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and Åsa Johansson*

Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden

Eosinophils play important roles in the release of cytokine mediators in response to
inflammation. Many associations between common genetic variants and eosinophils have
already been reported, using single nucleotide polymorphism (SNP) array data. Here, we
have analyzed 200,000 whole-exome sequences (WES) from the UK Biobank cohort and
performed gene-based analyses of eosinophil count. We defined five different variant
weighting schemes to incorporate information on both deleteriousness and frequency. A
total of 220 genes in 55 distinct (>10 Mb apart) genomic regions were found to be
associated with eosinophil count, of which seven genes (ALOX15, CSF2RB, IL17RA,
IL33, JAK2, S1PR4, and SH2B3) are driven by rare variants, independent of common
variants identified in genome-wide association studies. Two additional genes, NPAT and
RMI1, have not been associated with eosinophil count before and are considered novel
eosinophil loci. These results increase our knowledge about the effect of rare variants on
eosinophil count, which can be of great value for further identification of
therapeutic targets.
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INTRODUCTION

White blood cells (leukocytes) play an essential role in our immune system. Eosinophils (eosinophil
granulocytes) are white blood cells that are known to be important mediators of allergic responses.
They are phenotypically distinguished from other white blood cells by their bilobed nuclei and large
acidophilic cytoplasmic granules. Eosinophils are tissue leukocytes, primarily found in the
gastrointestinal tract. Before residing in the tissue, eosinophils are circulated in the bloodstream
with a half-life of 8 to 18 h. Therefore, although tissue specimens are required for precise estimation
of eosinophil count, enumeration of eosinophils is routinely performed using peripheral blood
samples (1). Eosinophils play various complex roles in the body. They are involved in antigen
presentation, releasing of cytokine mediators in response to acute and chronic inflammation,
reacting to helminth parasites, and homeostasis of the body’s immune responses (1). The number of
eosinophils is stringently regulated, and in healthy individuals, eosinophils constitute a small
fraction of white blood cells (2). In certain pathologic situations, regulation is perturbed which may
lead to a range of clinical consequences. Many allergic reactions, infections, autoimmune disorders,
org July 2022 | Volume 13 | Article 8622551
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malignancies, and even transplanted organ rejections have been
associated with eosinophilia, defined as blood eosinophil count
of more than 500 per microliter (1, 3).

Genetic factors have also been postulated to contribute to the
variation in eosinophil count between individuals (4). Several
hundred genetic associations have previously been reported to
eosinophil count (5–8). However, these genetic studies on
eosinophil count have primarily investigated the effect of
common variants, with the exception of two recent studies
investigating rare loss-of-function (LoF) variants in a
phenome-wide analysis (9, 10). LoF variants are assumed to be
kept at a low frequency due to purifying selection, and previous
whole-exome sequencing (WES) studies including only LoF
variants have not found any novel genes to be associated with
eosinophil count. In the current study, we therefore aim to
explore also the effect of rare (not limited to LoF) and
common variants combined, in relation to eosinophil count,
using WES comprising 200,000 exomes, from the UK Biobank
(UKB) (11). Most standard single-marker tests, such as a
standard genome-wide association study (GWAS), are
generally underpowered in the low allele-frequency domain,
especially in combination with potentially low effect sizes
(12, 13). For this reason, we extend the analysis to gene-based
testing using the sequence kernel association test (SKAT), which
is a multivariable regression approach, to better capture the effect
of rare variants (14, 15). SKAT can detect associations even if
variants have different directions and magnitude of effects, and is
less sensitive to including variants with zero effect, in contrast to
a burden test. SKAT also allows for the incorporation of weights
for individual genetic variants. By assigning weights to variants,
their relative importance in the association model is shifted. The
two most widely used weighting schemes are by frequency, where
rare variants are considered more important, and by
deleteriousness, where more harmful variants are considered
more important. The CommonRare function in SKAT enables
the analysis of common and rare variants as specified by a self-
defined minor allele frequency (MAF) cutoff separately. Followed
by the combination of the test statistics, this approach has been
shown to increase the power when both common and rare
variants with effect on the phenotype exist (16). As the
underlying genetic architecture is not known and as different
genes might have different architectures underlying the variation
in the same phenotype, we explored five different weighting
schemes in our analysis. We aim to further investigate the role of
rare variants altering eosinophil count as this might have
considerable implications in the pathogenesis of a wide variety
of inflammatory diseases, such as allergic asthma and
rheumatoid arthritis.
MATERIALS AND METHODS

Study Design
Study Cohort and Assessment of Eosinophil Count
The UKB recruited 502,682 individuals, aged 37–73 years, from
across the UK during 2006–2010. Most participants were invited
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once (instance 0), whereas a subset of participants was invited to
revisit the assessment center. In the current study, all
measurements both for eosinophil count and covariates were
extracted from the initial assessment. Eosinophils were measured
using hematological assays performed on whole blood using an
automated, clinically validated Coulter LH 750 (Brea, CA, USA).
Eosinophil count is the proportion of (eosinophils/100) × white
blood cell count. Calibration and quality control (QC) were
performed in line with the manufacturer’s recommendations.
Further details of these measurements can be found in the UKB
online showcase and protocol (https://biobank.ndph.ox.ac.uk/
showcase/).

Gene-based analyses were performed using the UKB200K
WES dataset, in which 200,643 UKB participants have been
sequenced. Exomes were captured using the IDT xGEN Exome
Research Panel v1.0 (Intergrated DNA Technologies, Iowa, USA)
including supplemental probes. Multiplexed samples were
sequenced with dual-indexed 75 × 75-bp paired-end reads on
the Illumina NovaSeq 6000 platform (Illumina, San Diego, USA)
using S4 flow cells. Coverage exceeds 20× at 95.2% of sites on
average in each sample and among targeted bases. Reads were
then processed and analyzed using the OQFE protocol (https://
hub.docker.com/r/dnanexus/oqfe), as described previously (11).
Subsequently, initial QC was performed by Regeneron (Thermo
Fischer Scientific, Tarrytown, New York, USA) as described in
the initial WES data release (9). This included contamination, sex
discordance, discordance with microarray data checks, and
unresolved duplicate sequences. Following variant QC and
extraction of exposures and outcomes, a total of 192,633
participants with WES data and eosinophil measurements were
available for analysis.

We performed GWAS on the third release of the UKB genotype
data (accessed March 2018). Genotyping has been performed in the
UKB using two different custom-designedmicroarrays: UK BiLEVE
and Axiom (Thermo Fischer Scientific, Tarrytown, New York,
USA). These contain 807,411 and 820,967 single nucleotide
polymorphisms (SNPs), respectively, and overlap with 95%
common content. Imputation of over 90 million SNPs was
performed by the UKB as well, using UK10K and 1000 genomes
phase 3 as reference panels. Before association analysis, we excluded
samples with a genetic relatedness with pairwise kinship >0.044,
genotype call rate <95%, high heterozygosity, and sex discrepancies
between self-reported and genetic sex. Additionally, to avoid
possible further population stratification, only participants
classified as British Caucasian by both self-identification and by
clustering with regard to principal components were selected,
leaving 365,954 participants available for analysis.

Variant Annotation and Filtering
In all analyses, only autosomal variants were tested. Furthermore,
only canonical transcripts (hg38, one isoform per Ensembl gene ID,
from here on referred to as gene) as described at the UCSC genome
browser were extracted. Variants were then annotated with the
Ensemble variant effect predictor (VEP) v99 (17) and Combined
Annotation Dependent Depletion (CADD 1.5) (18). A total of
15,886,147 single nucleotide variants (SNVs), 838,879 deletions, and
383,524 insertions were annotated, making it 17,108,550 variants
July 2022 | Volume 13 | Article 862255

https://biobank.ndph.ox.ac.uk/showcase/
https://biobank.ndph.ox.ac.uk/showcase/
https://hub.docker.com/r/dnanexus/oqfe
https://hub.docker.com/r/dnanexus/oqfe
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Höglund et al. Gene-based variant analysis of eosinophils
altogether. Variants annotated by VEP as being of high impact
(transcript ablation, splice acceptor, splice donor, stop gained,
frameshift, stop lost, start lost, transcript amplification;
n = 435,371) or moderate impact (in-frame insertion, in-frame
deletion, missense, protein altering; n = 4,403,831) were used for
further analysis, resulting in a total of 4,839,202 annotated SNVs
and indels used in subsequent analyses.

Statistical Analyses
Gene-Based Analyses
As the main analysis in our study, gene-based combined variance
tests on rank-based inverse normally transformed eosinophil
count were performed using the SKAT R package (16). Five
different weighting schemes were used: 1) SKAT, weighting
variants by their CADD value, making predicted deleterious
variants become more important in the per variant contribution;
2) unweighted SKAT (b[1, 1]); 3) SKAT, weighting on MAF,
making rare variants more important but leaving the
contribution of common variants unchanged (Rare: b[0.5, 20],
Common: b[0.5, 0.5]); 4) unweighted SKAT CommonRare
(Rare: b[1, 1], Common: b[1, 1]); and 5) SKAT CommonRare
upweighting rare variants, but in comparison to 3), analyses rare
and common variants separate (Rare: b[0.1, 25], Common: b
[0.5, 0.5]) (Figures S13A, B). SKAT CommonRare first analyzes
rare and common variants separately and then combines the test
statistics. In the unweighted CommonRare analysis, a default
MAF threshold of 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�sample   size
p =  0:0016 (0.16%) was used.

In the weighted analysis, we considered a MAF threshold of
0.00025 (0.025%), corresponding to a minor allele count of 100
copies distributed over 400,000 chromosomes (200,000
genomes). In all analyses, age, sex, BMI, smoking status, and
the five first genetic principal components (PCs) were used as
covariates. We included age, sex, BMI, and smoking status as
these have all been shown to influence eosinophil count (19), as
well as the five first principal components as they explained 95%
of the variability that can be explained by all 40 components. Of
the 200,682 participants with WES data available, 8,049 lacked
either phenotype or covariate data, resulting in a total of 192,633
participants used in the analyses. The genome-wide significance
threshold adjusted for multiple testing was set to 0:05

19,288  �   5 (i.e.,
the number of genes times the number of tests), resulting in a
Bonferroni-adjusted significance threshold of 5.18 × 10−7. As
genes located close to each other have a high probability of being
genetically correlated, the associated genes located less than
10 Mb from each other were assigned to the same locus. This
was done by an iterative procedure, where the gene with the
lowest P-value for each chromosome was considered to be the
lead gene for the first locus of each chromosome, and all
significantly associated genes within 10 Mb were assigned to
the same locus, iterating until all genes were clustered into a
locus. The 10-Mb distance is quite conservative in order not to
overestimate the number of independent loci in the gene-
based analyses.

Single-Marker Analyses
To be able to assess associations that could be captured with a
standard GWAS approach in the same cohort, we performed a
Frontiers in Immunology | www.frontiersin.org 3
GWAS on the UKB genotyped data. The association analyses
were carried out with plink2 (20), adjusting for the same
covariates as the WES data, i.e., age, sex, BMI, smoking status,
and the five first principal components. Additionally, only
variants with MAF >1% [as imputation quality tends to
decrease with decreasing allele frequency (21)], Hardy–
Weinberg equilibrium cutoff of 1 × 10−10, and a missingness
rate of <1% were included. Here, the standard genome-wide
significance threshold of 5 × 10−8 was used, to be able to capture
as many common variants as possible. We then performed
conditional analyses, conditioning on the lead variant per locus
until no further significant associations were found.

Conditional Analyses and Gene-Based Analyses
with Different MAF Cutoffs
To examine what type of variant frequency distribution might be
driving the driving the gene-based associations, we performed
additional analyses. First, we performed conditional analyses on
the significant genes from the primary gene-based analyses,
adjusting for the lead GWAS hits by adding their dosage
values as covariates. To identify if rare variants were likely to
drive the SKAT associations, gene-based analyses were
performed for the significant genes from the primary analysis,
using the RareOnly function in SKAT CommonRare, which only
analyzes rare variants below a set threshold. Seven RareOnly
analyses were performed setting the MAF cutoff at 0.01%, 0.1%,
0.3%, 0.5%, 1%, 3%, and 5%, respectively, both with and without
conditioning on lead GWAS hits. We used the same significance
threshold here (P < 5.18 × 10−7) as in the primary analyses above.

Sensitivity Analyses and Meta-Analysis
To improve power, all participants with WES and eosinophil
data were included in the primary analysis. As a first sensitivity
analysis, we performed additional gene-based tests only
including participants that were filtered as in the GWAS
(pairwise kinship < 0.044 and classified as British Caucasian by
self-identification and by clustering with regard to principal
components), both with and without conditioning on lead
GWAS hits. This was done to examine whether our results
were influenced by possible population stratification.

Second, we performed additional sensitivity analyses. These were
performed similarly to the primary analyses in the whole cohort also
adjusting for self-reported ethnicity. We performed these analyses
both with and without conditioning on GWAS hits. Third, since
eosinophil levels are well known to be altered in individuals with
allergy or asthma, we performed our analyses similar to the primary
analyses but also adjusting for the presence of asthma, hay fever, and
eczema. Fourth, to make sure that our choice of five PCs captured
enough of the relative variability, we also performed analyses similar
to our primary analyses but adjusting for 10 and 15
PCs, respectively.

Lastly, we divided the participants into European (self-
identifying as White British) and non-European (self-
identifying as Asian or Asian British, Black or Black British,
Chinese, Mixed, or Other ethnic groups) and performed the
analyses similar to the primary analyses in these two strata. The
results were also meta-analyzed using Fisher’s combined
July 2022 | Volume 13 | Article 862255
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probability test. The lowest P-value per gene from all weighting
schemes per strata was used in the meta-analysis.

Intersecting Single-Marker Results and
Gene-Based Results
To identify gene-based associations that were overlapping with
GWAS results, we compared the gene-based results for overlap
with the lead hits from our GWAS. We used bedtools’ (22)
“closest” function, which intersects two bed files and reports
positional overlap. When no overlap is found, i.e., no lead GWAS
SNP was located within the gene region based on start and stop
coordinates, it reports the entry (in this case, an SNP) closest to
the input entry (in this case, gene position). We defined genes
from the SKAT analyses that were located >5 Mb from a lead
GWAS SNP as non-GWAS-overlapping. This 5-Mb distance is
not to be confused with the 10-Mb distance used to define
independent loci from the gene-based results (see above). The
independency between all lead GWAS SNPs and the SKAT
associations has already been investigated in the conditional
analyses (see above).

Enrichment Analyses and Overlap With
Previous GWAS of Eosinophils
To identify overrepresented gene sets, we used Enrichr, a
comprehensive gene list enrichment analysis online tool
(https://maayanlab.cloud/Enrichr/). We analyzed gene ontology
(GO), pathways, and diseases/drugs using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) 2021, GO
Biological Processes, GO Molecular Function, GO Cellular
Processes, ClinVar 2019, GWAS Catalog 2019, and DisGeNET
libraries. We used a Bonferroni adjustment of the obtained q-
values to get a more stringent list of associated pathways, using
q = 0.05/7 libraries = 0.007 as the threshold for significance.

Lastly, to assess the genes that have been associated with
eosinophil count before, they were intersected with all associations
to eosinophil count in the GWAS catalog (accessed April 21, 2021).
All associations mapping to the trait “eosinophil count” were
extracted. In addition to the GWAS catalog, we also verified our
results with the database Genebass (genebass.org), described in the
preprint by Karczewski et al., where SKAT and burden analyses in
Frontiers in Immunology | www.frontiersin.org 4
300,000 WES from the UKB are available for more than 3,000
phenotypes (23). The gene-based summary statistics are available
online in an interactive browser.
RESULTS

A total of 192,633 participants with WES data and measured
eosinophil count were included in the gene-based analyses. In the
GWAS and WES gene-based sensitivity analyses, only unrelated
White British participants, N = 365,964 and N = 143,007 for the
GWAS and WES data, respectively, were included. The full
workflow is visualized in Figure S1. Age at recruitment, the
timepoint when eosinophil count was measured, of the
participants included in the WES gene-based tests, ranged
from 38 to 72 with a median of 58 years, and 55.1% of the
participants were women. The mean eosinophil count was
0.18 × 109 cells/L (median: 0.16, range: 0.00–3.24) for men and
0.16 × 109 cells/L (median: 0.12, range: 0.00–5.40) for women. All
baseline characteristics can be found in Table 1. Of the
17,108,550 annotated variants (Figure S2A), a total of
4,839,202 were regarded as “high impact” or “medium impact”
as annotated by Ensembl’s variant effect predictor, VEP (Figure
S2B), and were thus included in the gene-based analyses. To
further gain insight into gene-specific variant consequence
distribution, we generated gene-specific annotation graphs for
genes of interest.

A Large Number of Associations Captured
in a Standard GWAS
We first performed a GWAS for eosinophil count to identify
associations, using 6,661,079 common SNPs (MAF > 1%) from
the genotyped/imputed data. In the primary analysis, a total of
28,828 significantly associated variants at 106 loci located on all
22 autosomal chromosomes were identified (Figure S3A). To
ensure that all independent GWAS associations were accounted
for in the gene-based analysis, conditional analyses were
performed, adjusting for the lead (i.e., the most significant)
GWAS hit for each locus until no additional SNPs showed
significant association. Across the autosomal chromosomes, a
TABLE 1 | Baseline characteristics of the UKB participants with exome sequencing data available.

Baseline characteristics

Number of participants 200,643
Age, median | 1st–3rd quartiles 58 50–63
Females | males (%) 110,478 (55) 90,154 (45)
Eosinophil count, median | 1st–3rd quartiles 0.14 0.10–0.21

Inflammatory diseasesa Controls Cases % Cases
Asthma 171,938 28,693 16.7
Hay fever 178,067 22,562 12.7
Eczema 191,674 8,955 4.7
Type 1 diabetes 198,780 1,849 0.9
Psoriasis 198,622 1,996 1.0
Rheumatic arthritis 196,021 4,608 2.4
Crohn’s disease 198,396 2,233 1.1
Ulcerative colitis 199,472 1,157 0.6
July 2022 | Volume 13 | Artic
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total of 205 lead SNPs, distributed over 106 loci, were identified
(Table S1, Figures S3B–E). These 205 SNPs were subsequently
used as covariates in the downstream conditional gene-based
analyses in order to adjust for common variants.

A Large Overlap Between SKAT
Weighting Schemes
Across all models, a total of 220 genes, distributed over 19
chromosomes, displayed genome-wide significant association
with eosinophil count (P < 5.18 × 10−7, Figure 1, Table S2,
Figures S4–8). Altogether, the 220 genes represented a total of 55
independent loci (Table 2, Table S3). We identified only seven
associated genes when weighting on MAF. However, in each of
the other four models, we identified between 156 and 188
significantly associated genes (Figure 2). There was a large
overlap in the results between these models with only 12, 2, 3,
and 9 associated genes being unique to the CADD, unweighted,
unweighted CommonRare, and MAF-weighted CommonRare,
respectively (Figure 2). Among the 55 lead genes, 3 genes (IL33,
ALOX15, and S1PR4) were identified with all weighting schemes,
32 (48%) were identified by four weighting schemes, 10 (18%) by
three weighting schemes, and lastly 5 (9%) by both two and one
weighting schemes.

Overlap Between SKAT and GWAS Hits
A total of 14 (6.4%) genes at 12 different loci were non-GWAS-
overlapping (Table S3), based on genomic distance only (>5 Mb
away from a lead GWAS SNP). When adjusting for the 205
common lead GWAS SNPs, as many as 26 (12%) out of all 220
genes were still significantly associated in at least one of the
models (Figure 3A). These 26 genes were located at 21
independent loci, of which six genes (NPAT, RMI1, TNFRSF14,
ADGRL4, NDUFS2, and ZC3HC1) at six loci were non-GWAS-
overlapping, also based on genomic distance. This suggests that
for a majority (62%) of the 55 gene loci identified in the SKAT
analyses, the association signals could be explained by a GWAS
Frontiers in Immunology | www.frontiersin.org 5
SNP. The remaining 21 (38%) loci (including the six loci that are
non-GWAS-overlapping) remained significant after adjusting
for GWAS SNPs, indicating additional association signals, not
identified in our GWAS. Among those, six loci included genes
(CEP85 , GATA2 , ZNF668 , EXOC3L1 , CTDNEP1 , and
SERPINB11) that had not previously been annotated as
eosinophil count genes in the GWAS catalog.

Sensitivity Analyses
In order to reduce the risk of our results being confounded by
population stratification, we performed sensitivity analyses for
the gene-based results including only unrelated White British
participants. Here, 168 out of the 220 primary genes (Table S4),
and 21 of the 26 GWAS-adjusted significant genes (Figure 3B,
Table S5), remain significantly associated. Overall, the sensitivity
analysis and the main analysis agree well, indicating that
including the larger sample size in the unfiltered data can
boost the power for discovery. However, due to the reduction
in sample size (mixed ancestry, N = 192,633; White British only,
N = 143,077), raw P-values are generally higher (i.e., less
significant) in the sensitivity analysis due to power reduction
(Figure S9). We further performed sensitivity analyses, adjusting
for ethnicity and occurrence of allergic disease (asthma, eczema,
and hay fever), respectively, both with and without conditioning
on lead GWAS hits. The results were constant across analyses,
indicating that our results are not driven by population
stratification or by the inclusion of participants with asthma,
eczema, or hay fever (Table S9). In addition, the results do not
change markedly when increasing the number of PCs included to
10 and 15.

Lastly, we performed two analyses separating participants of
European (N = 188,248) and non-European ethnicities
(N = 11,372). We then meta-analyzed the results using Fisher’s
method. Adjusting for the 220 primary significant genes, all
genes are still significantly associated in the meta-analysis (Table
S10). Even when adjusting for all lead GWAS hits, the 26
FIGURE 1 | Significant genes in the sequence kernel association test (SKAT) primary analyses; combined results from the five models of the SKAT gene-based
analysis. Results from gene-based tests of all canonical transcripts, with chromosomal location at the x-axis and −log10(P) on the y-axis. Genome-wide significance
threshold is set at 5.18 × 10−7 [−log(P) = 6.29]. These 220 genes correspond to the genes that had a significant association with at least one model.
July 2022 | Volume 13 | Article 862255
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TABLE 2 | Results for the 55 independenta SKAT loci.

Chr Lead gene in the
locus

Other genes in the locus Lowest P-
valueb

GWAS
overlap

Significant gene(s) after GWAS
adjustmentc

GWAS-adjusted
P-valued

1 TNFRSF8 TNFRSF14, MIIP 2.37E−08 No TNFRSF14 3.77E−07
1 CNR2 CEP85, FUCA1, E2F2 1.12E−13 Yes E2F2, CEP85 4.13E−06, 1.36E

−06
1 ADGRL4 None 1.29E−12 No ADGRL4 9.00E−08
1 CCDC18 TMED5 2.73E−13 No None in locus 0.13
1 ARNT HORMAD1, CTSS, ARNT9 8.06E−10 No None in locus 0.07
1 NDUFS2 None 3.66E−08 No NDUFS2 6.31E−06
2 IL1RL1 ANKRD36C, GPAT2, ADRA2B, ASTL, FER1L5, IL1RL2,

IL18RAP
2.96E−177 Yes None 0.02

2 PRKRA ITGA6 4.78E−22 No None 0.76
2 IKZF2 None 4.55E−08 Yes None 2.92E−04
2 D2HGDH GAL3ST2, FARP2, SCLY, INPP5D 1.77E−32 Yes None 0.02
3 IL5RA None 4.36E−08 Yes None in locus 2.38E−03
3 ACKR2 AC006059.2, CCDC13, GLB1, EOMES, FYCO1,

CCR3, DALRD3, C3orf18
7.79E−21 Yes None in locus 2.35E−04

3 CD200 CD200R1, SLC9C1, SENP7 1.01E−17 Yes None in locus 0.016
3 GATA2 None 1.30E−55 No GATA2 9.99E−27
3 HTR3D None 2.33E−07 No None in locus 8.05E−05
4 REST None 3.06E−08 Yes None 0.08
5 OTULINL None 3.06E−07 No OTULINL 2.15E−06
5 IL7R None 2.60E−18 No None in locus 0.04
5 SLC22A4 IL9, TCF7, IL13, PDLIM4, CSF2, IL3M, FNIP1 1.11E−131 No None in locus 0.04
5 ADRB2 None 8.85E−28 No None in locus 0.26
6 HLA-A See belowe 1.55E−65 No None in locus 0.02
7 ABCB5 None 7.61E−08 No None in locus 0.09
7 CCL24 None 8.61E−28 No None in locus 0.06
7 GATAD1 None 4.15E−11 No None in locus 0.07
7 ZC3HC1 None 2.17E−08 No ZC3HC1 3.54E−06
8 TNFRSF10B None 4.68E−15 No None 2.05E−05
8 SHARPIN None 2.79E−21 No None 0.05
9 IL33 JAK2 2.40E−40 No IL33, JAK2 2.14E−21, 6.21E

−08
9 RMI1 KIF27 1.53E−13 No RMI1 1.65E−07
9 SEC16A STKLD1 5.51E−09 No None in locus 1.37E−03
11 IFITM2 None 6.03E−26 Yes None in locus 0.06
11 PRG3 LTBP3, EHBP1L1, AP5B1, MUS81, TSGA10IP, SART1 3.30E−27 No PRG3 1.09E−06
11 NPAT None 2.16E−14 No NPAT 1.62E−07
12 SH2B3 PHETA1, CUX2, TMEM116 3.57E−247 No SH2B3 5.15E−12
12 NAA25 None 3.83E−25 No None in locus 0.17
12 FBRSL1 SBNO1 1.29E−12 No None in locus 0.04
13 MRPS31 None 3.53E−22 No None 5.46E−03
14 CEBPE None 7.81E−09 No None 1.02E−05
14 LGALS3 DLGAP5 2.50E−31 No None 0.08
14 FBXO34 None 7.44E−29 No None 0.06
14 ASB2 RIN3 4.46E−16 Yes None 0.07
15 NDUFAF1 MAP1A 2.45E−08 No None in locus 4.55E−05
15 ST20 BCL2A1, AKAP13 2.33E−19 Yes BLC2A1 1.94E−03
16 SOCS1 TNP2 1.68E−09 No SOCS1 1.41E−07
16 DOC2A IL4R, FBXL19 6.44E−21 No None in locus 0.58
16 ZNF668 None 7.95E−09 No ZNF668 6.20E−06
16 NFATC3 EXOC3L1 3.66E−07 No EXOC3L1 3.16E−07
17 ALOX15 PELP1, ZNF594, CTDNEP1 1.87E−71 Yes ALOX15, CTDNEP1 9.73E−07, 1.16E

−06
17 IKZF3 GSDMA, ARHGAP27, SPPL2C, MAPT, STH, KANSL1,

LRRC37A, LRRC37A2
1.57E−15 Yes GSDMA 1.97E−06

17 C17orf58 BPTF 8.79E−09 No None in locus 9.24E−06
18 SERPINB11 SERPINB13, CD226 4.22E−08 No SERPINB11 7.60E−07
19 S1PR4 ARHGAP45 2.52E−32 Yes S1PR4, ARHGAP45 8.76E−12, 7.50E

−07
19 MAST3 None 5.43E−09 No None in locus 0.11
19 LGALS14 ZNF568, CLC, APOE, APOC4-APOC2, SIX5, CD33 4.57E−84 No None in locus 0.24
22 IL17RA GGT5, SFI1, CSF2RB, GTSE1 1.07E−26 No IL17RA, CSF2RB 3.18E−10, 1.47E

−06
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GWAS-adjusted genes remain significant. The non-European
sample size is very limited, being almost 17 times smaller than
the European, which will influence power. However, E2F2,
ZC3HC1, RMI1, JAK2, EXOC3L1, and CSF2RB are nominally
significant (P < 0.05), also in the small non-European sample,
when adjusting for lead GWAS hits (Table 3).

SKAT Associations Driven by
Rare Variants
To examine whether the associations for primary significant
genes were mainly driven by common or rare variants, we
performed SKAT CommonRare, only including rare variants
(RareOnly). We started with a rare variant threshold of 0.0001
(0.01%) and subsequently increased the threshold to the low-
frequency spectrum, stopping at 0.05 (5%). By doing this, 18
genes out of the 220 associated genes showed significant
Frontiers in Immunology | www.frontiersin.org 7
association at least in the low-frequency spectrum (MAF < 1%
or MAF < 5%) (Figure S10, Table S6). This suggests that these
associations are driven by rare variants in combination with
common variants. Adjusting for common lead GWAS hits, seven
genes (ALOX15, CSF2RB, IL17RA, IL33, JAK2, S1PR4, and
SH2B3) remained (Figure 3B, Table S6), all of which were
located close to a GWAS hit, except IL17RA which is located
3 Mb from the closest lead GWAS SNP. It is therefore plausible
that most of these signals represent rare variant associations in
addition to the common variant associations. A summary of the
MAF thresholds and the number of variants yielding significant
associations for these genes can be found in Table 4. However, as
SKAT does not take gene size into account, one should be
cautious when interpreting the raw number of rare variants.
None of the non-GWAS-overlapping genes showed significant
associations in the RareOnly analysis, implying that these
aSignificant genes from any of the SKAT models were clustered into independent loci based on the genomic distance. This was done by an iterative procedure, where the gene with the
lowest P-value for each chromosome was considered to be the lead gene for the first locus of each chromosome, and all significant genes within 10 Mb were considered to belong to the
same locus. Then, a second lead gene for each chromosome was identified as the most significant of the genes not belonging to any locus, and this procedure was repeated until no
additional genes remained.
bThe lowest P-value from the five different gene-based models for the lead gene at each locus.
cNone: if no genes at that chromosome passed the significance threshold after adjusting for GWAS hits. None in locus: if no other gene in that particular locus passed the significance
threshold.
dP-value for the most significant gene at the locus after adjustment. If no gene in the locus was significant after GWAS adjustment, the adjusted P-value for the lead gene is presented.
eThe HLA locus contains the following genes: TRIM31, TRIM40, TRIM15, HLA-E, ABCF1, PPP1R18, VARS2, SFTA2, MUCL3, MUC21, MUC22, C6orf15, PSORS1C1, PSORS1C2,
CCHCR1, TCF19, HLA-C, MICA, MCCD1, LTA, PRRC2A, BAG6, C6orf47, GPANK1, LY6G5C, CLIC1, VWA7, VARS1, HSPA1L, SLC44A4, EHMT2, SKIV2L, TNXB, PPT2, PPT2-EGFL8,
EGFL8, AGER, NOTCH4, TSBP1, BTNL2, HLA-DRA, HLA-DRB5, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DQA2, HLA-DQB2, PSMB8, HLA-DPA1, HLA-DPB1, TAPBP, ZBTB22,
ITPR3, IP6K3, TCP11, H1-1, BTN3A2, BTN3A1, BTN2A1, BTN1A1, ZNF322, PRSS16, POM121L2, H2BC13, OR2B2, ZKSCAN4, NKAPL, ZSCAN26, PGBD1, ZSCAN31, ZKSCAN3,
ZSCAN12, OR2J3, OR14J1, OR12D3, OR12D2, MOG, and HLA-G.
A B

C

FIGURE 2 | Venn and UpSet diagrams of the overlap between the SKAT weighting schemes. The graph shows the overlap between all comparisons and the table
shows the pairwise overlap between the scenarios. CADD, SKAT CADD-weighted; MAF; SKAT MAF-weighted; SKAT, SKAT unweighted; CR, CommonRare
unweighted; CR.MAF, CommonRare weighted. (A) Venn diagram showing the overlap between weighting schemes, with one color per scheme. The outermost
circles show the unique number of hits per weighting scheme, and where the shapes of the schemes overlap, the number of overlapping significant genes is shown.
(B) Numerical overlap in pairwise comparisons of weighting schemes. The table shows the total overlap, i.e., the summation of each pairwise overlap in (A). (C)
Overlap visualized as an UpSet plot. The set size represents the total number of significant genes per weighting scheme. The intersection size is showing the number
of overlapping genes in each of the respective scheme combinations, as shown by the filled dots underneath.
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A B

FIGURE 3 | SKAT P-values from genes that are significant after adjusting for lead GWAS SNPs. Gene name is stated on the y-axes and −log(P-value) on the x-
axes. The different colors depict the different models used in the analyses. (A) The five weighting schemes for the 26 genes that were significant after adjusting for
lead GWAS SNPs. (B) The results when only analyzing rare variants, with different rare variant cutoffs (from 0.01% to 5%) and adjusting for lead GWAS SNPs.
Among all 220 genes that were identified in the primary SKAT analyses, only seven genes that were significant for any of the rare variant cutoffs are shown; the
others can be found in Supplementary Table S6. In all analyses, a P-value cutoff of 5.11 × 10−06 [−log10(P) = 5.29) was used, correcting for the 220 genes times
29 different models tested: seven rare variant cutoffs * two strata (full cohort and unrelated White British) and five weighting schemes for the GWAS-adjusted
analyses * two strata and the five weighting schemes for the non-GWAS adjusted (primary/discovery) analyses in the full cohort.
TABLE 3 | Meta-analysis results for the 26 genes that are still significantly associated in the primary analyses after adjusting for all lead GWAS hits (0.05/220 = 2.3 x 10-04).

Chromosome Gene P Europeans P non-Europeans P meta c2 meta d.f. meta Adjusted P metaa

1 CEP85 1.98E−06 4.46E−01 1.32E−05 27.88 4 2.90E−03
1 TNFRSF14 4.49E−07 6.19E−01 4.47E−06 30.19 4 9.83E−04
1 E2F2 3.59E−06 1.39E−03 1.00E−07 38.23 4 2.21E−05
1 NDUFS2 7.94E−06 6.19E−02 7.63E−06 29.05 4 1.68E−03
1 ADGRL4 1.02E−07 1.47E−01 2.84E−07 36.04 4 6.24E−05
3 GATA2 1.31E−26 3.64E−01 2.93E−25 121.22 4 6.45E−23
5 OTULINL 1.79E−06 5.01E−01 1.34E−05 27.85 4 2.94E−03
7 ZC3HC1 9.47E−06 1.12E−02 1.82E−06 32.11 4 4.00E−04
9 RMI1 1.45E−07 9.26E−03 2.89E−08 40.85 4 6.35E−06
9 IL33 9.33E−22 2.14E−01 1.02E−20 99.93 4 2.24E−18
9 JAK2 6.92E−08 1.85E−02 2.74E−08 40.96 4 6.04E−06
11 NPAT 3.65E−07 9.16E−02 6.09E−07 34.43 4 1.34E−04
11 PRG3 1.65E−06 1.44E−01 3.85E−06 30.51 4 8.46E−04
12 SH2B3 4.28E−12 1.02E−01 1.29E−11 56.91 4 2.84E−09
15 BCL2A1 2.52E−09 3.44E−01 1.90E−08 41.73 4 4.18E−06
16 EXOC3L1 9.92E−06 1.86E−01 2.62E−05 26.41 4 5.76E−03
16 ZNF668 2.63E−07 3.01E−02 1.55E−07 37.31 4 3.42E−05
16 SOCS1 1.45E−07 3.57E−01 9.18E−07 33.56 4 2.02E−04
17 ALOX15 1.10E−06 9.33E−02 1.75E−06 32.19 4 3.86E−04
17 CTDNEP1 1.00E−06 6.74E−01 1.03E−05 28.42 4 2.26E−03
17 GSDMA 3.26E−06 1.08E−01 5.57E−06 29.72 4 1.23E−03
18 SERPINB11 3.61E−07 1.46E−01 9.36E−07 33.52 4 2.06E−04
19 S1PR4 5.18E−12 2.98E−01 4.36E−11 54.39 4 9.59E−09
19 ARHGAP45 5.74E−07 1.82E−01 1.79E−06 32.14 4 3.94E−04
22 IL17RA 3.09E−10 3.84E−01 2.83E−09 45.71 4 6.23E−07
22 CSF2RB 5.28E−06 3.06E−02 2.69E−06 31.28 4 5.92E−04
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P-values are shown for Europeans (N = 188,248) and non-Europeans (N = 11,372) as well for the meta-analysis, combining the P-values.
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associations are most likely driven mainly or solely by common
variants. Taking previously reported associations into account
and intersecting our results with these instead, we do find nine
genes (ILRAP, IKZF2, IL5RA, FNIP1, HLA-C, TNXB, HLA-
DRB5, CEBPE, and ST20) of which seven (ILRAP, IKZF2,
IL5RA, HLA-C, TNXB, HLA-DRB5, and ST20) show a
significant association when only focusing on rare and low-
frequency variants (Figure 4). This suggests that there might be
Frontiers in Immunology | www.frontiersin.org 9
associations to additional variants that might be of importance in
the functional interpretation of the association.

Significant Genes Are Overrepresented in
Cytokine-Dependent Pathways
We performed gene set enrichment analyses (GSEA) including
the 55 independent lead genes (the most significant gene in each
independent loci) as our target, and all the other genes in the
genome as the background (Figure S11, Table S7). We
investigated enrichment with regard to gene ontology, KEGG
pathways, and associations to drugs and diseases. For stringency,
although the results are FDR-adjusted within each library, we
divided the adjusted q-value by the number of libraries, ending
up in an adjusted q-value of 0.007. The most overrepresented
ontologies and pathway(s) were all related to cytokine signaling,
namely, cytokine–cytokine receptor interaction (KEGG 2021;
Qadj = 9.04E−04; IL1RL1, IL33, CCL24, IL15RA, TNFRSF8,
TNFRS10B, IL7R, IL17RA), cytokine-mediated signaling
pathway (GO Biological Process 2021; Qadj = 4.17E−04;
IL1RL1, CCL24, IL33, IFITM2, SOCS1, ALOX15, IL15RA,
TNFRSF8, HLA-A, IL7R, SH2B3, IL17RA), and cytokine
receptor activity (GO Molecular Function 2021; Qadj = 2.80E
−03; IL1RL1, IL15RA, ACKR2, IL17R, IL17RA). As expected, the
most overrepresented gene sets in relation to traits and diseases
were for eosinophil count (GWAS Catalog 2019; Qadj = 3.97E
−27) and other eosinophil traits, like eosinophil percentage of
white blood cells and granulocytes, and white blood cell count.
Our lead genes were also enriched for genes that have previously
been associated with inflammatory diseases such as rheumatoid
arthritis (DisGeNET; Qadj = 0.005), psoriasis (DisGeNET;
Qadj = 0.01), Crohn ’s disease (GWAS Catalog 2019;
Qadj = 0.003), ulcerative colitis (DisGeNET; Qadj = 0.02), and
allergic disease (GWAS Catalog 2019; Qadj = 7.53E−04). Notably,
the strongest trait association after eosinophil traits was with
asthma (DisGeNET; Qadj = 9.13E−05; CCL24, IL33, ALOX15,
IL5RA, HLA-A, ADRB2, GATA2, IKZF3, IL17RA, LGALS3,
FIGURE 4 | Venn diagram with circles representing four of the downstream
analyses. In each section, the overlapping genes are named with their
respective gene symbol. If there are no genes in an intersection, “none” is
stated. GWAS adjusted: The set of genes that are still significant after
adjusting for all lead GWAS hits. Passes RareOnly: The genes that are still
significantly associated at any given allele frequency in the analyses including
only rare and low-frequency spectrum (<0.01% to <5%). Previously
associated: The set of genes that have been previously associated to
eosinophil counts in the GWAS catalog. Non-GWAS-overlapping: genes
located >5 Mb from a lead GWAS SNP.
TABLE 4 | Summary of the 18 genes that are significant analyzing rare variants only.

Chromosome Position Gene P-value Frequency cutoff N rare variants

2 102,418,689–102,452,565 IL18RAP 2.31E−06 0.3% 269
2 212,999,691–213,152,427 IKZF2 1.45E−08 0.5% 212
3 3,066,324–3,126,613 IL5RA 7.19E−07 0.5% 235
5 131,641,714–131,797,063 FNIP1 4.93E−07 0.5% 445
6 31,268,749–31,272,130 HLA-C 4.84E−07 1% 479
6 31,620,715–31,637,771 PRRC2A 4.14E−07 1% 1,261
6 32,041,153–32,115,334 TNXB 6.99E−08 0.5% 2,043
6 32,517,353–32,530,287 HLA-DRB5 9.02E−07 1% 77
9 4,984,390–5,129,948 JAK2 1.77E−10 0.3% 551
9 6,215,786–6,257,983 IL33 1.17E−34 0.5% 153
12 111,405,923–111,451,623 SH2B3 3.35E−07 0.1% 429
14 23,117,306–23,119,255 CEBPE 7.81E−09 1% 157
15 79,898,840–79,923,702 ST20 1.93E−06 0.5% 23
16 30,934,376–30,960,104 FBXL19 3.36E−07 1% 255
17 4,630,919–4,642,294 ALOX15 4.22E−11 0.1% 364
19 3,172,346–3,180,332 S1PR4 5.12E−17 1% 271
22 17,084,954–17,115,694 IL17RA 6.89E−08 0.5% 532
22 36,913,628–36,940,439 CSF2RB 6.60E−13 0.1% 290
July 2022 | Volume 13
The P-value represents the value corresponding to the lowest frequency cutoff yielding a significant association. Both the allele frequency cutoff and the number of rare variants included in
the test are also shown per gene.
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IL1RL1, SOCS1, NAA25, TNFRSF8, D2HGDH, IL7R, CD200;
GWAS Catalog 2019; Qadj = 2.13E−04; IL1RL1, IL33,
D2HGDH, IKZF3).
DISCUSSION

We have performed an exome-wide scan for genes that are
associated with eosinophil count, to identify effects driven by
common as well as rare genetic variants. For seven of the
identified genes (ALOX15, CSF2RB, IL17RA, IL33, JAK2,
S1PR4, and SH2B3), we show that rare variants are indeed
driving the associations and that these associations were not
captured by lead GWAS SNPs. However, these loci are
previously known as eosinophil loci, but only for IL33 rare
variant associations have been described in another cohort
previously (24). In addition, we identify two completely novel
eosinophil loci in our gene-based analyses (NPAT and RMI1),
which are not overlapping with a GWAS locus neither in our
present study nor in previous studies, but these do not appear to
be driven by rare variants. Together, these novel findings are
adding to and extending our knowledge of genetic associations to
eosinophil count. However, a large part of our gene-based
findings appears to be driven by common variants and overlap
with our and previous GWAS results.

Among the genes identified in our gene-based exome
analyses, there was a clear enrichment of genes that have
previously been associated with inflammatory diseases,
including rheumatoid arthritis, psoriasis, Crohn’s disease,
ulcerative colitis, asthma, and allergic disease. This is in
accordance with elevated levels of eosinophils, eosinophilia,
being characteristic of at least allergic inflammation and
asthma (25). Our strongest enrichment was seen for asthma
with a large number of our eosinophil genes being previously
associated with asthma (CCL24, IL33, ALOX15, IL5RA, HLA-A,
ADRB2, GATA2, IKZF3, IL17RA, LGALS3, IL1RL1, SOCS1,
NAA25, TNFRSF8, D2HGDH, IL7R, and CD200). We have
previously reported that many SNPs that are associated with
eosinophil count are also associated with risk for asthma (26),
and a genetic correlation has been identified between eosinophils
and asthma (27, 28). Even in our sensitivity analyses, when
adjusting for the occurrence of asthma, hay fever, and eczema,
these genes remain significantly associated with eosinophil
count. Altogether, this supports the important role played by
eosinophils in the development of inflammatory diseases.

Among our genes that were driven by rare variants, i.e.,
ALOX15, CSF2RB, IL17RA, IL33, JAK2, S1PR4, and SH2B3,
previous studies supported a rare variant association between
IL33, which is a known asthma locus, and eosinophil count (5).
When restricting the SKAT analysis to include only rare variants
and elaborating with the MAF cutoff for defining a variant as
rare, we showed that the IL33 association is driven by variants
with a MAF below 0.5%. This association is most likely mainly
driven by rs146597587-C (Figure S12A), a splice site-disrupting
variant leading to loss of function, that has been shown to be
associated with lower blood eosinophil count and to be
Frontiers in Immunology | www.frontiersin.org 10
uncorrelated to previously reported variants in IL33 associated
with eosinophil count (24). Another example is SH2B3 which
seems to be driven by variants below a MAF of 0.3% after
adjusting for lead GWAS hits. SH2B3 has been linked to
eosinophil count previously, but to a common missense
variant, rs3184504, with a MAF of 48% in the UKB (8). We
also verified the association between SH2B3 and eosinophil
count using Genebass. In Genebass, when including missense
and low confidence putative LoF variants, an association with
SH2B3 was identified, but not when filtering on high confidence
putative LoF variants. The SH2B3 association is likely partly
driven by rs72650673-A (Figure S12B, MAF = 0.2%), which has
been associated with other blood traits before (8), but not
explicitly with eosinophil count.

Our first novel association was NPAT, Nuclear protein,
coactivator of histone transcription. This gene encodes a
protein (NPAT) that is required in the cell cycle through the
growth (G1) and DNA synthesis (S) phases, as well as for the S
phase entry. In our GSEA, NPAT was included in the set of
overrepresented genes for both plateletcrit and platelet
hematocrit measurement (Table S7, Figure S11). Previous
studies have also reported genetic associations between
rs7129527-G (5), intronic in NPAT, and rs4754299-T (8),
2.7 kb upstream of NPAT, and plateletcrit. Additionally, in a
study of genomic modulators of gene expression in human
neutrophils, an SNP (rs35244261) was found to be a cell-type-
specific eQTL, being associated with a higher expression of ATM
in neutrophils and NPAT in monocytes (29). As NPAT activates
the transcription of histones, there is a possibility that
overexpression of NPAT in monocytes might give rise to an
altered differentiation of myeloid progenitor cells with a higher
fraction of monocytes compared to granulocytes (and mast cells
and megakaryocytes). Our association between NPAT and
eosinophil counts might therefore be detected as a result of
altered fractions of leukocyte types.

Our second novel eosinophil locus was RMI1, RecQ-mediated
genome instability 1. The encoded protein (RMI1) is one part of a
four-subunit protein complex with BLM, TOPO3, and RMI2. This
complex is important during homologous recombination. When
this is disrupted, most commonly through LoF mutations in the
BLM gene, it results in Bloom syndrome. In addition, although
RMI1 has previously not been associated with eosinophils
specifically, it has been associated with myeloid white blood cell
count. RMI1 is suggested to be involved in leukemia (including
acute myeloid leukemia) where reduced expression of RMI1 and
other critical genes seems to result in disease (30).

Of the genes that overlap with previously reported GWAS
results, nine remained significant when analyzing only rare and
low-frequency variants. One example is IL5RA, coding for the
interleukin 5 receptor subunit alpha. One of its ligands, IL-5,
promotes the proliferation, differentiation, and activation of
eosinophils by binding to the receptor that is located on the
surface of the eosinophil (31). IL-5 plays a crucial role in
eosinophilic asthma pathophysiology. IL15RA has been found
to be overexpressed in patients with asthma, albeit only with a
moderate correlation to eosinophil count (31). It was also part of
July 2022 | Volume 13 | Article 862255
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sets of overrepresented genes for pneumonia, pneumonitis,
eosinophilia, and asthma among others in our GSEA (Table
S7, Figure S11). IL-5-dependent eosinophil development
requires transcription factors from the C/EBP family among
others. These are all essential for the commitment and terminal
differentiation of myeloid progenitors to the eosinophil lineage
(32). CEBPE, the gene that encodes the CCAAT enhancer
binding protein epsilon, C/EBPϵ, was associated with
eosinophil count in our study, also when only considering rare
and low-frequency variants. CEBPE transcription is driven by
two alternative promoters, giving rise to two different protein
isoforms with different functions in myeloid differentiation (33).
It has been shown that, through the differential usage of these
two alternative promoters, the IL5RA gene is temporally
regulated during eosinophil development. Given that rare
variants are often predicted to introduce functional changes, it
is plausible that the rare variants driving the associations in our
study might be located at critical positions in the gene. However,
as our study is gene-based, this warrants further validation.

Six genes, CEP85, GATA2, ZNF668, EXOC3L1, CTDNEP1,
and SERPINB11, were still significant after adjusting for lead
GWAS hits and have not previously been pinpointed as potential
eosinophil genes. One of these, GATA2, GATA binding protein
2, encodes a transcription factor that has key roles in
hematopoietic development, and its expression has been
suggested to identify the early segregation of monocyte and
mast cell lineages (34). GATA-2 is known to be involved in
early eosinophil differentiation, where overexpression of GATA-
2 induces the commitment to the eosinophil lineage in
granulocyte–monocyte progenitors (GMPs) (35). As GATA2
expression seems to be the driver of increasing eosinophil
commitment, our results most likely indicate that a change in
GATA2 expression leads to a change in eosinophil count.

As we decided to include participants of all ethnicities, we
performed a set of sensitivity analyses controlling for population
stratification. Overall, the results agreed well, at least when meta-
analyzing the strata representing ethnic groups, and all results are
still significant. Adjusting for GWAS hits, all were validated except
for ZNF668, ALOX15, CTDNEP1, GATA2, and GSDMA, which
were not genome-wide significant (but still nominally significant) in
the analyses when adjusting for lead GWAS SNPs. As our results are
reasonably robust across analyses, we believe that these associations,
including the novel ones for RMI1 and NPAT, are true association
signals, and the changes in the magnitude of the P-values are mostly
due to changes in sample size.

Our study has some limitations. First, variants used in the
GWAS and variants used in the gene-based analyses were not
sequenced with the same technology. The third release of genotyped
and imputed variants was used in the GWAS, and WES variants
were used in the gene-based approach. This makes it harder to
accurately interpret the difference in results, especially as imputation
is less accurate below 1%. However, as shown by Van Hout et al., R2

concordance between the 50K WES variants and imputed
sequenced data ranged from 32.2% for MAF <0.01% to 95.2% for
MAF >1%, with an average of 53.1% across all allele frequencies (9).
When compared to array genotypes, concordance was much
Frontiers in Immunology | www.frontiersin.org 11
greater, ranging from 73.2% for MAF <0.01% to 98.7% for MAF
>1%, with an average of 92.3% across all allele frequencies. Despite
this, one should be cautious with the clinical interpretation, as the
variants in the two different datasets were called with different
human reference genomes (hg19 for imputed/genotyped and hg38
for WES). It has been shown that there are discordant variants
between the reference genomes and that those often are enriched in
certain regions (36). Secondly, predicted LoF variants have a high
probability of being enriched for annotation errors when residing in
the low and rare allele frequency spectrum (37). As the majority of
the variants are rare, one should be also cautious with rare variants,
especially singletons, that have been predicted as very deleterious.
Third, the coverage of the data used in our study (20× at 95.2% of
the sites) will have an impact on rare variant detection, even if
genotype accuracy has been measured to be as high as 98.5% at 15×
coverage, and the improvement of call rate and quality of very rare
variants becomes marginal between 15× and 30× depth (38). Lastly,
as WES data only contain exonic variation, we might miss
associations outside of coding regions, such as regulatory elements
or functional variation within introns. Most notably, our results
warrant functional validation, especially the previously established
associations where we identified additional rare variants that seem
to be driving the association, even after adjusting for lead
GWAS hits.

A recent study has analyzed exome sequencing data from
450,000 UK Biobank exomes in relation to eosinophil traits (10).
However, the previous study limited its analyses to gene burden
tests where rare variants were collapsed within a gene region. The
collapsing was performed so that individuals who did not have
any likely deleterious variant in the region were classified as
being homozygous reference, whereas heterozygous carriers of
any likely deleterious variant were considered heterozygous, and
homozygotes for any likely deleterious variant were considered
homozygotes. The same collapsing strategy was done for LoF
variants as for the likely deleterious. In our study, we instead used
the SKAT method that does not collapse variants in a similar
way. In contrast, SKAT does not assume that the effects of the
variants are in the same direction and have the same magnitudes
of effects. In addition, SKAT also allows for the incorporation of
weights for the genetic variants, weights that can reflect the
predicted degree of deleteriousness or the MAF. In our study, we
have therefore been able to report additional associations that
were not identified in the previous study (10). We designed our
study to test a set of different weighting schemes in the gene-
based analyses and identified a total of 220 genes, of which 5
(2.3%) were identified by all weighting schemes, 112 (50.9%) by
four, 53 (24.1%) by three, 24 (10.9%) by two, and 26 (11.8%) by
one weighting scheme, respectively. Different weights may be
optimal for different regions, but the most optimal analysis
method cannot be chosen, as we do not have sufficient
information regarding the underlying genetic architecture.
Most importantly, as the underlying architecture is most likely
not uniform across all causal regions, there will likely never be a
“one-size-fits-all” model.

In summary, we have identified two novel loci for eosinophil
count, RMI1 and NPAT, and we also report several novel rare
July 2022 | Volume 13 | Article 862255
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variant associations in previously associated genes. Despite this, a
relatively low number of associations appears to be driven by rare
variants. However, rare variants are more likely to have larger
phenotypic effects, compared to common variants, and by that,
rare variants are of higher clinical impact. However, even with
200,000 exomes, the number of rare variant associations was
limited, which could suggest that even larger sample sizes are
needed in order to reach enough statistical power to investigate
the effect of very rare variants. Also, one should consider that our
study only investigated exonic variants, which is a vast minority
of the total amount of variations in the human genome, and there
is therefore a future need to expand rare variant analyses to
include also a non-coding variation to capture additional
associations for eosinophil count.
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