𝑛,𝑚 ] = 

1 
𝑅 

𝑅 −1 ∑
𝑙=0 

𝑙𝑜𝑔 
(
𝐸 𝑚𝑒𝑙 ( 𝑛, 𝑙 ) 

)
𝑐 𝑜𝑠 

2 𝜋𝑚𝑙 
𝑅 

, (14)

here 𝑅 is the number of filters. In this work, we consider 13 MFCCs.

he plots for the arbitrarily chosen 7 th coefficient of the MFCCs for both

he healthy cough sound samples and COVID-positive cough sound sam-

les are shown in Fig. 7 (b). It is shown in the figure that the magnitude of

he 7 th MFCC coefficient is higher for the COVID-positive cough sound

ample compared to that of the healthy cough sound for most of the

rames. 

The chroma vector used in this work is a 12-element representation

f spectral energy. The chroma vector is computed by grouping the DFT

oefficients of a short-term window into 12 bins. Each bin represents the
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Fig. 7. The frequency-domain features (a) Spectral roll-off, (b) MFCC coeffi- 

cient, (c) Chroma vector, and (d) Feature harmonics. 
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7 
2 equal-tempered pitch classes of semitone spacing. Also, each bin pro-

uces the mean of the log-magnitudes of the respective DFT coefficients,

efined by 

 𝑘 = 

∑
𝑛 ∈𝑆 𝑘 

𝑋 𝑖 ( 𝑛 ) 
𝑁 𝑘 

, 𝑘𝜖0 , … , 11 (15)

here, 𝑆 𝑘 is a subset of the frequencies that correspond to the DFT co-

fficients and 𝑁 𝑘 is the cardinality of 𝑆 𝑘 . In the context of a short-term

eature extraction procedure, the chroma vector 𝑣 𝑘 is usually computed

n a short frame basis. This results in a matrix 𝑉 , with elements 𝑉 𝑘,𝑖 ,

here indices 𝑘 and 𝑖 represent pitch-class and frame-number, respec-

ively. The chroma vector plots of the healthy and the COVID-positive

ough sound samples are shown in Fig. 7 (c). It is shown that the chroma

ector of the healthy person shows one dominant coefficient, and the

est of the coefficients are of small magnitudes. On the other hand, the

hroma vector of the COVID-positive cough sound sample is noisier and

oes not have any dominant coefficient. In addition, the chroma vec-

or of the cough sound sample for the COVID-positive patient does not

ontain any nonzero coefficient. 

The autocorrelation function for the 𝑖 th frame is computed by 

 𝑖 ( 𝑚 ) = 

𝑊 𝐿 ∑
𝑛 =1 

𝑥 𝑖 ( 𝑛 ) 𝑥 𝑖 ( 𝑛 − 𝑚 ) , (16)

Actually, 𝑅 𝑖 ( 𝑚 ) is the correlation of the 𝑖 th frame with itself at time

ag, 𝑚 . Then the autocorrelation function is normalized as 

 𝑖 ( 𝑚 ) = 

𝑅 𝑖 ( 𝑚 ) √ ∑𝑊 𝐿 

𝑛 =1 𝑥 𝑖 
2 ( 𝑛 ) 

∑𝑊 𝐿 

𝑛 =1 𝑥 𝑖 
2 ( 𝑛 − 𝑚 ) 

, (17) 

Afterward, the maximum value of 𝑟 𝑖 , i.e., the harmonic ratio is cal-

ulated as 

𝑅 𝑖 = max 
{
𝑟 𝑖 ( 𝑚 ) 

}
, (18) 

here 𝑇 min ≤ 𝑚 ≤ 𝑇 max , 𝑇 𝑚𝑖𝑛 and 𝑇 𝑚𝑎𝑥 are the minimum and maximum

llowable values of the fundamental period. Here, 𝑇 𝑚𝑎𝑥 is often defined

y the user, whereas 𝑇 𝑚𝑖𝑛 usually corresponds to the lag in time for which

he first zero crossing of the 𝑟 𝑖 ( 𝑚 ) occurs. The plots for the harmonic ratio

f the healthy and the COVID-positive patients are shown in Fig. 7 (d).

t is depicted in the figure that the harmonic ratio of the cough sound

ample for the healthy person is higher for most of the frames. How-

ver, the harmonic ratio shows nonzero values for all analysis frames of

he COVID-positive cough sound samples. On the other hand, the har-

onic ratio of the healthy person has zero values for some of the analysis

rames. 

In this work, the cough sound samples collected from the Virufy

atabase [53] are used. The Virufy is a volunteer-run organization,

hich has built a global database to identify the COVID-19 patients

sing AI. The database contains both clinical data and crowdsourced

ata. The clinical data is accurate because it was collected and repro-

essed at a hospital following a standard operating procedure (SOP).

ualified physicians monitored the whole process of data collection.

he subjects were confirmed as healthy persons (i.e., COVID-19 nega-

ive) and COVID-19 patients (i.e., COVID-positive) by using the RT-PCR

est, and the data was labeled accordingly. The database also contains

he patients’ information, including age, gender, and medical history.

irufy provided 121 segmented cough samples from these 16 patients.

he Virufy database contains both the original cough audio recordings

nd the segmented version of the cough sounds. The segmented cough

ounds were created by identifying the periods of relative silence in the

ecordings and separating cough sound samples based on those silences.

he segments with no coughing sound or having too much background

oise were removed. The crowdsourced data, maintained by Virufy, is

iverse and donated by patients from multiple countries. This database

s significantly increasing in volume over time as more people are con-

ributing their cough samples. In this work, only the clinically collected



R. Islam, E. Abdel-Raheem and M. Tarique Biomedical Engineering Advances 3 (2022) 100025 

Table 1 

Data Samples 

Sample Corona test Age Gender Medical history Reported symptoms Cough file name 

1 Negative 53 Male None None neg-0421-083-cough-m-53.mp7 

2 Positive 50 Male Congestive heart failure Shortness of breath pos-0421-084-cough-m-50.mp3 

3 Negative 43 Male None Sore throat neg-0421-085-cough-m-43.mp3 

4 Positive 65 Male Asthma/chronic lung 

disease 

Shortness of breath, new or worsening cough pos-0421-086-cough-m-65.mp3 

5 Positive 40 Female None Sore throat, loss of taste, loss of smell pos-0421-087-cough-f-40.mp3 

6 Negative 66 Female Diabetes with 

complication 

None neg-0421-088-cough-f-66.mp3 

7 Negative 20 Female None None neg-0421-089-cough-f-20.mp3 

8 Negative 17 Female None Shortness of breath, sore throat, body aches neg-0421-090-cough-f-17.mp3 

9 Negative 47 Male None New or worsening cough neg-0421-091-cough-m-47.mp3 

10 Positive 53 Male None Fever, chills, or sweating, shortness of breath, 

new or worsening cough, sore throat, loss of 

taste, loss of smell 

pos-0421-092-cough-m-53.mp3 

11 Positive 24 Female None None pos-0421-093-cough-f-24.mp3 

12 Positive 51 Male Diabetes with 

complication 

Fever, chills, or sweating, new or worsening 

cough, sore throat 

pos-0421-094-cough-m-51.mp3 

13 Negative 53 Male None None neg-0422-095-cough-m-53.mp3 

14 Positive 31 Male None Shortness of breath, new or worsening cough pos-0422-096-cough-m-31.mp3 

15 Negative 37 Male None None neg-0422-097-cough-m-37.mp3 

16 Negative 24 Female None New or worsening cough neg-0422-098-cough-f-24.mp3 
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Table 2 

Training and Testing Accuracy of the Feature Vectors 

Feature Vector 

Training 

Accuracy (%) 

Validation 

Accuracy (%) 

Testing 

Accuracy (%) 

Time-domain feature vector 100 93.27 89.20 

Frequency-domain feature 

vector 

100 98.50 97.50 

Mixed feature vector 100 96.37 93.80 
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f  
ough samples are used as they are more authentic than crowdsourced

ata and, also, the segmented cough samples are used. 

A DNN discriminates the COVID-19 cough sound samples from the

ealthy cough sound samples, as shown in Fig. 4 . The DNN model pre-

ented in [60] is used and modified to implement the proposed system.

he DNN used in the network consists of three hidden layers. Each hid-

en layer consists of 20 nodes. The network has 500 input nodes for

he matrix input. It has only one output node as the decision is binary.

he output node employs the softmax activation function, whereas the

idden nodes consist of the sigmoid function. One of the limitations of

he DNN is that they are vulnerable to overfitting. This problem wors-

ns as the network includes more nodes. To solve the overfitting prob-

em, we employ a dropout algorithm. This algorithm trains only some

f the randomly selected nodes rather than all the entire network nodes.

he dropout effectively prevents overfitting as it continuously alters the

odes and weights in the training process. In this work, a dropout ratio

f 10% and 20% are used for the input and hidden layers, respectively.

. Simulation results and discussion 

For biomedical signals classification, findings are made in the con-

ext of medical prognosis [61] . Therefore, in COVID-19 cough sound

ample detection, we need to provide a clinical or diagnostic interpre-

ation of the rule-based classifications made with the acoustic features

attern. The following terminologies and performance parameters are

sed [ 55 , 62 ]: 

True positive ( TP ) occurs when the predicted test is positive for COVID

hile the subject is also COVID-positive. True negative ( TN ) occurs when

he predicted test is negative for COVID and the subject is COVID-

egative as well. 

Sensitivity or Recall is denoted by 𝑆 + and it is defined by 

 

+ = 

number of TP decision 

number of the actual pathological subjects 
. (19) 

Specificity is denoted by 𝑆 − and it is given by 

 

− = 

number of 𝑇 𝑁 decision 
number of the actual healthy subjects 

. (20)

False-negative ( FN ) occurs when the test is negative for a subject who

ossesses the COVID. The probability of this error, known as the false-

egative fraction ( FNF ), is given by 

 𝑁𝐹 = 

number of 𝐹 𝑁 decision 
. (21)
𝑇 𝑃 + number of 𝐹 𝑁 decision 

8 
False-positive (FP ) is defined as the case when the predicted result is

OVID-positive, but the individual is COVID-negative. The probability

f this type of error or a false alarm, known as the false-positive fraction

 FPF ), is given by 

 𝑃 𝐹 = 

number of 𝐹 𝑃 decision 
𝑇 𝑁 + number of 𝐹 𝑃 decision 

. (22)

Accuracy is simply a ratio of the correctly predicted observations to

he total number of observations. The accuracy is defined by 

𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 

𝑇 𝑃 + 𝑇 𝑁 

𝑇 𝑃 + 𝐹 𝑃 + 𝐹 𝑁 + 𝑇 𝑁 

. (23)

Precision or Positive Predictive Value (PPV) is the ratio of the correctly

redicted positive observations to the total predicted positive observa-

ions. The precision is defined by 

 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑃 
. (24)

F1 Score is the weighted average of the Precision and Recall . There-

ore, this score takes both false positives and false negatives into ac-

ount. The F1 Score is defined by, 

 1 𝑆𝑐𝑜𝑟𝑒 = 

2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

. (25)

NPV ( Negative Predictive Value ) represents the percentage of the cases

abelled as truly negative. The NPV is defined by 

𝑃 𝑉 = 

𝑇 𝑁 

𝑇 𝑁 + 𝐹 𝑁 

. (26)

The samples are distributed into three parts: 70% are for training the

NN, the remaining 30% into validation, and testing with a ratio of 2:1.

ive-fold validation is used. The data samples and patient information

re listed in Table 1 . The proposed system’s training, validation, and

esting results with the three feature vectors are listed in Table 2 . 

First, the time-domain feature vector is used that has three acoustic

eatures, namely, zero-crossing rate, energy, and energy entropy. Then,
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Table 3 

The Classification Matrix of the Time-Domain Feature Vector 

Actual 

Prediction (%) 

Healthy COVID-19 

Healthy 91.67% ( 𝑆 − ) 8.33% ( 𝐹 𝑃𝐹 ) 
COVID-19 13.33% ( 𝐹 𝑁𝐹 ) 86.67% ( 𝑆 + ) 

Table 4 

The Classification Matrix of the Frequency-Domain Feature Vector 

Actual 

Prediction (%) 

Healthy COVID-19 

Healthy 100.00% ( 𝑆 − ) 0.00% ( 𝐹 𝑃𝐹 ) 
COVID-19 5.00% ( 𝐹 𝑁𝐹 ) 95.00% ( 𝑆 + ) 

Table 5 

The Classification Matrix of the Mixed Feature Vector 

Actual 

Prediction (%) 

Healthy COVID-19 

Healthy 94.17% ( 𝑆 − ) 5.82% ( 𝐹 𝑃𝐹 ) 
COVID-19 6.67% ( 𝐹 𝑁𝐹 ) 93.34% ( 𝑆 + ) 
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Table 6 

The Performance Comparison 

Measures 

Time-domain 

feature vector 

Frequency- domain 

feature vector 

Mixed feature 

vector 

Accuracy 0.892 0.975 0.938 

Precision/ PPV 0.912 1.000 0.941 

F1 Score 0.889 0.974 0.937 

NPV 0.873 0.952 0.934 
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he DNN (with five-fold cross-validation) is trained, and the system is

ested with the time-domain feature vector. The results are shown in

able 2 , with an average training accuracy of 100%, validation accuracy

f 93.27%, and testing accuracy of 89.20%. The classification matrix

61] of the time-domain feature vector is provided in Table 3 . Based

n the data presented in Table 3 , it can be concluded that the DNN

an correctly detect the COVID-positive cough sound samples with a

ensitivity of 86.67% by using the time-domain features. On the other

and, it can accurately identify healthy cough sound samples with a

pecificity of 91.67%. 
able 7 

he Performance Comparison with Existing Works 

Research Work Samples Phonemes Featur

N. Sharma [31] Healthy and 

COVID-positive: 941 

Cough, 

Breathing, 

Vowel, and 

Counting (1-20) 

Spectra

Spectra

square

Polyno

Spectra

Spectra

C. Brown et al. [34] COVID-positive: 141, 

Non-COVID: 298, 

COVID-positive 

with Cough:54, 

Non-COVID with Cough:32, 

Non-COVID asthma: 20 

Cough, and Breathing RMS e

Roll-off

Δ-MFC

Period

J. Han [35] COVID-Positive: 52, 

Healthy: 208 

Voice COMP

A.Hassan [44] COVID-Positive: 20, 

Healthy: 60 

Breathing, Cough, and 

Voice 

Spectra

Roll-off

Zero-c

MFCC,

Δ-MFC

V. Espotovic [64] COVID-Positive: 84, 

COVID-Negative: 1019 

Voice, Cough, and 

Breathing 

Wavele

Proposed System 

(time-domain) 

COVID-Positive: 50, 

Healthy: 50 

Cough zero-cr

Proposed System 

(Frequency-domain) 

COVID-Positve:50, 

Healthy: 50 

Cough Spectra

spectra

Proposed System 

(Mixed- feature) 

COVID-Positve:50, 

Healthy: 50 

Cough zero-cr

centro

roll-off

9 
Simulations are repeated by using the frequency-domain feature vec-

or. As mentioned before, the features considered are spectral centroid,

pectral entropy, spectral flux, spectral roll-offs, MFCCs, and chroma

ector. The training, validation, and testing results are also listed in

able 2 . The data shows that the DNN achieves training accuracy of

00%, validation accuracy of 98.50%, and testing accuracy of 97.50%

y using the frequency-domain feature vector. It can be concluded that

he testing accuracy of the frequency-domain feature vector is higher

han that of the time-domain feature vector. The classification matrix

f the frequency-domain feature vector is presented in Table 4 , which

hows that the frequency-domain feature vector boosts the DNN’s abil-

ty to detect the COVID-positive cough sound samples with a sensitivity

f 95%. Moreover, the DNN can accurately identify the healthy samples

ith a specificity of 100%. Both parameters are higher than those of the

ime-domain feature vector. 

Lastly, time-domain and frequency-domain features are combined to

orm a mixed-feature vector. The training, validation, and testing accu-

acies for the mixed feature vector are listed in Table 2 . The achieved

raining, testing, and validation accuracies are 100%, 96.37%, and

3.80%, respectively. The classification matrix of the mixed-feature vec-

or is presented in Table 5 . The DNN can detect COVID-positive cough

ound samples with a sensitivity of 93.34%. On the other hand, it can

ccurately identify the healthy cough sound samples with a specificity

f 94.17%. 
es Classifier Accuracy 

l contrast, MFCC, 

l roll-off, Spectral centroid, Mean 

energy, 

mial fit, zero-crossing rate, 

lbandwidth, and 

l flatness 

RF 66.74% 

nergy, Spectral centroid, 

frequencies, Zero-crossing, MFCC, 

C, ΔΛ2 -MFCC, Duration, Tempo Onsets, 

 

CNN 80% 

ARE, and eGeMAPS SVM 69% 

l centroid, 

frequencies, 

rossing, 

 and 

C 

RNN 98.2% (Breathing), 

97% (Cough), 

88.2% (Voice) 

t Ensemble 

Boosted 

88.52% 

ossing rate, energy, and energy entropy DNN 89.2% 

l centroid, spectral entropy, spectral flux, 

l roll-offs, MFCC, and chroma vector 

DNN 97.5% 

ossing rate, energy, energy entropy, spectral 

id, spectral entropy, spectral flux, spectral 

s, MFCC, and chroma vector 

DNN 93.8% 
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Fig. 8. The cough sound samples of asthma and bronchiectasis. 
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Fig. 9. The frequency domain features of (a) Spectral entropy, (b) Spectral flux, 

(c) MFCC coefficient (6 th ), and (d) Feature harmonics for COVID-19, asthma, 

and bronchiectasis cough samples. 
The performances of the proposed system in terms of Accuracy, Pre-

ision, F1 Score , and NPV for the time-domain feature vector, frequency-

omain feature vector, and mixed domain feature vector are listed in

able 6 . This table shows that the proposed system achieves the highest

ccuracy of 97.5% using the frequency-domain feature vector. On the

ther hand, the lowest accuracy of 89.2% is achieved using the time-

omain feature vector. The other performance scores, including Preci-

ion, F1 Score , and NPV, are the highest for the frequency-domain feature

ector. 

Cough is regarded as a natural defense mechanism of some respira-

ory disorders, including COVID-19. The human audible hearing range

mpaired existing subjective clinical approaches of cough sound analysis

63] . Exploration of noninvasive diagnostic approaches well above the

udible frequency range (i.e., 48000 Hz) used for sample data can over-

ome this limitation as demonstrated in this study. The non-stationary

haracteristics of cough sound samples impose additional challenges for

ignal processing-based approaches. Also, cough patterns show variabil-

ty in human subjects under the same pathological state. The cough fea-

ures that are closely tied to the intensity levels as in the time domain

an have dissimilarity for the identical pathology. The cough sound is

haracterized by the fundamental frequency and significant harmonics

hen pathology is involved. The restriction of airways causes turbulence

n the cough sound that constitutes the harmonics [52] . More realisti-

ally, a method that captures both time and frequency changes over

he cough sound samples should associate the investigated respiratory

isorder, i.e., COVID-19, with greater accuracy. The best diagnostic per-

ormance with the frequency-domain feature vector as in Table 6 justi-

es that the cough sound features distributed in the frequency domain

hould possess greater significance. 

Finally, the performance of the proposed system is compared with

ther related works available in the literature, as listed in Table 7 . The

omparison table shows that the proposed system achieves a higher ac-

uracy of 97.5% with the frequency-domain feature vector using the

ough sound samples compared to [44] . The system achieves even

igher accuracy with the time-domain and mixed-feature vector than

he works published in [ 31 , 34-35 , 64 ]. 
10 
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. Research applicability 

Since the publicly available databases are restricted to COVID-

ositive and COVID-negative (i.e., healthy/control) cases, this study fo-

uses on discriminating COVID-19 cough sound from the healthy cough

ound. However, the proposed algorithm can have a possibility to differ-

ntiate pathological cough sounds into distinct pulmonary/respiratory

iseases, including COVID-19, asthma, bronchiectasis, etc. The patho-

hysiology and acoustic property of cough sounds can provide signif-

cant information in the frequency domain to characterize them for

ulti-classification purpose. Asthma causes the airways of the patient to

e inflamed and narrower. On the other hand, bronchiectasis damages

he airways and widens them abnormally. Few randomly selected cough

ound samples of some respiratory disorders are investigated in [65] .

he samples available in [66] are not sufficient to apply the proposed

eep learning-based algorithm. One sample of asthma and bronchiecta-

is cough sound each is shown in Fig. 8 to demonstrate their uniqueness

n the time domain. Bronchiectasis cough sound has longer cough se-

uences compared to asthma cough sound. 

Additionally, the bronchiectasis cough sound demonstrates more

ow spikes than the asthmatic cough sound [52] . These flow spikes in-

icate more severe inflammation in bronchiectasis patients than in an

sthmatic patient. Comparing Fig. 2 and Fig. 8 , it can be concluded that

he explosive, intermediate, and voiced phases are very distinct in the

OVID-19 cough sample; however, these phases are hardly visible in

sthma and bronchiectasis cough sounds. 

As demonstrated in this study, some of the frequency-domain fea-

ures of COVID-19, asthma, and bronchiectasis cough samples are plot-

ed in Fig. 9 to show their uniqueness. The spectral entropy of the

ronchiectasis sample is much higher for most of the frames compared

o COVID-19 and asthma cough samples. The other features including

pectral flux, MFCC, and feature harmonics are also non-identical for

he mentioned three respiratory disorders. The distinct differences for

he frequency domain features indicate that the proposed algorithm can

lso be applied to differentiate COVID-19 from asthma and bronchiec-

asis cough samples, provided a good number of datasets are available

or each class. 

. Conclusion 

In this paper, a DNN-based study for the early detection of COVID-19

atients has been presented using cough sound samples. This study pro-

osed a system that extracts the acoustic features from the cough sound

amples and forms three feature vectors. A rigorous, in-depth investiga-

ion has been provided in this work to show that the cough sound sam-

les can be a valuable tool to discriminate the COVID-19 cough sound

rom other healthy cough sound samples for preliminary noninvasive

ssessment. In this work, it has been shown that some acoustic features

re unique in the cough sound samples of the COVID-19 patients and

ence can be used by a classifier like DNN to discriminate them from the

ealthy cough sound samples successfully. However, there has always

een an argument about selecting the appropriate acoustic features for

he classifications. The major challenges are (a) to decide whether to

se a single feature (like MFCC, spectrogram, etc.) or feature vector,

b) to select the appropriate combination of acoustic features to form

he feature vector, and (c) to choose the appropriate domain (i.e., time-

omain, frequency-domain, or both). Three feature vectors have been

nvestigated in this work to address this issue. It is shown and justified

hat the frequency-domain feature vector has provided the highest ac-

uracy compared to the time-domain or mixed-domain feature vector. 

The performance of the proposed system has been compared with

hose of other existing state-of-the-art methods that are presented in

he literature for the diagnosis of COVID-19 patients from audio sam-

les. The proposed noninvasive pre-diagnosis technique can enhance

he screening of COVID-positive cases, including asymptomatic and pre-

ymptomatic patients. Also, early diagnosis can help them to stay in
11 
ouch with healthcare providers for a better prognosis to avoid the crit-

cal consequences of COVID-19. 

For future work, more focus will be given to investigate the progres-

ion level of the COVID-19 patients by using the cough sound analy-

is. Furthermore, since some other respiratory diseases produce similar

ough sounds, it is imperative to compare the cough sound features of

he COVID-19 patients with those of the other respiratory diseases. Cur-

ently, we are actively seeking data to investigate the mentioned issues.

eclaration of Competing Interest 

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence
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