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Abstract

Digital pathology is a rapidly advancing field where deep learning methods can be employed to extract meaningful imaging
features. However, the efficacy of training deep learning models is often hindered by the scarcity of annotated pathology
images, particularly images with detailed annotations for small image patches or tiles. To overcome this challenge,
we propose an innovative approach that leverages paired spatially resolved transcriptomic data to annotate pathology
images. We demonstrate the feasibility of this approach and introduce a novel transfer-learning neural network model,
STpath (Spatial Transcriptomics and pathology images), designed to predict cell type proportions or classify tumor
microenvironments. Our findings reveal that the features from pre-trained deep learning models are associated with cell
type identities in pathology image patches. Evaluating STpath using three distinct breast cancer datasets, we observe its
promising performance despite the limited training data. STpath excels in samples with variable cell type proportions
and high-resolution pathology images. As the influx of spatially resolved transcriptomic data continues, we anticipate
ongoing updates to STpath, evolving it into an invaluable AI tool for assisting pathologists in various diagnostic tasks.
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Introduction

Manual pathological examination of histology images remains

the gold standard for evaluating and diagnosing many diseases,

such as cancer [1], neurodegenerative diseases [2], and heart

failure [3]. Hematoxylin and eosin (H&E)-stained whole slide

images (WSIs) are the most common type of histology images.

They are gigapixel images that often contain over a billion

pixels each, making manual inspection highly labor-intensive.

As routine screening and examination become prevalent, the

volume of WSI data is growing faster than the number

of proficient pathologists available. An artificial intelligence

(AI)-assisted WSI analysis system, primarily driven by deep

learning methods, offers a promising solution to this shortage

of pathology resources [4]. Such an AI system can have

an even greater impact in low-income regions or developing

countries, where pathology expertise is scarce. Additionally, it

can enhance interobserver reproducibility, which is crucial for

improving diagnostic consistency [5].

Building such a deep learning system requires a large

amount of high-quality training data. Manual examination of

WSIs follows a hierarchical approach: starting with the whole

image, identifying the area of interest, and zooming into small

patches for detailed analysis. Therefore, the training data needs

to be annotated at the level of these small patches (e.g., 224

x 224 pixel squares). However, most available H&E-stained

WSIs are only labeled at the whole image level, and manually

annotating these WSIs at the patch level is prohibitively

laborious.

Recent advancements in spatially resolved transcriptomics

(SRT) offer unprecedented opportunities to study gene

expression in cells within their native tissue microenvironment.

In contrast to WSIs, SRT provides much richer information

that can be used to estimate cell types or cell states.

Typically, a WSI is collected alongside SRT data from the

same tissue sample, creating the potential to annotate the

WSI using the annotations derived from SRT data. Extracting

annotations from SRT data is an active research area and many

computational methods have been developed to call cell types

of individual cells or estimate cell type composition at each spot

on the WSI [6, 7, 8].

In this paper, we present a transfer learning approach

to develop a convolutional neural network (CNN) capable of

annotating WSIs. Starting with a pre-trained CNN, we retrain

it using training data that includes paired WSIs and SRT data.

The trained model can then be applied to make predictions on

testing data where only WSI data are available. Despite the

limited amount of training data, we demonstrate the feasibility
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and good generalizability of our method. We have developed

a pipeline named STpath (Spatially resolved Transcriptomics

and pathology imaging data) and applied it to two types of

tasks: predicting cell type proportions and classifying tumor

microenvironments. We also provide guidance on best practices,

such as selecting hyperparameters for CNNs, and options for

working with images with relatively lower resolutions.

Methods

SRT data
We applied the proposed STpath pipeline to four SRT datasets,

one from a melanoma brain metastasis and three from breast

cancer samples. The SRT data for brain metastasis (patient

16) was generated by Sudmeier et al. [9] using the 10x Visium

platform, from a 10 µm thick H&E-stained flash-frozen section

of the tumor parenchyma. The slide was imaged with a

Lionheart Microscope (Biotek) at 10x magnification.

The first BRCA dataset was publicly shared by 10x

Genomics. It includes two BRCA tissue samples generated

using the 10x Visium platform. The full-resolution WSIs

provided by 10x Genomics were scanned using a 20X

magnification microscope objective. The second BRCA dataset

was generated by Wu et al. [10] using the 10x Visium solution,

consisting of six human breast cancer samples. The third BRCA

dataset, generated by He et al. [11], consists of samples from

23 patients. For each patient, three microscope images of

H&E-stained tissue slides were taken. Corresponding SRT data

were collected using spatial transcriptomics, which has lower

resolution than 10x Visium.

Image processing
The SRT data provide the position and diameter of each gene

expression spot. Using this information, we generated standard

square patches, with each patch covering one spot. The size

of each patch, in terms of the number of pixels, varied across

datasets: 50 × 50 pixels for the brain metastasis dataset [9], 90

× 90 pixels for the four CID- samples of Wu et al. [10], 152 ×
152 pixels for the 23 samples of He et al. [11], and around 200

× 200 pixels for all other samples. Such variation was due to

the difference in imaging capture resolution and magnification.

To facilitate unified processing, each image was rescaled to 224

× 224 pixels for input into the CNN.

The resolutions of the extracted patches for each sample

tissue used in this study are shown in Supplementary Table

1. Additionally, we generated large patches for the datasets

obtained using the 10x Visium solution. These large patches

encompassed eight spots within each patch (Supplementary

Figure 1). Since the Visium spots are hexagonally spaced, the

arrangement of these eight spots followed a specific pattern,

forming an hourglass shape. Specifically, there were three spots

in the first and third rows of the large patch, while the second

row contained two spots.

Some of the gene expression spots do not overlap with the

tissue sample. When extracting patches from WSIs, we only

utilized spots within the tissue that contained gene expression

data. Specifically, only patches containing at least 50% tissue

were selected for further analysis. To distinguish tissue from

the background, we adopted a multi-step approach similar to

the one used by Barker et al. [12]. First, we converted the

patch images to grayscale, merging the three color channels

into a single channel, with each pixel assigned an integer value

from 0 to 255. Since the slide backgrounds were illuminated

with white light, the pixel values in the grayscale image’s

background were mostly close to or equal to 255. Next, we

enhanced the contrast of the grayscale image using adaptive

histogram equalization [13], ensuring better differentiation of

tissue from the background. The complement of the contrast-

enhanced grayscale image was then obtained at an 8-bit depth,

inverting the pixel values so that the background values were

close to or equal to 0. Finally, we performed hysteresis

thresholding, an automatic edge detection technique, to detect

tissue boundaries. Briefly, hysteresis thresholding detects edges

using the following rules: edges with intensities above the high

threshold are identified as true edges; edges with intensities

below the low threshold are classified as non-edges; and edges

with intensities between the high and low thresholds are

identified as edges only if they are connected to a previously

identified true edge; otherwise, they are discarded. Other

contrast enhancement techniques, such as contrast stretching,

and thresholding techniques, such as Otsu’s, could also be

implemented. Supplementary Figure 2 provides examples of

tissue detection, using patches from different sources.

Stain normalization
Stain normalization is performed to address the variability in

staining intensity and color that can arise from differences in

staining protocols, reagents, and imaging conditions. These

variations can introduce biases and affect the accuracy of image

analysis. We employed two methods for stain normalization:

the Macenko method [14] and the Vahadane method [15].

These algorithms transfer the color style of the source image

to that of a carefully selected target image while preserving

other information in the processed image. Supplementary

Figure 3 provides two examples of stain normalization, one

from sample 1142243F and another from sample CID4465.

In our analysis, neither stain normalization method improved

STpath’s performance in prediction or classification. Therefore,

we report the results generated using the original images unless

otherwise noted. It is possible that stain normalization may be

more beneficial for larger and more heterogeneous cohorts.

Cell type deconvolution for the regression task
We employed a cell type deconvolution algorithm called CARD

(Conditional AutoRegressive model-based Deconvolution) to

estimate the composition of cell types in spatial transcriptomic

data [16]. CARD takes advantage of the spatial information

available in the data and performs reference-based deconvolution.

The relevant cell types of a tissue need to be determined for each

tissue type separately, and then scRNA-seq data of these cell

types are needed as input for CARD. CARD provides estimates

of the proportions of relevant cell types within each spot.

We did not run CARD on the SRT data retrieved from

Sudmeier et al. [9] due to the lack of scRNA-seq reference data

with annotations for relevant cell types. We used a breast cancer

scRNA-seq dataset generated by Wu et al. [10] as the reference

for cell type deconvolution of all BRCA datasets. This dataset

consists of scRNA-seq (Chromium, 10x Genomics) data from

26 primary tumors representing three major clinical subtypes

of breast cancer: 11 ER+, 5 HER2+, and 10 TNBC tumors.

The scRNA-seq data identified nine major cell types and 29

minor cell types. We ran CARD on the three SRT datasets.

The deconvolution results are consistent with annotations for

breast cancer samples from the 10x Genomics dataset and Wu

et al. [10] dataset, but not for the He et al. [11] data, possibly

due to lower resolution of the He et al. data.
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Class annotation for the classification task
For the brain metastasis data [9] and the BRCA data from

Wu et al. [10], the clusters were generated and annotated by

the authors (Supplementary Table 3-4). For the BRCA dataset

from He et al. [11], we clustered the gene expression spots using

Seurat V5 [17] (Supplementary Table 6). We log-normalized

the expression data and integrated data from different samples

using anchor-based CCA (Canonical Correlation Analysis)

integration.

Neural Network
ResNets are a popular choice for supervised transfer learning

due to their superior performance and efficiency compared

to other CNN models [18]. In this study, we used neural

networks built upon a ResNet-50 architecture pre-trained on

the ImageNet dataset, though other pre-trained models can also

be used in the STpath pipeline.

ResNet-50, as the name implies, consists of 50 layers. We

excluded the final output layer, originally containing 1,000

nodes for ImageNet classification tasks. To preserve the learned

weights in the base model, we froze these layers to prevent

further weight updates. To adapt the base model to our specific

tasks, we introduced new trainable layers on top of it. These

additional layers converted the extracted features from the

base model into predictions aligned with our regression or

classification tasks. The size of the final output layer, a Fully

Connected (FC) layer, was determined based on the nature

of each task. For regression tasks, the number of nodes in

the final output layer matched the number of cell types we

aimed to predict. For classification tasks, the number of nodes

corresponded to the number of distinct classes within the

dataset. The output layer used the softmax activation function

for all tasks, allowing our model to generate predictions

compatible with the output expectations of each task.

Between the final output layer and the base model, we

introduced an additional FC layer with the ReLU activation

function. This hidden FC layer increased the number of

trainable parameters, thereby enhancing the model’s capacity.

To mitigate the risk of overfitting, we incorporated a dropout

layer immediately after the intermediate FC layer. We fine-

tuned the dropout proportion and the number of nodes in the

hidden FC layer to optimize performance.

Training and Evaluation
While we trained different networks for different datasets

and tasks, we consistently divided the available patches into

three subsets: 70% for training, 15% for validation, and 15%

for testing. To facilitate comparison across neural networks

with different hyperparameters, the division of the training,

validation, and testing datasets remained consistent for each

dataset.

To train the models, we employed different optimizers,

including Adam, SGD, and RMSprop, aiming to minimize

categorical entropy loss for classification tasks and mean

squared error loss for regression tasks. We experimented with

varying learning rates and batch sizes to enhance the model’s

learning. The optimal hyperparameters were identified based

on performance improvements on the validation dataset.

We saved the model’s weights after each epoch if there

was an improvement in loss on the validation dataset. The

maximum number of training epochs was set to be 1,000 for

all CNN models. Additionally, we implemented early stopping

based on the validation loss, with a patience of 30 epochs. If the

validation loss did not decrease within 30 epochs, we terminated

the training process.

To evaluate the model’s performance on the testing dataset,

we used metrics appropriate for the task. For classification

tasks, we utilized AUC, while for regression tasks, we measured

the mean absolute error and mean squared error.

Results

An overview of STpath
An overview of STpath. (A) An illustration to split a WSI

into individual patches. The left panel shows the WSI of

a breast cancer FFPE sample downloaded from the 10x

genomics website. The other panels illustrate the process

of splitting the WSI into patches. (B) Generate patch

annotations or features such as tissue microenvironment or

cell type proportions. (C) Given image patches X and features

associated with each patch y, use transfer learning to build a

CNN to learn features from image patches.

The transfer-learning-based STpath pipeline consists of

three steps. First, a WSI is segmented into small patches

(Fig. 1(A)). By default, each patch contains one spot of SRT

data and is referred to as a standard patch. Additionally, large

patches are created, each encompassing eight spots. We use

patches that contain at least 50% tissue, selected through a

three-step process similar to the one described by Barker et al.

[12]. To mitigate color and intensity biases in stained images,

we apply stain normalization.

After creating and pre-processing the image patches, the

second step involves generating features for each patch, which

the CNN will predict (Fig. 1(B)). These features can include

proportions of cell types inferred by deconvolution methods

from SRT data [19, 20, 21, 22, 16] or class labels derived

from SRT data [23, 24] or pathologists. STpath supports both

regression and classification tasks. For regression, the goal is

to quantitatively predict the cell type proportions within each

patch. For classification, the objective is to categorize each

patch into distinct tissue microenvironments.

In the final step, we use transfer learning to train a CNN to

make predictions on the features of interest for image patches

(Fig. 1(C)). In this work, the pre-trained baseline model is

ResNet50 [18], though it can be replaced by any other pre-

trained CNNs. ResNet50 utilizes residual blocks that include

multiple shortcut connections, adding the input back to the

output and enabling the network to learn residual features

(Supplementary Figure 4). We modify ResNet50 by appending

a hidden layer of 256 neurons to the ResNet50 output, followed

by a dropout layer and a fully connected layer to generate the

output (Fig. 1(C)). Further details of our method and pipeline

are provided in the Methods section.

A proof-of-concept example
Fig.2: (A) Cluster assignments of spots from an SRT slide of

a melanoma brain metastasis sample. This panel is a modified

version of Figure 6b of Sudmeier et al. [9], which is an open-

access article under the CC BY license. (B) Sample size for

training, validation, and testing. (C) Classification accuracy

in training and validation data along training epochs. (D)

Classification ROC curve in testing data.

We began with an example involving the classification of

two spatial regions in a melanoma brain metastasis sample [9]
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with an H&E image and paired 10x Visium SRT data. The

authors identified 7 clusters using the SRT data: tumor (cluster

4), tumors adjacent to inflammation (cluster 5), inflammation

(cluster 1), and inflammation with blood vessels (cluster 7)

(Fig. 2(A)).

Three other clusters included two clusters of blood and

one cluster of necrotic tumors. Our focus was on classifying

tumors (clusters 4 and 5) versus inflammation (clusters 1 and

7). Although this classification task was relatively simple due

to the homogeneity of each region, it also posed a challenge

because of the limited amount of training data. The dataset

comprised approximately 1,000 spots: around 700 for training,

150 for validation, and 150 for testing (Fig. 2(B)).

Using this example data, STpath achieved high classification

accuracy. The training of STpath concluded after roughly 360

epochs. The validation accuracy was approximately 0.9 with

no sign of overfitting (Fig. 2(C)). The AUC (area under the

receiver operating characteristic curve) for the testing data

was around 0.95 (Fig. 2(D)). We also explored two stain

normalization methods: the Macenko method [14] and the

Vahadane method [15]. The accuracy of the classification before

and after either stain normalization was similar.

This proof-of-concept example demonstrated that STpath,

trained with only ∼700 spots, could achieve accurate

classification.

Applications to breast cancer datasets
Fig.3: (A) The WSI of the 10x FFPE sample. (B) The WSI

of the 10x fresh frozen sample. (C) Cell type proportion

estimates for all the spots of the FFPE sample. (D) Cell

type proportion estimates for all the spots of the fresh

frozen sample. CAF: cancer-associated fibroblast. PVL:

perivascular-like stroma cells.

In the remaining part of the paper, we explore paired WSI

and SRT data from breast cancer (BRCA) samples, which are

more representative tumor tissues with mixed cell types. The

BRCA samples came from three sources: two samples from 10x

Genomics, six samples generated by Wu et al. [10], and 23

samples generated by He et al. [11].

The first 10x sample was derived from an FFPE human

breast tissue obtained from BioIVT Asterand Human Tissue

Specimens and was annotated as Ductal Carcinoma In Situ

(DCIS) and Invasive Carcinoma (Fig. 3(A)). The second

10x sample was derived from a fresh frozen Invasive Ductal

Carcinoma breast tissue, also obtained from BioIVT (Figure

3(B)).

The SRT dataset from Wu et al. [10] consisted of

six human breast samples, including two samples classified

as ER+ (CID4535 and CID4290), two classified as triple-

negative breast cancers (TNBC) (CID44971 and CID4465), and

two additional TNBC samples processed in an independent

laboratory (1142243F and 1160920F). The authors generously

provided full-resolution WSIs of all six tissues upon request.

The first four samples were at 20x magnification, while

the last two were at 40x magnification. The cell type

compositions varied significantly across these samples (Table

1, Supplementary Figure 5(A)).

Table 1: Number of patches in each tissue section with each

of the nine major cell types having the highest proportion.

The dataset from He et al. [11] included 23 human breast

samples. These samples were classified into five categories: five

HER2-luminal, five HER2-non-luminal, four Luminal A, five

Luminal B, and four TNBC samples. For each sample, three

replicated WSIs were obtained, together with the corresponding

SRT data.

The SRT data from the two 10x samples and the Wu et al.

[10] samples were generated by the 10x Visum platform, where

each slide captured an area of 6.5 × 6.5 mm and approximately

5000 spots. Each spot was 55 µm in diameter with a 100 µm
center to center distance and each spot covered 1-10 cells. The

SRT data from He et al. [11] had relatively lower resolution

where each spot had a diameter of 100 µm with a 200 µm center-

to-center distance.

To estimate the cell type composition of each spot, we

employed the computational method CARD [16], which showed

good performance in independent evaluations [8]. We used

a breast cancer scRNA-seq dataset [10] as the reference for

cell type deconvolution. The dataset consisted of scRNA-seq

data from 26 primary tumors representing three major clinical

subtypes of breast cancer: 11 ER+ cancers, 5 HER2+ cancers,

and 10 TNBCs. CARD revealed nine major cell types. Cell

type proportions varied across samples. For example, in the

10x FFPE sample, multiple cell types were present, with

cancer-associated fibroblasts (CAFs) being the most abundant

one (Fig. 3(C)). Conversely, the 10x fresh frozen sample

predominantly consisted of tumor cells (Fig. 3(D)). Several cell

types had low proportions across patches, making them harder

to study. Therefore, in the following analysis, we also considered

four collapsed cell types that were defined as follows: Invasive

Cancer (Cancer Epithelial), Stroma (Endothelial, PVLs, or

CAFs), Lymphocyte (T cells, B cells, or Plasmablasts), and

Others (Normal Epithelial or Myeloid) (Supplementary Figure

5(B)).

In addition to cell type proportions, we also generated

class labels for classification tasks. We adopted the class labels

reported by Wu et al. [10] and generated class labels for the

SRT data from He et al. [11] by clustering all spots from all

samples.

Features learned by ResNet
Fig.4: The proportion of rank-sum test p-values less than

0.05, when comparing the 2048 ResNet features between

groups defined by cell type proportions and samples. The two

horizontal lines indicated 0.05 and 0.75, respectively.

ResNet was originally trained on ImageNet, which consists

of a wide variety of images significantly different from H&E-

stained WSIs. We first posed a question: Could the 2,048

features extracted by the pre-trained ResNet capture cellular

information from WSIs? We generated four patch groups for

each tissue sample from the two 10x samples and the Wu

et al. samples. Specifically, Groups 1 and 2 had comparable

proportions of a specific cell type, as did Groups 3 and 4.

However, the proportions of this specific cell type differed

between Groups 1 and 2 versus Groups 3 and 4. Next,

we compared the values of each ResNet50-extracted feature

between any two groups using the rank-sum test. We assessed

the difference between the two groups by calculating the

proportion of features with p-values smaller than 0.05. If there

was no difference between the two groups, this proportion

should have been approximately 0.05, and higher proportions

indicated that more features differed than expected.
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There were six pairwise comparisons for the four groups,

with two being within-category comparisons (Group 1 vs.

2, and Group 3 vs. 4) and four being between-category

comparisons. Due to the compositional nature of cell type

proportions (i.e., the proportions of the four cell types added

up to 1), it was not possible to adjust the proportion of

one cell type while leaving the proportions of other cell types

unchanged. Thus, we simply sampled the patches with high or

low proportions of one cell type and did not put constraints

on other cell types (Supplementary Figures 6-10). The results

were challenging to interpret because a ResNet feature might

capture the signal from any cell type. Nevertheless, it was clear

that many ResNet features were different for between-category

comparisons, and around 5% of ResNet features were different

for within-category comparisons, which was expected to happen

by chance (Fig. 4).

If a cell type had relatively lower proportions in the spots

of one slide, sampling spots with higher or lower proportions

of this cell type did not change the proportions of other cell

types much. This created the opportunity to evaluate the

identified features associated with a particular cell type. For

example, the results from CID4465 and CID44971 were more

informative in identifying features associated with invasive

cancer proportions (Supplementary Figure 7), CID44971 was

an informative sample for lymphocytes (Supplementary Figure

8), CID4465 was an informative sample when comparing

proportions of other cell types (epithelia and myeloid) or stroma

(Supplementary Figures 9-10).

The above results demonstrated that the pre-trained ResNet

could recover features of WSIs that were associated with cell

type identity. Next, we evaluated the modified ResNet with

additional layers trained with paired WSI and SRT data.

Prediction of cell type proportion
Fig.5: Comparison of observed cell type proportions estimated

by CARD versus predicted cell type proportions by STpath

using testing data and the hyperparameters selected by

validation data. (A) Comparison for two 10x samples using

standard patches (i.e., each patch represents a spot) with the

hyperparameters: Batch size (batch) = 32, learning rate (LR)

= 0.001, dropout proportion (dropout) = 0.0, and size of

dense layer (size) = 512. Three R2s for Fresh frozen (red),

FFPE (blue), and combined data (black) were shown for each

cell type. (B) Comparison for six samples from Wu et al. [10]

using using standard patches with the hyperparameters: batch

= 32, LR = 0.0001, dropout = 0.0, and size = 512. Three

R2s for CID- (dark green), 11- (dark red), and combined data

(black) were shown for each cell type. (C) Comparison for six

samples from Wu et al. [10] using large patches such that one

patch covers eight spots. The hyperparameters are as follows:

batch = 128, LR = 0.0001, dropout = 0.2, and size = 512.

Cell identity is one of the most important molecular features

when reading a H&E WSI. We sought to predict cell type

proportions for each patch of a WSI. We constructed a standard

patch around a spot of paired SRT data. Each dataset was

split into training, validation, and testing sets. The evaluation

was performed on the testing data using the hyperparameters

selected by the validation data.

For the two 10x Genomics samples, we first trained STpath

using two samples together. The predicted cell type proportions

in the testing data showed strong correlations with the observed

proportions estimated by CARD (Fig. 5(A)). The cell type

compositions are very different between the two samples. The

10x fresh frozen sample predominantly consisted of cancer cells,

while the 10x FFPE sample contained a mixture of several cell

types. This disparity could introduce a batch effect, potentially

biasing the results of the CNN. We also trained STpath

separately for each sample. Training the model separately for

each sample yielded higher prediction accuracy in the testing

data for some cell types, although the overall performance

remained similar (Supplementary Figure 11).

When applying the same procedure to Wu et al. data [10], we

observed clear batch effects impacting prediction accuracy. The

predictions for the two 11- samples were positively correlated

with estimates from the SRT data. In contrast, STpath

performed poorly on the four CID- samples; the predicted

values exhibited little variation and were clustered around their

mean values (Fig. 5(B)). We conjectured that this issue was due

to the low resolution of the CID- samples, where a standard

patch was approximately 90 × 90 pixels. In contrast, a standard

patch of the 11- samples was around 200 × 200 pixels. To

address this discrepancy, we constructed large patches covering

eight spots in the SRT data (See Methods section for details).

Despite the reduction in sample size for training due to larger

patches, the prediction accuracy improved for the 11- samples

and the combined 11- and CID- samples (Fig. 5(C)). Although

the performance is still poor for the CID- samples, the improved

R2’s in all samples suggest that larger patches help align

the two sets of samples. However, suboptimal performance

on the CID- samples suggests that further resolution-related

adjustments may be required.

We also trained STpath models to predict the proportion of

nine cell types. The prediction results for nine cell types had

similar patterns as those for four cell types (Supplementary

Figures 12-13). We could estimate the proportions of four

cell types by collapsing the prediction results of the 9-cell-

type model. Interestingly, the predictions obtained through

this post-collapsing approach were very similar to those derived

from directly predicting the proportions of the four cell types

(Supplementary Figure 14).

Classification of tumor microenvironment
Fig.6: (A) Micro-averaged and class-specific AUCs for the

classification task in the testing data of six samples from

Wu et al. [10]. The optimal neural network configuration

was selected using validation data, with the following

hyperparameters: optimizer = Adam, LR = 0.0001, dropout

= 0.0, size = 512, and batch size = 32 for CID4465,

and 16 for all other samples. (B) UMAP visualization of

28,968 gene expression spots analyzed by RNA expression

from SRT data and integrated across 23 breast tumors from

He et al. [11] using the CCA method, stratified by He

et al.’s tumor/non-tumor annotations. UMAP dimensional

reduction was performed using 30 principal components in the

Seurat v5 package. Clusters were created with a resolution

of 0.1. The number of spots in each cluster is displayed,

colored by cluster. (C) ROC curve for the classification

task in the testing data of 23 samples from He et al. [11].

The optimal neural network configuration was selected using

validation data, with the following hyperparameters: batch =

256, optimizer = Adam, LR = 0.001, dropout = 0.0, and size

= 256.

In the proof-of-concept example, we considered a

classification problem and STpath achieved high accuracy when
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classifying Tumor vs. Inflammation cell regions. In this section,

we extended our exploration of classification tasks to more

challenging scenarios where each class was defined by a specific

tumor microenvironment. We utilized annotations from Wu et

al. [10], which classified each spot of the SRT data into one of

the following 11 classes: adipose tissue, invasive cancer, invasive

cancer + lymphocytes, invasive cancer + stroma, invasive

cancer + stroma + lymphocytes, lymphocytes, necrosis, normal

+ stroma + lymphocytes, normal glands + lymphocytes,

stroma, and stroma + adipose tissue. Patches annotated as

NA, Artefact, or Uncertain were excluded from the analysis.

Additionally, for each sample, labels that were assigned to fewer

than 50 patches were also excluded to ensure sufficient data

representation for each class. We computed the AUC for each

class, as well as the aggregated AUCs across all classes.

The performance of STpath varied across samples and

classes within each sample (Fig. 6(A), Supplementary Figure

15). Overall, the performance was better in the two 11- samples

compared to the four CID- samples. This is consistent with

our findings for predicting cell type proportions, suggesting

that the relatively low resolution of WSIs from CID- samples

affects classification accuracy. For the two 11- samples, the most

challenging classification was for stroma, with AUCs around

0.74. The tumor tissues in these two samples were included in

the class “Invasive cancer + stroma + lymphocytes”. This class

was classified with high accuracy, achieving AUCs of 0.832 and

0.872 for samples 1142243F and 1160920F, respectively.

We also performed classifications on the He et al. dataset

[11], with annotations generated by clustering via Seurat v5

[17]. We detected three clusters, denoted by clusters 0, 1, and

2, and they had an increasing proportion of spots annotated as

tumors based on the tumor/non-tumor annotations provided

by He et al [11] (Fig. 6(B)). The fact that all clusters have

a considerable amount of tumor may reflect the preference to

select tumor regions for this SRT data. As expected, it was

easier to distinguish the spots in cluster 0 or cluster 2 from

other spots because they had relatively low or high tumor

content, while it was harder to isolate cluster 1 because it had

intermediate tumor content (Fig. 6(C)).

Discussion and conclusion

Deep learning methods hold great promise for extracting

valuable information from whole slide images (WSIs) to predict

clinical outcomes [25, 26] and molecular traits [27]. However,

a significant challenge in training these methods is obtaining

patch-level annotations.

A popular approach that does not require patch-level

annotations is multi-instance learning [25, 26]. It treats a WSI

as a bag of patches and classifies the bag if at least one patch

meets the criteria for a specific class. This assumption works

well for certain tasks, such as distinguishing between tumor

and non-tumor samples, where the presence of a single tumor

patch suffices to classify the WSI as a tumor sample. However,

this assumption may not hold for many other tasks, such as

studying the tumor-immune microenvironment.

The STpath framework proposed in this paper differs

fundamentally from multi-instance learning. STpath leverages

spatially resolved transcriptomic data to provide batch-level

labels for model training. Once trained, an STpath model

can be applied to WSIs to translate a large (e.g., billions

of pixels) and shallow (e.g., two color channels for H&E-

stained images) WSI into a smaller (e.g., thousands of patches)

and deeper (e.g., composition of nine cell types) image.

This can greatly simplify downstream analysis, facilitating

the assessment of associations between WSIs and clinical

outcomes. Additionally, this approach enhances interpretability

by providing biologically meaningful annotations for each

patch.

While it seems intuitive to use paired WSI and SRT

to train a neural network, key questions remain. These

include determining the number of samples needed, identifying

appropriate neural network structures, and deciding which

molecular features to derive from the SRT data. Our work

addresses these fundamental questions. We discovered that

numerous features derived from ImageNet-pre-trained neural

networks were associated with cell type labels of image patches.

To the best of our knowledge, our group is the first to report

these results, which strongly support the use of transfer learning

in studying WSIs. Additionally, this explains our observation

that a neural network with good generalizability can be trained

with just a few thousand patches.

We have explored a wide range of hyperparameters for the

neural networks, including the optimizer, batch sizes, learning

rate, the size of the hidden layer that connects the pre-trained

ResNet features with the output layer, and the dropout rate

for the dropout layer following the hidden layer. Our findings

indicate Adam optimizers with a learning rate of 0.001 or 0.0001

tend to outperform other optimizers. The results are generally

not sensitive to other hyperparameters, which can be selected

by validation data. We recommend choosing a batch size of 32,

64, or 128, a hidden layer with 256 or 512 hidden nodes, and a

dropout rate of 0, 0.2, or 0.5.

Using three breast cancer datasets, we aimed to predict

two types of molecular features for breast cancer: cell type

proportions and tumor microenvironments. Both tasks could be

achieved with relatively high accuracy. The cases with poorer

performance were samples predominantly of one cell type or

those with low-resolution WSIs. Previous research has focused

on predicting the expression of individual genes from H&E-

stained images [11]. An interesting future direction would be

to explore how gene expression prediction is mediated by the

prediction of cell types.

A major challenge of using paired WSI and SRT data to

train STpath is the noise in molecular features derived from

SRT due to estimation uncertainty, which could be due to the

uncertainty of extracting molecular features by a computational

method or the resolution of the SRT data. For example,

using higher resolution SRT data [10], we can obtain more

refined clusters than with lower resolution SRT data [11]. There

are a few directions to mitigate this estimation uncertainty.

One direction is to employ more advanced neural network

training methods that can account for noise in the training data

[28, 29, 30]. Another direction is to use SRT data with cellular

resolution, for example, the SRT data from the recent CosMx

platform [31].

In this work, all the prediction and classification tasks

were conducted for each patch separately. However, leveraging

information from nearby patches could potentially improve

STpath’s performance. This is challenging because the pattern

of spatial dependence can vary greatly across tissue types.

Ideally, this problem should be formulated as an image

segmentation problem. By dividing a WSI into different

spatial regions, information can be borrowed within those

regions. Therefore, we envision an iterative framework

that alternates between prediction/classification and image

segmentation tasks.
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Key Points

• Spatially resolved transcriptomic (SRT) data can be used

to generate both continuous features (e.g., cell type

proportions) and discrete features (e.g., classes of tumor

microenvironment) for paired H&E stained images.

• Transfer-learning is an effective solution to train deep

learning method to interpret H&E stained images. When

applying pre-trained deep learning models to H&E stained

images, the derived features are strongly associated with

cell type labels.

• Higher resolution of SRT data and H&E stained images

leads to better performance.
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Data availability

The codes for STpath are available at https://github.com/Sun

-lab/STpath with detailed instructions on its usage. The main

data supporting the results of this study are available within

the paper and its Supplementary Information. The 10x Visium

SRT data for brain metastases is publicly available through the

Gene Expression Omnibus under accession number GSE179572.

The SRT data for the 10x FFPE and the 10x fresh frozen BRCA

samples can be downloaded from https://www.10xgenomics.com/

resources/datasets/human-breast-cancer-ductal-carcinoma-i

n-situ-invasive-carcinoma-ffpe-1-standard-1-3-0 and https:

//www.10xgenomics.com/resources/datasets/human-breast-c

ancer-visium-fresh-frozen-whole-transcriptome-1-standard,

respectively. All 10x Visium SRT data in Wu et al. are available

from the Zenodo data repository (https://doi.org/10.5281/ze

nodo.4739739). All SRT data in He et al. are available at https:

//data.mendeley.com/datasets/29ntw7sh4r/5. The scRNA-seq

reference used for cell type deconvolution is publicly available

through the Gene Expression Omnibus under accession number

GSE176078.
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Figure and Table Captions

Fig. 1: (A) The WSI of the 10x FFPE sample. (B) The

WSI of the 10x fresh frozen sample. (C) Cell type proportion

estimates for all the spots of the FFPE sample. (D) Cell

type proportion estimates for all the spots of the fresh frozen

sample. CAF: cancer-associated fibroblast. PVL: perivascular-

like stroma cells.

Fig.2: (A) Cluster assignments of spots from an SRT slide of

a melanoma brain metastasis sample. This panel is a modified

version of Figure 6b of Sudmeier et al. [9], which is an open-

access article under the CC BY license. (B) Sample size for

training, validation, and testing. (C) Classification accuracy

in training and validation data along training epochs. (D)

Classification ROC curve in testing data.

Fig.3: (A) The WSI of the 10x FFPE sample. (B) The

WSI of the 10x fresh frozen sample. (C) Cell type proportion

estimates for all the spots of the FFPE sample. (D) Cell

type proportion estimates for all the spots of the fresh frozen

sample. CAF: cancer-associated fibroblast. PVL: perivascular-

like stroma cells.

Fig.4: The proportion of rank-sum test p-values less than

0.05, when comparing the 2048 ResNet features between

groups defined by cell type proportions and samples. The two

horizontal lines indicated 0.05 and 0.75, respectively.

Fig.5: Comparison of observed cell type proportions

estimated by CARD versus predicted cell type proportions by

STpath using testing data and the hyperparameters selected

by validation data. (A) Comparison for two 10x samples using

standard patches (i.e., each patch represents a spot) with the

hyperparameters: Batch size (batch) = 32, learning rate (LR)

= 0.001, dropout proportion (dropout) = 0.0, and size of dense

layer (size) = 512. Three R2s for Fresh frozen (red), FFPE

(blue), and combined data (black) were shown for each cell

type. (B) Comparison for six samples from Wu et al. [10] using

using standard patches with the hyperparameters: batch = 32,

LR = 0.0001, dropout = 0.0, and size = 512. Three R2s for

CID- (dark green), 11- (dark red), and combined data (black)

were shown for each cell type. (C) Comparison for six samples

from Wu et al. [10] using large patches such that one patch

covers eight spots. The hyperparameters are as follows: batch

= 128, LR = 0.0001, dropout = 0.2, and size = 512.

Fig.6: (A) Micro-averaged and class-specific AUCs for the

classification task in the testing data of six samples from Wu et

al. [10]. The optimal neural network configuration was selected

using validation data, with the following hyperparameters:

optimizer = Adam, LR = 0.0001, dropout = 0.0, size = 512,

and batch size = 32 for CID4465, and 16 for all other samples.

(B) UMAP visualization of 28,968 gene expression spots

analyzed by RNA expression from SRT data and integrated

across 23 breast tumors from He et al. [11] using the CCA

method, stratified by He et al.’s tumor/non-tumor annotations.

UMAP dimensional reduction was performed using 30 principal

components in the Seurat v5 package. Clusters were created

with a resolution of 0.1. The number of spots in each cluster

is displayed, colored by cluster. (C) ROC curve for the

classification task in the testing data of 23 samples from He et

al. [11]. The optimal neural network configuration was selected

using validation data, with the following hyperparameters:

batch = 256, optimizer = Adam, LR = 0.001, dropout = 0.0,

and size = 256.

Table 1: Number of patches in each tissue section with each

of the nine major cell types having the highest proportion.
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(A) Split WSI into patches (C) Use transfer learning to predict 
      cell type or label of each patch

(B) Generate features for each patch  
Cell type proportions of 
each patch

Classification of each patch

20%

40%

40%

Lymphocyte
Cancer
Stroma

0.8

0.2

Cancer + lymphocyte
Cancer

X
Image 
paches

y
Cancer
Prop.

0.6

0.9

0.2

0.8

0.7

0.1

size: 224x224x3

Fully connected (FC) layer
Dropout

FC to ouput

ResNet50

2048 feature vector

Fig. 1. An overview of STpath. (A) An illustration to split a WSI into individual patches. The left panel shows the WSI of a breast cancer FFPE sample

downloaded from the 10x genomics website. The other panels illustrate the process of splitting the WSI into patches. (B) Generate patch annotations or

features such as tissue microenvironment or cell type proportions. (C) Given image patches X and features associated with each patch y, use transfer

learning to build a CNN to learn features from image patches.

(A)

(C)

(B)

(D)

inflammation (cluster 1,7) for each standard patch of patient 16 in Sudmeier et al. [2022]. Patches in cluster

3 were excluded from our dataset due to its annotation as necrotic tumor. The varied parameters were the

batch size of the training dataset, learning rate, dropout rate, and the size of the dense layer. The optimizer

used was Adam. We also trained the same networks with different image types, both before and after stain

normalization. The training, validation, and testing datasets were the same across all networks. The number

of patches with each label in the training, validation, and testing datasets is listed in Table 8.5. The datasets

were imbalanced with more patches annotated as inflammation.

Training Validation Testing
Inflammation 427 85 86
Tumor 287 68 67
Total 714 153 153

Table 8.5: Number of patches with each label in the training, validation, and testing datasets from Sudmeier
et al.

8.2.1 Learning Curve
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Figure 8.8: Learning curves of neural networks with a batch size of 16, a hidden dense layer of 256 neurons,
and no dropout layer aiming to classify standard patches from Sudmeier et al. Each figure title specifies the
sample, image type, optimizer, training batch size, learning rate, dropout rate, and size of the dense layer,
with these parameters separated by underscores.
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Fig. 2. (A) Cluster assignments of spots from an SRT slide of a melanoma brain metastasis sample. This panel is a modified version of Figure 6b of

Sudmeier et al. [9], which is an open-access article under the CC BY license. (B) Sample size for training, validation, and testing. (C) Classification

accuracy in training and validation data along training epochs. (D) Classification ROC curve in testing data.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.05.606654doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606654
http://creativecommons.org/licenses/by-nc-nd/4.0/


STpath 11

Training data Validation data Testing data

0.00

0.25

0.50

0.75

Cell Type

Pr
op

or
tio

n
Cell type

B.cells

CAFs

Cancer.Epithelial

Endothelial

Myeloid

Normal.Epithelial

Plasmablasts

PVL

T.cellsTraining data Validation data Testing data

0.00

0.25

0.50

0.75

1.00

Cell Type

Pr
op

or
tio

n

Cell type
B.cells

CAFs

Cancer.Epithelial

Endothelial

Myeloid

Normal.Epithelial

Plasmablasts

PVL

T.cells

(A) (C)

(B) (D)

Fig. 3. (A) The WSI of the 10x FFPE sample. (B) The WSI of the 10x fresh frozen sample. (C) Cell type proportion estimates for all the spots of the

FFPE sample. (D) Cell type proportion estimates for all the spots of the fresh frozen sample. CAF: cancer-associated fibroblast. PVL: perivascular-like

stroma cells.

Table 1. Number of patches in each tissue section with each of the nine major cell types having the highest proportion.

10x Genomics Wu et al. [2021]

Cell Type FFPE Fresh Frozen 1142243F 1160920F CID4290 CID4465 CID44971 CID4535

B cells 13 18 547 878 531 46 694 14

CAFs 980 49 545 0 324 1008 78 51

Cancer Epithelial 127 4516 3144 61 1556 65 46 946

Endothelial 49 43 0 0 2 0 2 1

Myeloid 431 225 22 1 1 21 19 43

Normal Epithelial 736 0 19 273 0 12 137 0

Plasmablasts 8 33 406 3681 2 56 176 54

PVL 17 13 0 1 16 1 10 4

T cells 157 1 98 0 0 2 0 14
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12 Sui et al.

Fig. 4. The proportion of rank-sum test p-values less than 0.05, when comparing the 2048 ResNet features between groups defined by cell type

proportions and samples. The two horizontal lines indicated 0.05 and 0.75, respectively.
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(A) 10X data, standard batches

(B) Wu et al. data, standard batches

(C) Wu et al. data, large batches

Fig. 5. Comparison of observed cell type proportions estimated by CARD versus predicted cell type proportions by STpath using testing data and the

hyperparameters selected by validation data. (A) Comparison for two 10x samples using standard patches (i.e., each patch represents a spot) with the

hyperparameters: Batch size (batch) = 32, learning rate (LR) = 0.001, dropout proportion (dropout) = 0.0, and size of dense layer (size) = 512. Three

R2s for Fresh frozen (red), FFPE (blue), and combined data (black) were shown for each cell type. (B) Comparison for six samples from Wu et al. [10]

using using standard patches with the hyperparameters: batch = 32, LR = 0.0001, dropout = 0.0, and size = 512. Three R2s for CID- (dark green), 11-

(dark red), and combined data (black) were shown for each cell type. (C) Comparison for six samples from Wu et al. [10] using large patches such that

one patch covers eight spots. The hyperparameters are as follows: batch = 128, LR = 0.0001, dropout = 0.2, and size = 512.
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Fig. 6. (A) Micro-averaged and class-specific AUCs for the classification task in the testing data of six samples from Wu et al. [10]. The optimal neural

network configuration was selected using validation data, with the following hyperparameters: optimizer = Adam, LR = 0.0001, dropout = 0.0, size =

512, and batch size = 32 for CID4465, and 16 for all other samples. (B) UMAP visualization of 28,968 gene expression spots analyzed by RNA expression

from SRT data and integrated across 23 breast tumors from He et al. [11] using the CCA method, stratified by He et al.’s tumor/non-tumor annotations.

UMAP dimensional reduction was performed using 30 principal components in the Seurat v5 package. Clusters were created with a resolution of 0.1.

The number of spots in each cluster is displayed, colored by cluster. (C) ROC curve for the classification task in the testing data of 23 samples from He

et al. [11]. The optimal neural network configuration was selected using validation data, with the following hyperparameters: batch = 256, optimizer =

Adam, LR = 0.001, dropout = 0.0, and size = 256.
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