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ABSTRACT
As of 2 September 2020, the 2019 novel coronavirus or SARS CoV-2 has been responsible for more
than 2,56,02,665 infections and 8,52,768 deaths worldwide. There has been an urgent need of newer
drug discovery to tackle the situation. Severe acute respiratory syndrome-associated coronavirus 3C-
like protease (or 3CLpro) is a potential target as anti-SARS agents as it plays a vital role in the viral life
cycle. This study aims at developing a quantitative structure–activity relationship (QSAR) model against
a group of 3CLpro inhibitors to study their structural requirements for their inhibitory activity. Further,
molecular docking studies were carried out which helped in the justification of the QSAR findings.
Moreover, molecular dynamics simulation study was performed for selected compounds to check the
stability of interactions as suggested by the docking analysis. The current QSAR model was further
used in the prediction and screening of large databases within a short time.
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Introduction

Since late fall 2019, there has been an outbreak of the novel
acute respiratory disease known as coronavirus disease 2019
(COVID-19), which has spread rapidly around the globe (Del
Rio & Malani, 2020). The disease has now been officially des-
ignated as severe acute respiratory syndrome-related corona-
virus SARS-CoV-2 and has been declared a pandemic by the
World Health Organization (WHO) (https://www.who.int/
news-room/detail/27-04-2020-who-timeline—covid-19). SARS
CoV-2 has caused much more fatalities in terms of infections,
deaths and economic challenges than SARS-CoV in
2002–2003 (Lee et al., 2003; Peiris et al., 2003). Although,
SARS CoV-2 (mortality rate � 3%) is less pathogenic than
SARS-CoV (mortality rate ¼ 9.5% - 11%), the transmission
rate of the former is rather high (>2% in case of SARS CoV
2) (D€omling & Gao, 2020). Both SARS CoV and SARS CoV-2
share similar structural trend having a single-stranded envel-
oped positive RNA which infects host cell for transmission
(Fung & Liu, 2019). They have sequence similarity of about
76 to 78% for the whole protein and around 73% to 76% for
the receptor binding domain (RBD) (Wan et al., 2020). Also,
the SARS-CoV main protease (or 3C-like protease or 3CLpro)
has 96.1% of similarity with the 2019-nCoV main protease.
The sequence of the main protease (3CLpro) of SARS CoV-2
has only 12 out of 306 residues different from that of SARS-
CoV, and thus, this can be used as a homologous target for
drug screening and repurposing (Chen et al., 2020;

Zhavoronkov et al., 2020). The present work targets C30
Endopeptidase commonly known as 3C-like proteinase or
coronavirus 3C-like protease (3CLpro) or coronavirus main
protease (Mpro) which cleaves the polyproteins into individ-
ual polypeptides essential for viral replication and transcrip-
tion (Goetz et al., 2007; Thiel et al., 2003). 3CLpro is a
homodimeric cysteine protease and is predicted to cleave 11
different polyproteins at 11 sites required for replication and
transcription (Fan et al., 2004; Goetz et al., 2007).

Computational approaches are effective tools to find new
drug targets and repurposing of existing drugs. Molecular
modeling studies such as quantitative structure–activity rela-
tionships (QSAR) (Gramatica, 2020; Roy, 2018) is one of the
effective methods in predicting compounds when there is a
lack of data and proper experimental facilities. The method
allows virtual screening of drug libraries to find suitable
drug-target for a particular disease. Large number of candi-
date molecules available in the drug discovery pipeline face
high failure rate at the later stages of drug development.
This makes computational approaches inevitable for the early
predictions of pharmacokinetic and pharmacodynamic end
points, thus enabling the screening process and reducing the
cost and time of high end experiments (Toropova, 2017).

In the present work, we have developed a 2D-QSAR
model to determine the chemical features contributing to
inhibition of SARS CoV 3CLpro. As discussed earlier, 3CLpro

enzyme in both SARS CoV and in novel SARS CoV-2 has
about 96% structural similarity; it can be believed that
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compounds inhibiting SAR CoV 3CLpro can also inhibit the
SARS CoV-2 protein. We have taken a dataset of 104 com-
pounds from different literatures as cited in Material and
Methods section and determined the physicochemical fea-
tures essential for their inhibitory activity (pIC50). Further, we
have carried out molecular docking and molecular dynamics
(MD) simulation studies to understand the molecular interac-
tions between the small molecules and protein. Also, we
have carried out large database screening and predicted
about the possibility and characteristics of inhibition showed
by the database molecules.

Material and methods

Dataset

The experimental IC50 of 104 SARS coronavirus 3CL protease
inhibitors was taken from previously published literatures
(Chen et al., 2005; Liu et al., 2014; Lu et al., 2006; Niu et al.,
2008; Park et al., 2012; Tsai et al., 2006) and applied for 2D-
QSAR studies to recognize the basic structural features in
those molecules essential for inhibition of SARS coronavirus
main protease 3CLpro enzyme. The experimental IC50 values
were converted into negative logarithmic form (pIC50) and
the converted form was used for QSAR modelling. The struc-
tures were prepared in MarvinSketch software (version
14.10.27) (http://www.chemaxon.com/) with proper aroma-
tization and hydrogen bond addition, and then, used for fur-
ther descriptor calculation.

Molecular descriptors

Molecular descriptors are mathematical values that describe
the structures or shape of molecules, helping to predict the
activity and properties of molecules without complex experi-
ments. These are numbers containing structural information
derived from the structural representation. In the present
study, QSAR models were developed using a selected class
of two-dimensional (2D) molecular descriptors. This involves
E-state indices, connectivity, constitutional, functional, 2D
atom pairs, ring, atom-centered fragments and molecular
property descriptors calculated from the OCHEM platform
(https://ochem.eu/home/show.do) and extended topochemi-
cal atom (ETA) indices (Roy & Ghosh, 2010) calculated from
PaDel-Descriptor software (Yap, 2011). Any constant (variance
< 0.0001), intercorrelated (jrj > 0.95) descriptors and other
incompetent data were removed using an in-house software
available at http://dtclab.webs.com/software-tools before
model development. The final dataset comprised of 562
descriptors before data division and further model
development.

Dataset splitting

Selection and division of dataset into training and test sets is
one of the most important steps in QSAR modeling so as to
generate a well validated model (Roy et al., 2008). The div-
ision should ensure that points representing both training

and test set are well distributed within the whole descriptor
space occupied by the entire dataset. In the present model,
we have utilised the Modified k-Medoids (version 1.3) (http://
teqip.jdvu.ac.in/QSAR_Tools/DTCLab) method of dataset div-
ision, where 75% of the dataset compounds were put in the
training set and rest 25% were put in the test set. The k-
medoids algorithm is a local heuristic method that runs just
like k-means (where centroids are taken into consideration)
clustering when updating the medoids. This method is
designed to select k most middle objects as initial medoids.
The process classifies a set of objects into clusters, so that
the objects within a cluster are similar to each other but are
dissimilar to objects present in other clusters (Park & Jun,
2009). After rearranging the whole dataset according to the
cluster number with their corresponding activity values, the
75–25 ratio of training and test sets is obtained for further
model development and validation purpose.

Variable selection and model development

Variable selection is a crucial step followed during QSAR
model development that ensures the extraction of the most
important and influential molecular or physical or chemical
features as well as for the generation of a model with good
statistical significance for both internal and external valid-
ation metrics. In the present case, at the initial stage we
have employed Genetic Algorithm (GA) (Devillers, 1996)
method in Double Cross Validation (DCV) (Roy & Ambure,
2016) platform to generate a reduced pool of 29 descriptors.
Further, we have employed Best Subset Selection (BSS)
method to generate a series of Multiple Linear Regression
(MLR) models. Then, the final model was generated using
Partial Least Squares (PLS) (Wold et al., 2001) regression
method using descriptors selected from BSS.

Statistical validation parameters

Validation of a QSAR model is essential to understand the
predictive ability of the model. Critical evaluation of the
developed models involving internationally accepted internal
and external validation parameters was done to examine the
robustness in terms of fitness, stability and classical fitness
measures and predictivity of the models. Statistical parame-
ters like determination coefficient R2, explained variance R2a,
variance ratio (F) and standard error of estimate (s) were cal-
culated. Other parameters including internal predictivity
parameters such as predicted residual sum of squares
(PRESS) and leave-one-out cross-validated correlation coeffi-
cient (Q2

LOO) were also calculated along with external predic-
tivity parameters like R2pred or Q2

F1, Q2
F2 and concordance

correlation coefficient (CCC) (Roy & Mitra, 2011). Further, we
have also calculated r2m metrics (i.e. r2m and Dr2m) for both
training and test set compounds (Ojha et al., 2011).
Validation using mean absolute error (MAE) based criteria for
both external and internal validation was done (Roy et al.,
2016). This was done since the Q2

ext based criteria do not
always translate the correct prediction quality because of the
influence of the response range as well as the distribution of
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the values of response in both the training and test set com-
pounds (Roy et al., 2016).

Domain of applicability

According to the OECD guideline 3, any QSAR model should
possess a defined applicability domain (AD). AD is a chemical
space is defined by the structural information or molecular
properties of the chemicals used in the model development
purpose (Gadaleta et al., 2016). Compounds lying within the
region of the chemical space as defined by the internal set
of the model can only be properly predicted. In this work,
we have used distance to model X (DModX) approach at
99% confidence level using SIMCA software (https://landing.
umetrics.com/downloads-simca) to check whether the test
set compounds are within the AD or not.

Molecular docking study

In the current analysis, we have implemented molecular dock-
ing studies to explore the interaction pattern of molecules
(most and least actives from the dataset) with their relevant
enzyme (3C-like protease). The crystal structure of the enzyme
was retrieved from the protein databank with the PDB ID:
6LU7 (crystal structure of COVID-19 main protease in complex
with an inhibitor N3) (Jin et al., 2020). The molecular docking
study was performed by using Autodock tool 1.5.6 (http://
autodock.scripps.edu/resources/adt.) platform following the
protocol as discussed by the Rizvi et al. in 2013 (Rizvi et al.,
2013; Kumar & Roy, 2020). Prior to docking, we have prepared
the target enzyme and selected inhibitors using the protein
and ligand preparation protocol available in Autodock tool
1.5.6 (http://autodock.scripps.edu/resources/adt.). The active
site in the enzyme was defined by the providing explicit coor-
dinates of active amino acids residues obtained from the co-
crystal ligand in the enzyme using PDBsum web server (http://
www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/
GetPage.pl?pdbcode=2zu4&template=ligands.html&l=1.1).The

size and the exact position of the grid was adjusted by provid-
ing the coordinates using the protocol ‘Grid preparation’ avail-
able in Autodock tool 1.5.6 (http://autodock.scripps.edu/
resources/adt.). After completion of the receptor, ligand prepar-
ation and binding site definition, molecular docking runs were
launched from the command line using cmd. In the docking
analysis, we have sorted the generated poses as per binding
interaction energy, and the top scoring poses (most negative)
were kept for further analysis. The obtained poses were vali-
dated using the bound ligand present in the crystal structure of
the enzyme. On the basis of number of interactions and active
residues interacting with the bound ligand, we have selected
the final pose for the further study. From the ligplot (Figure 1),
we can see the number of interactions and active residues
responsible for the significant interaction in crystal structure of
COVID-19 main protease and with their bound ligand.

MD simulation

MD simulation of protein–ligand complexes was performed
in Gromacs software 2018.1 (Van Der Spoel et al., 2005).
Protein topology was prepared using the CHARMM36 (March
2019) force field (Huang & MacKerell, 2013). Ligand topology
was generated from the CHARMM General Force Field
(CGenFF) server (Soteras Guti�errez et al., 2016).
Dodecahedron box was used to add explicit water molecules
keeping protein-ligand complex at the center. The TIP3P
water model used (Mark & Nilsson, 2001). An appropriate
number of sodium ions were added to neutralize the charge
of the system. Then, the system was energy minimized by
using the steepest descent minimization algorithm to opti-
mize the hydrogen bond network. This was followed by
equilibration with NVT and NPT ensembles, respectively, for
100 ps to avoid distortion of a protein–ligand complex. Final
production MD simulation of the protein complexes of two
most active compounds and least active compounds, 57 &
66 and 16 & 27, respectively, was performed for 100 ns at
300 K temperature. In addition, protein complexes of another
three most active and least active compounds 56, 58, 67,
21, 23 and 25 were chosen for MD simulation of 20 ns.
Periodic boundary conditions were applied (Makov & Payne,
1995). Particle Mesh Ewald method was used for long-range
electrostatic interactions (Petersen, 1995). Energy and co-
ordinates of the system were recorded at every 10 ps.
Hydrogen bond interaction analyses between protein and
ligand during MD was performed in the Visual Molecular
Dynamics (VMD) tool by keeping cut off of 3 Å distance and
angle of 20� (Humphrey et al., 1996). Binding free energy
(DGBind) of the ligands during MD simulation was calculated
by the MMPBSA method (Kumari et al., 2014).

Results and discussions

The prime objective of the work was to develop a well vali-
dated QSAR model using simple descriptors obtained from
PaDel-Descriptor and OCHEM platforms and utilizing them
for the prediction of external set of compounds when
adequate experimental data is not easily available. The

Figure 1. Ligplot of 3CLpro enzyme and with their bound ligand.
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present work consists of four phases: (1) development of a
2D-QSAR model against 3CLpro enzyme; (2) molecular dock-
ing and correlation of the results with the QSAR model; (3)
MD simulation; and (4) screening of three databases for their
inhibitory activity towards 3CLproenzyme.

QSAR modeling

The six descriptor PLS model (Model 1) developed for the
dataset of 104 compounds was statistically significant and
could precisely explain the essential features of the com-
pounds required for good inhibition of 3CL protease.
Acceptable values of the determination coefficient R2 (0.756)
and cross-validated determination coefficient (Q2

LOO ¼0.708)
were obtained from the developed model. The predictivity of
the model was analysed by predictive R2 or Q2

F1 ðQ2
F1 ¼

0:752Þ which shows acceptable predictivity for the test set
compounds. The values of the descriptor appearing for both
the training and test sets and also the predicted pIC50 are
given in the supporting information. The observed pIC50 ver-
sus predicted pIC50 plot is given in Figure 2.

pIC50 ¼ � 1:586þ 1:333 B04 O� Cl½ � � 0:122 F01 C� N½ �
þ 0:631 B06 N� N½ � þ 0:059 ETAdBeta

þ 0:778 B05½C� N� � 0:297nRCONHR

ntraining ¼ 78, R2 ¼ 0:756, R2adj ¼ 0:739,

Q2 ¼ 0:708, SDðTrainÞ ¼ 0:320,

r2
m LOOð Þ ¼ 0:604,Dr2m LOOð Þ ¼ 0:173,

MAE Trainð Þ ¼ 0:363

ntest ¼ 26,Q2
F1 ¼ 0:752,Q2

F2 ¼ 0:752, SD Testð Þ
¼ 0:250, r2m testð Þ ¼ 0:573,Dr2m testð Þ ¼ 0:214, CCC Testð Þ
¼ 0:841, MAE ðTestÞ ¼ 0:374

(Model 1)

The variable importance plot (VIP) along with a mechanistic
interpretation provides a better knowledge about the descrip-
tors and their contribution in controlling the inhibition of the
3CLpro enzyme. The descriptors appearing in the model
according to VIP score are as follows: B04[O-Cl], nRCONHR,
F01[C-N], ETA_dBeta, B05[C-N] and B06[N-N]. Descriptors hav-
ing VIP > 1 like B04[O-Cl] and nRCONHR have higher signifi-
cance than those having VIP < 1 (Akarachantachote et al.,
2014). The descriptors from higher to lower contribution is
given Figure 3. The model consists of four 2D atom pair
descriptors, one ETA and one functional group descriptor as
elaborated in Table 1. The regression coefficient plot (Wold
et al., 2001) and the score plot (Jackson, 2005) are given in the
supporting information (Figures S1 and S2, respectively).

The different descriptors and their contributions to the
modelled response give certain information about the struc-
tural and physicochemical features present in the dataset
compounds useful for the inhibition of 3CLpro. The 2D atom
pair descriptors F01[C-N], B05[C-N] and B06[N-N] help in
understanding the structures of the compounds giving an
idea that single nitrogen containing heteroaromatic ring like
pyridine or piperidine (e.g., compounds 58, 59 and 76) is
more beneficial than multiple heteroatom containing nucleus
like pyridazine, pyrimidine, thiazole and pyrazole (e.g., com-
pounds 2 and 5). Further, the descriptor B04[O-Cl] provides
an information of hydrogen bonding which is later discussed
in Molecular Docking Analysis section. Presence of this frag-
ment is advantageous as seen in compounds 56 and 58.
Unsaturation in these inhibitors is beneficial which is
expressed by the ETA_dBeta descriptor and this is observed
in compounds 58, 59 and 60. Presence of secondary amide
as depicted by nRCONHR is detrimental for good inhibition
(e.g., compounds 23, 24 and 25). Figures 4 and 5 show the
features increasing or decreasing inhibitory activity of the
compounds towards 3CLpro enzyme.

A loading plot gives the relationship between the X-varia-
bles (descriptors) and the Y-variable (pIC50) (De et al., 2018)
(Figure 6). The plot was developed using the first and second
PLS components. During the plot evaluation, the distance
from the origin is taken under consideration. The descriptors
which are situated far from the plot origin are considered to
have greater impact on the Y-response. Descriptors B04[O-Cl]
and nRCONHR are furthest from the plot origin and thus can
be considered to have higher impact which can further be
authenticated from the VIP plot and their VIP scores (VIP > 1).

Figure 2. Observed vs. predicted pIC50 scatter plot.

Figure 3. Variable importance plot of the final PLS model.
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Applicability domain

AD ‘represents a chemical space from which a model is derived
and where a prediction is considered to be reliable’ (Gadaleta

et al., 2016). AD evaluation was done using DModX (distance
to model)in the X-space using SIMCA 16.0.2 software (https://
landing.umetrics.com/downloads-simca). The AD plots are
given in Figures 7 and 8 for training and test sets, respectively,
and it is found that there is no outlier in case of training set
and none of the compounds are outside AD in case of the test
set at 99% confidence level (D-crit¼ 0.009999).

Model randomization

Model randomization ensures about the model significance.
The randomization plot is developed in order to authenticate
that the model is not the result of any chance correlation
(Topliss & Edwards, 1979). Development of randomized model
involves generation of multiple models by shuffling different
combinations of X or Y variables (here Y variable only) and

Table 1. Definition and contribution of all descriptors obtained from the PLS models.

Serial no. Descriptor Type of descriptor Meaning Contribution

1 B04[O-Cl] 2D atom pair Presence or absence of oxygen and chlorine (O-Cl) at the
topological distance 4

þve

2 nRCONHR Functional group counts Number of secondary amides (aliphatic) –ve
3 F01[C-N] 2D atom pair Frequency of C-N at the topological distance 1 –ve
4 ETA_dBeta (Db) Extended Topochemical

Atom (ETA)
A measure of relative unsaturation content. It can be

expressed using the following equation:
Db ¼ P

bns �
P

bs
Where bns represents VEM non-sigma contribution of a
non-hydrogen vertex and bs represents VEM sigma
contribution for a non-hydrogen vertex (Roy, 2015).

þve

5 B05[C-N] 2D atom pair Presence/absence of carbon and nitrogen (C-N) at
topological distance 5

þve

6 B06[N-N] 2D atom pair Presence/absence of nitrogen and nitrogen (N-N) at
topological distance 6

þve

Figure 4. Features increasing 3CLpro inhibition.

Figure 5. Features decreasing 3CLpro inhibition.

Figure 6. Loading plot of the final PLS model.
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based on the fit of the reordered model. In this current method
we have used 100 permutations, although, the number of per-
mutations can be changed according to users’ choice. For a
model not generated out of chance correlation should have
poor statistics for its randomized model (R2y intercept should
not exceed 0.3 and Q2

y intercept should not exceed 0.05). We
have provided the correlation between original Y-vector and
permuted Y-vector versus cumulative R2y , cumulative Q2

y plots
in Figure 9. This shows that the model developed (Equation (1))
is nonrandom and robust (since R2y intercept ¼ 0.0156 and Q2

y

intercept¼�0.497) and is appropriate for prediction of pIC50 of
3CLpro inhibitors within the AD of the model.

Molecular docking analysis

In the current exploration, we have performed the molecular
docking studies using the most and least active compounds
from the dataset. We have used the five most active com-
pounds, i.e. 56, 57, 58, 66 and 67 and five least active com-
pounds, i.e. 16, 21, 23, 25 and 27 from the dataset to
identify the molecular interactions with the active site of
3CLpro enzyme. The details of docking interactions, binding
scores, RMSD values and their relations with the features
obtained from the developed 2D-QSAR model are depicted
in Table 2. Now here, we have discussed the details of

docking interactions with the active residues of the
enzyme below.

Molecular docking interactions analysis of the most
active compounds from the dataset

In this investigation, five most active compounds (56, 57,
58, 66 and 67) from the dataset (pIC50 (with IC50 in nM) ¼
1.200, 1.221, 0.913, 0.906 and 0.966, respectively) interacted
with the active site amino acid residues, i.e. HIS A: 163, LEU
A: 141, GLY A: 143, CYS A: 145, HIS A: 141, MET A: 49, MET A:
165, PRO A: 168, THR A: 190, PRO A: 168, GLU A: 166, SER A:
144, LEU A: 167, GLN A: 189 and PHE A: 140 through inter-
acting forces like hydrogen bonding (conventional and car-
bon hydrogen bonds), p-bonding (p-alkyl, p-sigma, p-cation,
p-sulfur, p-p-T-shaped, p-p stacked, p-donor hydrogen bond)
and alkyl hydrophobic bonds.

One of the most active compounds from the dataset,
compound 56 (supporting information Figure S3) interacts
with the active site amino acid residues of the enzyme
through hydrogen bonding (GLY A: 143 and LEU A: 141),
p-donor hydrogen bond (CYS A: 145), p-p-T-shaped (HIS A:
41), alkyl hydrophobic (PRO A: 168 and CYS A: 145) and
p-alkyl (HIS A: 163, MET A: 49 and MET A: 165) interactions.

Figure 7. DModX applicability domain (AD) of the training set.

Figure 8. DModX AD of the test set.
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The next most active compound from the dataset, com-
pound 57 (Figure 10), interacts with active site amino acid
residues, such as GLY A: 143, SER A: 144, CYS A: 145, GLU A:
166, PRO A: 168 and THR A: 190 through hydrogen bonding,
CYS A: 145 via p-donor hydrogen bonding, HIS A: 141
through p-p-T-shaped, MET A: 165 and PRO A: 168 via p-alkyl
hydrophobic bonding.

Another most active compound from the dataset, com-
pound 58 (supporting information Figure S4), interacts with
the active amino acid residues of the enzyme like CYS A:
145, SER A: 144 and GLY A: 143 (through hydrogen bonding),
CYS A: 145 (via p-donor hydrogen bond and p-sulfur), HIS A:
41 (through p-sigma bonding).

Figure 9. Randomization plot of the PLS model.

Table 2. Docking results and correlation with 2D-QSAR model against 3CLpro enzyme.

S. no.
Compound
number

Binding energy
(kcal/mol) RMSD (nm) Interacting residues Interactions

Correlation with
QSAR model

1 56 (high pIC50) –7.49 0.388 HIS A: 163, LEU A: 141, GLY
A: 143, CYS A: 145, HIS A:
41, MET A: 49, MET A: 165,
PRO A: 168

Hydrogen bonding (conventional
and carbon), p-donor
hydrogen bond, p-p T
shaped, alkyl, p-Alkyl

B04[O-Cl],
ETA_dBeta and
B05[C-N]

2 57 (high
pIC50)

–7.41 0.332 THR A: 190, PRO A: 168, GLU
A: 166, MET A: 165, HIS A:
41, CYS A: 145, SER A: 144,
GLY A: 143

Hydrogen bonding (conventional
and carbon), p-donor
hydrogen bond, p-p T
shaped, alkyl

B04[O-Cl],
ETA_dBeta and
B05[C-N]

3 58 (high pIC50) –6.70 0.329 HIS A: 41, CYS A: 145, SER A:
144, GLY A: 143

Hydrogen bonding (conventional
and carbon), p-donor
hydrogen bond,
p-sigma, p-sulfur

B04[O-Cl],
ETA_dBeta and
B05[C-N]

4 66 (high pIC50) –7.44 0.322 HIS A: 41, LEU A: 167, PRO A:
168, MET A: 165, GLU
A: 166

Hydrogen bonding (conventional
and carbon), p-p T shaped,
alkyl, p-sulfur, alkyl

B04[O-Cl],
ETA_dBeta and
B05[C-N]

5 67 (high pIC50) –6.75 0.510 PHE A: 140, SER A: 144, CYS
A: 145, HIS A: 41, MET A:
49, GLU A: 166

Hydrogen bonding (conventional
and carbon), sulfur-x, p- p
stacked, p-cation, p-sulfur
and p-Alkyl

B04[O-Cl],
ETA_dBeta and
B05[C-N]

6 16 (low pIC50) –5.77 0.450 ALA A: 191, CYS A: 145 Hydrogen bonding
(conventional), p-sulfur, alkyl

nRCONHR

7 21 (low pIC50) –4.34 0.432 GLN A: 189, THR A: 190, GLU
A: 166, MET A: 165, HIS A:
164, HIS A: 163, CYS
A: 145

Hydrogen bonding (conventional
and carbon),p-donor
hydrogen, amide p-stacked,
p-alkyl, alkyl

nRCONHR

8 23 (low pIC50) –5.55 0.386 GLN A: 189, THR A: 190, GLN
A: 192, ARG A: 188, MET A:
165, GLU A: 166, LEU
A: 141

Hydrogen bonding (conventional
and carbon), p-alkyl,
p-sigma, p-anion

nRCONHR

9 25 (low pIC50) –6.56 0.424 ASN A :142, HIS A: 163, CYS
A: 145, MET A: 165, HIS
A: 41

Hydrogen bonding
(conventional), p-p T shaped,
p-sigma, p-alkyl, p-sulfur

nRCONHR

10 27 (low pIC50) –4.74 0.362 MET A: 165, CYS A: 145, HIS
A: 41, GLU A: 166, PRO
A: 168

p-p T shaped, p-alkyl, alkyl,
Halogen (Fluorine)

nRCONHR
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The next most active compound from dataset, compound
66 (Figure 10), interacts with active site amino acid residues,
like as GLU A: 166 via hydrogen bonding, HIS A: 41 through
p-p-T-stacked, MET A: 165 and PRO A: 168 via p-alkyl hydro-
phobic bonding, MET A: 165, LEU A: 167 and PRO A: 168
through alkyl hydrophobic bond and MET A: 165 via p-sulfur
interactions.

Figure S5 in supporting information shows that com-
pound 67 (last most active compound from the dataset)
interacts with the active amino acid residues of enzyme such
as CYS A: 145, SER A: 144, GLU A: 166 and PRO A: 140
through hydrogen bonding, HIS A: 41 via p-p-stacked and
p-cation bonds, MET A: 49 through p-alkyl hydrophobic
bonding and CYS A: 145 through p-sulfur bonding.

Molecular docking analysis of the least active
compounds from the dataset

In this investigation, five least active compounds (compound
number 16, 21, 23, 25 and 27) from the dataset (pIC50 ¼
�2.301, �2.397, �2.477, �2.544 and �2.698, respectively)

interacted with the active site amino acid residues such as
ALA A: 191, CYS A: 145, GLN A: 189, THR A: 190, MET A: 165,
HIS A: 164, HIS A: 163, CYS A: 145, GLN A: 192, ARG A: 188,
GLU A: 166, LEU A: 141, ASN A: 142, HIS A: 41 and PRO A:
168 through interacting forces like hydrogen bonding (con-
ventional and carbon hydrogen bonds), p-bonding (p-alkyl,
p-sulfur, p-donor hydrogen bond, amide p-stacked, p-sigma,
p-anion, p-p-T-shaped) halogen (fluorine) and alkyl hydro-
phobic bonding.

One of the least active compounds from the dataset, com-
pound 16 (Figure 11), interacts with amino acid residues like
CYS A: 145 through hydrogen bonding and p-sulfur and ALA
A: 191 through hydrophobic alkyl bonds.

Figure S6 in supporting information shows that com-
pound 21, another least active compound from the dataset,
interacts with the active amino acid residues of the enzyme
such as THR A: 190, HIS A: 164 via hydrogen bonding, GLU
A: 166 via p-donor hydrogen bonding, GLN A: 189 through
amide p-stacked, CYS A: 145 through alkyl hydrophobic
bond, HIS A: 163, MET A: 165 through hydrophobic
p-alkyl bonds.

Figure 10. Docking interactions of the two most active compounds (Compound 57 and 66) from the dataset of 3CLpro enzyme inhibitors.

Figure 11. Docking interactions of the two least active compounds (Compound 16 and 27) from the dataset of 3CLpro enzyme inhibitors.
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The next least active compound from dataset compound 23
(supporting information Figure S7), interacts with active site
amino acid residues, such as THR A: 190, GLN A: 192, ARG A:
188, GLN A: 189 and LEU A: 141 (through hydrogen bonding),
GLN A: 189 (via p-sigma bond), GLU A: 166 (p-anion bond), MET
A: 165 and GLN A: 189 (through hydrophobic p-alkyl bond).

Another least active compound from dataset, compound
25 (supporting information Figure S8), interacts with active
amino acid residues through hydrogen bonding (ASN A: 142,

CYS A: 145), p-p-T-shaped and p-sigma (HIS A: 41), p-sulfur
bond (HIS A: 163) and hydrophobic p-alkyl (MET A: 165 and
HIS A: 41) interactions.

The last least active compound from the dataset, com-
pound 27 (Figure 11), interacts with active amino acid resi-
dues such as HIS A: 41 (via p-p-T-shaped), MET A: 165, CYS
A: 145, PRO A: 168 (through hydrophobic alkyl bonding), HIS
A: 41, PRO A: 168 (via hydrophobic p-alkyl bond) and GLU A:
166 (through halogen (fluorine) bonding).

Figure 12. Root mean square deviation of (A) Ligand and (B) Protein C-alpha atoms.

Figure 13. Movement of ligands in protein binding site during 100 ns of MD simulation.
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Correlation of docking analysis results with the
developed 2D-QSAR model

From the above investigations, we have concluded that the
formation of hydrogen bonding (conventional, carbon and
p-donor hydrogen) and p-interaction (p-p-T shaped, p-p
stacked, p-alkyl, p-cation, p-sigma and p-sulphur) between
the ligand and target enzyme may play an essential role in
the interactions. Hydrogen bonding (conventional, carbon
and p-donor hydrogen) may be associated with the descrip-
tors such as B04[O-Cl] and B05[C-N] of the developed 2D-
QSAR model. The descriptors ETA_dBeta and B04[O-Cl] are
well corroborated with interactions via p- interactions (p-p-T
shaped, p-p stacked, p-alkyl, p-cation, p-sigma and p-sulphur)
between the receptor and a ligand. All these descriptors con-
tributed positively in the developed model and are essential
features for the inhibitory activity against the 3CLpro enzyme.
The above mentioned features are observed in most active
compounds from the dataset such as 56, 57, 58, 66 and 67.
In contrast, the descriptors nRCONHR, contributed negatively
in the 2D-QSAR model, and thus, might be detrimental for
the inhibitory activity, and this has been observed in the
least active compound number 23, 25, 27, 16 and 21. Thus,
from above observations, we can conclude that features
obtained from molecular docking studies well corroborated

with the features obtained from the 2D-QSAR model, and
these are crucial for the inhibitory activity against
3CLpro enzyme.

MD simulation analysis

After completion of the MD simulation, root mean square
deviations of protein c-alpha atoms and the ligand were cal-
culated to study the stability of the protein-ligand complexes
for compounds 16, 27, 57 and 66 as depicted in Figure 12
(and for compounds 21, 23, 25, 56, 58, 67 as shown in
Figure S9 of supporting information). In all systems, the c-
alpha atoms show stable RMSD at around 1 nm while ligands
show RMSD values less than 0.4 nm during their respective
MD simulation time. All ligands move from the initial pos-
ition and try to best fit into the binding site of the protein
as shown in Figure 13 and supporting information Figure
S10. During the 100 ns MD run, it is observed that
Compound 27 detaches itself from the binding site.
However, after 80 ns it again binds to protein near the edge
of the ligand-binding site. Because of this, Compound 27
shows a high RMSD and low average binding affinity
(DGBind) �50.87 KJ/mol. Similarly, Compound 57 detaches
itself from the binding site at 24 ns and binds to a com-
pletely different pocket in protein which is present near the
original ligand-binding site. This caused a decrease in aver-
age DGBind (–54.80 KJ/mol). Compounds 23, 27 and 57 show
more fluctuations in RMSD compared to other compounds
and are not able to accommodate into a cavity as the simu-
lation progresses. Compounds 16 and 66 remain bound to
the binding site throughout the 100 ns simulation and show
high average DGBind of �72.52 and �77.37 KJ/mol, respect-
ively. Compound 56 flips and orients itself in the binding
site cavity to acquire and stabilize into a completely different
position from the initial position (supporting information
Figure S10). Root mean square fluctuation (RMSF) was calcu-
lated to study the change in the position of protein atoms
during MD simulation, as depicted in Figure 14 and support-
ing information Figure S11. Loop residues regions SER 1 –
PRO 9, LEU 50 – ASN 53, ASP 153 – ASP 155, PRO 168 – THR
169, ALA 191 – ILE 200, ASP 216 – PHE 223 and GLY 302 –
GLN 306 show high RMSF deviation. The RMSF deviation of
these loop region residues shows high during when the

Figure 14. Root mean square fluctuation of protein backbone atoms during
MD simulation.

Table 3. Percentage hydrogen bond interaction shown by ligand during MD simulation with various amino acid residues.

Compound

Percentage H-bond interaction

GLY
23

THR
24

THR
25

THR
26

HIS
41

SER
46

SER
139

TYR
118

ASN
119

ASN
142

GLY
143

SER
144

CYS
145

HIS
163

GLU
166

HIS
172

GLN
189

THR
190

GLN
192

16 – 0.50 0.53 12.16 15.22 0.88 – – 3.00 0.75 – 0.01 0.01 1.33 1.29 0.06 1.67 0.01 0.81
27 7.68 – – 0.69 – 0.35 – – – – – – – – 2.78 – 1.64 0.29 4.52
57 – 0.05 – 0.10 – 0.03 0.39 2.07 0.01 0.05 0.16 0.08 0.01 – 0.03 – 0.16 0.03 2.07
66 – – 1.52 0.43 – 0.51 – – – 0.54 – – – – 0.26 – 0.22 – –

Table 4. Average binding free energy (KJ/mol) of ligands obtained from MD simulation with its energy components.

Compound van der Waal energy (DGvdW) Electrostatic energy (DGElect) Polar solvation energy (DGPolar) SASA energy (DGSASA) Binding energy (DGBind)

16 –152.51 ± 19.27 –31.51 ± 16.80 129.53 ± 20.30 –18.02 ± 1.71 –72.52 ± 18.30
27 –97.25 ± 26.23 –13.10 ± 11.90 71.53 ± 29.77 –12.02 ± 2.74 –50.87 ± 18.40
57 –104.37 ± 28.57 –10.05 ± 9.12 71.96 ± 27.23 –12.33 ± 2.94 –54.80 ± 22.87
66 –122.53 ± 12.73 –6.19 ± 6.62 65.45 ± 13.28 –14.09 ± 1.42 –77.37 ± 9.94
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protein is complexed with Compounds 66, 25 and 27.
Hydrogen bond analysis between ligands and protein sug-
gests (Figure 15 and supporting information Figure S12 and
Table 3 and supporting information Table S1) that com-
pound 66 shows the least H-bonding with protein, while
compounds 16, 25, 67 interact more with protein through
H-bond compared to other ligands. THR 26, HIS 41, GLY 143,

CYS 145, GLU 166, GLN 189 and GLN 192 are the most com-
mon amino acid residues involved in H-bonding interaction
with the ligands. The binding free energy (DGBind) was calcu-
lated by using various contributing energy components such
as van der Waals (vdW), electrostatic, polar solvation and
solvent accessible surface area (SASA) energies (Table 4 and
supporting information Table S2). In the case of Compound
66 complexed with protein, the least negative contribution
of polar solvation energy helps an increase in average
DGBind. Compound 23 shows the highest affinity towards the
protein with an average DGBind of �88.14 KJ/mol followed by
compound 21 with an average DGBind of �82.24 KJ/mol. In
both the cases, vdW and electrostatic energies contributed
highest compared to other ligands resulting in a high bind-
ing affinity towards protein. The per residue contribution of
energy during MD simulation is depicted in Figure 16 and
supporting information Figure S13. The residues GLU 47, LEU
41, MET 49, CYC 145, MET 165, GLU 166, LEU 167 and PRO
168 were found to contribute positively while residues ARG
45, PRO 39, SER 147, GLU 166, ASP 187 and HIS 164 contrib-
uted negatively towards binding free energy of the protein–-
ligand complex. To conclude, the MD simulation study of the
protein complex with different compounds suggests com-
pounds 16, 21, 25, 58, 66 and 67 showed stable interaction
and affinity against the protein binding site.

Figure 16. Per residue energy contribution during 100 ns of MD simulation.

Figure 15. Number of hydrogen bonds formed by ligand with protein during
MD simulation.
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Table 5. Prediction quality for top 25 screened compounds from Asinex antiviral dataset.

ID number Molecular structure Predicted pIC50(mM) Prediction quality AD status

LAS 51378701 0.696 Good In

LAS 51378759 0.682 Good In

LAS 51378817 0.681 Good In

LAS 51378875 0.681 Good In

LAS 51378277 0.667 Good In

(continued)
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Table 5. Continued.

ID number Molecular structure Predicted pIC50(mM) Prediction quality AD status

LAS 51378353 0.667 Good In

LAS 51378411 0.637 Good In

LAS 51378290 0.607 Good In

LAS 51378366 0.607 Good In

LAS 52181788 0.607 Good In

LAS 51378469 0.592 Good In

(continued)
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Table 5. Continued.

ID number Molecular structure Predicted pIC50(mM) Prediction quality AD status

LAS 51378424 0.578 Good In

LAS 51378585 0.548 Good In

LAS 51378643 0.548 Good In

LAS 51378703 0.239 Good In

LAS 51378761 0.224 Good In

LAS 51378819 0.224 Good In

LAS 51378877 0.224 Good In

(continued)
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Table 5. Continued.

ID number Molecular structure Predicted pIC50(mM) Prediction quality AD status

LAS 51378279 0.209 Good In

LAS 51378355 0.209 Good In

LAS 51378413 0.180 Good In

LAS 51183609 0.162 Good In

LAS 51183637 0.162 Good In

LAS 51378471 0.136 Good In

(continued)
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Table 6. Prediction quality for top 25 screened compounds from Asinex peptidomimetic dataset.

ID number Molecular structure Predicted pIC50(mM) Prediction quality AD status

BDE 27113102 –0.081 Moderate In

BDE 27113198 –0.231 Good In

BDE 27112871 –0.270 Good In

LAS 27113276 –0.296 Moderate In

(continued)

Table 5. Continued.

ID number Molecular structure Predicted pIC50(mM) Prediction quality AD status

LAS 51183656 0.132 Good In
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Table 6. Continued.

ID number Molecular structure Predicted pIC50(mM) Prediction quality AD status

BDI 34058392 –0.359 Good In

BDE 23424631 –0.422 Good In

BDI 34056869 –0.526 Moderate In

BDE 27113324 –0.611 Good In

BDE 27112842 –0.670 Good In

(continued)
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Screening of the external datasets

In silico virtual screening and computer-aided drug design
methodologies allow an initial screening of large databases

based on molecular properties and/or substructures, thereby
saving both time and money involved in synthesising and ana-
lysing each of the molecules available in the database. This, in

Table 6. Continued.

ID number Molecular structure Predicted pIC50(mM) Prediction quality AD status

LAS 52336079 –0.835 Moderate In

BDG 34135491 –0.887 Moderate In

BDH 34035638 –0.942 Moderate In

LAS 51438391 –0.965 Moderate In

BDE 25377325 –1.112 Good In

BDE 25373231 –1.142 Moderate In

(continued)
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turn, reduces the number of molecules to be synthesized and
analyzed by identifying the hit compounds only. In the present
work, we have utilised three databases of 8722 antivirals,
11,309 peptidomimetics and 6968 proteases obtained from
Asinex (http://www.asinex.com/) to determine their pIC50 val-
ues using our developed model (Model 1). Furthermore, the

domain of applicability and their predictive reliability are ana-
lyzed using Prediction Reliability Indicator tool (Roy et al., 2018).
According to the prediction score obtained from Prediction
Reliability Indicator tool, many compounds showed ‘Good’ to
‘Moderate’ prediction quality. The trend of the composite score
and their corresponding prediction quality goes like:

Table 6. Continued.

ID number Molecular structure Predicted pIC50(mM) Prediction quality AD status

LAS 51146228 –1.173 Good In

BDE 32387832 –1.176 Good In

LAS 51145916 –1.202 Good In

LAS 51146239 –1.202 Good In

(continued)
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Composite Score: 3!Prediciton Quality: Good; Composite
Score: 2!Prediciton Quality: Moderate; Composite Score:
1!Prediciton Quality: Bad. Further we have sorted the

compounds in descending order of their predicted pIC50 val-
ues (highest to lowest) and reported the best 25 compounds
for each dataset in Tables 5–7.

Table 6. Continued.

ID number Molecular structure Predicted pIC50(mM) Prediction quality AD status

LAS 51146119 –1.217 Good In

LAS 51146173 –1.217 Good In

LAS 51146224 –1.217 Good In

LAS 51146225 –1.217 Good In

(continued)
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Conclusion

The SARS CoV 3C-like protease (3CLpro or Mpro) is a striking
target for the development of anti-SARS drugs because of its

critical role in viral replication and transcription. Due to high
structural closeness between the enzymes in the old strain
SARS CoV and the novel SARS CoV-2, the compounds inhibit-
ing the former enzyme could be expected to show similar

Table 6. Continued.

ID number Molecular structure Predicted pIC50(mM) Prediction quality AD status

LAS 51146272 –1.217 Good In

LAS 51146294 –1.217 Good In

Table 7. Prediction quality for top 25 screened compounds from Asinex protease dataset.

ID number Molecular structure
Predicted
pIC50(mM)

Prediction
quality AD status

AOP 17129996 0.348 Good In

SYN 10404355 0.334 Good In

(continued)
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Table 7. Continued.

ID number Molecular structure
Predicted
pIC50(mM)

Prediction
quality AD status

SYN 17737241 0.218 Good In

SYN 17741468 0.204 Good In

SYN 17739882 0.189 Good In

SYN 15638339 0.152 Good In

SYN 15585842 –0.010 Good In

SYN 17736264 –0.025 Good In
(continued)
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Table 7. Continued.

ID number Molecular structure
Predicted
pIC50(mM)

Prediction
quality AD status

SYN 17736294 –0.025 Good In

AEM 10398707 –0.201 Good In

AAM 15780027 –0.237 Good In

SYN 17737014 –0.296 Moderate In

AEM 14734202 –0.303 Good In

(continued)
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interactions with the latter. The present study aims at devel-
oping a 2D-QSAR model for a series of compounds acting as
3CLpro inhibitors and studying the structural features of those
molecules controlling their 3CLpro inhibition (pIC50). The basic
features found to control the better inhibition were: (i)

presence of single nitrogen containing heteroatoms; (ii)
unsaturation; and (iii) hydrogen bonding. These findings
were further corroborated with docking analysis studies.
Further, we have predicted three large databases and
reported top 25 compounds from each database which can

Table 7. Continued.

ID number Molecular structure
Predicted
pIC50(mM)

Prediction
quality AD status

SYN 15653092 –0.341 Good In

ADM 13083811 –0.344 Good In

SYN 15586911 –0.352 Good In

SYN 15636256 –0.430 Good In

ADM 13084099 –0.437 Good In

(continued)
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Table 7. Continued.

ID number Molecular structure
Predicted
pIC50(mM)

Prediction
quality AD status

AEM 10404137 –0.490 Good In

SYN 15713762 –0.490 Good In

AAM 10377358 –0.513 Good In

AEM 14733257 –0.518 Good In

AEM 14733779 –0.548 Good In

SYN 15638387 –0.568 Good In

(continued)
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further be subjected to experimental testing. Thus, it can be
inferred that in silico methods like QSAR provide a basic
understanding of physicochemical features of small mole-
cules required for interactions with a specific target, and also
it helps in prediction of a large database in a very short
period, thus, reducing high experimentation cost.

Disclosure statement

No potential conflict of interest was reported by the authors.

Weblinks

Asinex. Available at http://www.asinex.com/. Accessed on 19 May 2020.
Autodockvina 1.5.6 tool. Available at http://autodock.scripps.edu/

resources/adt. Accessed on 18 May 2020.
MarvinSketch software. Available at https://www.chemaxon.com.

Accessed on 19 May 2020.
OCHEM or Online Chemical Database. Available at https://ochem.eu/

home/show.do. Accessed on 21Jun 2020.
PDBsum. Available at http://www.ebi.ac.uk/thornton-srv/databases/

cgi-bin/pdbsum/GetPage.pl?pdbcode=2zu4&template=ligands.html&l=1.
1. Accessed on 18 May 2020.

Simca 16.0.2 Available at https://landing.umetrics.com/downloads-simca
WHO Timeline - COVID-19. Available at https://www.who.int/news-

room/detail/27-04-2020-who-timeline—covid-19. Accessed on 02
Jun 2020.

Funding

PD thanks Indian Council of Medical Research, New Delhi, for awarding
with a Senior Research Fellowship, Financial assistance from the Indian
Council of Medical Research (ICMR), New Delhi in the form of a senior
research fellowship (File No: 5/3/8/27/ITR-F/2018-ITR; dated: 18.05.2018)
to VK is thankfully acknowledged, KR thanks SERB, Govt. of India for
financial assistance under the MATRICS scheme (MTR/2019/000008). SB
likes to acknowledge financial support from the Science and
Engineering Research Board (SERB), India, under grant EMR/2016/002141.

ORCID

Kunal Roy http://orcid.org/0000-0003-4486-8074

References

Akarachantachote, N., Chadcham, S., & Saithanu, K. (2014). Cutoff thresh-
old of variable importance in projection for variable selection.
International Journal of Pure and Applied Mathematics, 94(3), 307–322.

Chen, L. R., Wang, Y. C., Lin, Y. W., Chou, S. Y., Chen, S. F., Liu, L. T., Wu,
Y. T., Kuo, C. J., Chen, T. S. S., & Juang, S. H. (2005). Synthesis and
evaluation of isatin derivatives as effective SARS coronavirus 3CL pro-
tease inhibitors. Bioorganic & Medicinal Chemistry Letters, 15(12),
3058–3062. https://doi.org/10.1016/j.bmcl.2005.04.027

Chen, Y. W., Yiu, C. P. B., & Wong, K. Y. (2020). Prediction of the SARS-
CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: Virtual screen-
ing reveals velpatasvir, ledipasvir, and other drug repurposing candi-
dates. F1000Research, 9, 129. https://doi.org/10.12688/f1000research.
22457.2

De, P., Aher, R. B., & Roy, K. (2018). Chemometricmodeling of larvicidal
activity of plant derived compounds against zika virus vector Aedes
aegypti: Application of ETA indices. RSC Advances, 8(9), 4662–4670.
https://doi.org/10.1039/C7RA13159C

Del Rio, C., & Malani, P. N. (2020). COVID-19—new insights on a rapidly
changing epidemic. JAMA, 323(14), 1339–1340. https://doi.org/10.
1001/jama.2020.3072

Devillers, J. (1996). Genetic algorithms in molecular modeling. Academic
Press.

D€omling, A., & Gao, L. (2020). Chemistry and Biology of SARS-CoV-2.
Chem, 6(6), 1283–1295. https://doi.org/10.1016/j.chempr.2020.04.023

Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., Ma, L., Lai, B., Pei, J., Liu, Y.,
Chen, J., & Lai, L. (2004). Biosynthesis, purification, and substrate spe-
cificity of severe acute respiratory syndrome coronavirus 3C-like pro-
teinase. The Journal of Biological Chemistry, 279(3), 1637–1642. https://
doi.org/10.1074/jbc.M310875200

Fung, T. S., & Liu, D. X. (2019). Human coronavirus: Host-pathogen inter-
action. Annual Review of Microbiology, 73, 529–557. https://doi.org/10.
1146/annurev-micro-020518-115759

Gadaleta, D., Mangiatordi, G. F., Catto, M., Carotti, A., & Nicolotti, O.
(2016). Applicability domain for QSAR models: Where theory meets
reality. International Journal of Quantitative Structure-Property
Relationships, 1(1), 45–63. https://doi.org/10.4018/IJQSPR.2016010102

Goetz, D. H., Choe, Y., Hansell, E., Chen, Y. T., McDowell, M., Jonsson,
C. B., Roush, W. R., McKerrow, J., & Craik, C. S. (2007). Substrate speci-
ficity profiling and identification of a new class of inhibitor for the
major protease of the SARS coronavirus. Biochemistry, 46(30),
8744–8752. https://doi.org/10.1021/bi0621415

Gramatica, P. (2020). Principles of QSAR Modeling: Comments and
Suggestions from Personal Experience. International Journal of
Quantitative Structure-Property Relationships, 5(3), 61–97. https://doi.
org/10.4018/IJQSPR.20200701.oa1

Huang, J., & MacKerell, A. D. Jr. (2013). CHARMM36 all-atom additive pro-
tein force field: Validation based on comparison to NMR data. Journal
of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.
1002/jcc.23354

Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular
dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/
10.1016/0263-7855(96)00018-5

Jackson, J. E. (2005). A user’s guide to principal components (Vol. 587).
Wiley.

Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang,
L., Peng, C. & Duan, Y. (2020). Structure of Mpro from SARS-CoV-2 and
discovery of its inhibitors. Nature, 582, 289–293. https://doi.org/10.
1038/s41586-020-2223-y

Table 7. Continued.

ID number Molecular structure
Predicted
pIC50(mM)

Prediction
quality AD status

SYN 15731599 –0.579 Good In

26 P. DE ET AL.

http://www.asinex.com/
http://autodock.scripps.edu/resources/adt
http://autodock.scripps.edu/resources/adt
https://www.chemaxon.com
https://ochem.eu/home/show.do
https://ochem.eu/home/show.do
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=2zu4&template=ligands.html&l=1.1
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=2zu4&template=ligands.html&l=1.1
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=2zu4&template=ligands.html&l=1.1
https://landing.umetrics.com/downloads-simca
https://www.who.int/news-room/detail/27-04-2020-who-timeline---covid-19
https://www.who.int/news-room/detail/27-04-2020-who-timeline---covid-19
https://www.who.int/news-room/detail/27-04-2020-who-timeline---covid-19
https://doi.org/10.1016/j.bmcl.2005.04.027
https://doi.org/10.12688/f1000research.22457.2
https://doi.org/10.12688/f1000research.22457.2
https://doi.org/10.1039/C7RA13159C
https://doi.org/10.1001/jama.2020.3072
https://doi.org/10.1001/jama.2020.3072
https://doi.org/10.1016/j.chempr.2020.04.023
https://doi.org/10.1074/jbc.M310875200
https://doi.org/10.1074/jbc.M310875200
https://doi.org/10.1146/annurev-micro-020518-115759
https://doi.org/10.1146/annurev-micro-020518-115759
https://doi.org/10.4018/IJQSPR.2016010102
https://doi.org/10.1021/bi0621415
https://doi.org/10.4018/IJQSPR.20200701.oa1
https://doi.org/10.4018/IJQSPR.20200701.oa1
https://doi.org/10.1002/jcc.23354
https://doi.org/10.1002/jcc.23354
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1038/s41586-020-2223-y
https://doi.org/10.1038/s41586-020-2223-y


Kumar, V., & Roy, K. (2020). Development of a simple, interpretable and
easily transferable QSAR model for quick screening antiviral databases
in search of novel 3C-like protease (3CLpro) enzyme inhibitors against
SARS-CoV diseases. SAR QSAR Environ Res, 31(7), 511–526. https://doi.
org/10.1080/1062936X.2020.1776388

Kumari, R., Kumar, R., Lynn, A., & Open Source Drug Discovery
Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput
MM-PBSA calculations. Journal of Chemical Information and Modeling,
54(7), 1951–1962. https://doi.org/10.1021/ci500020m

Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G. M., Ahuja, A.,
Yung, M. Y., Leung, C. B., To, K. F., Lui, S. F., Szeto, C. C., Chung, S., &
Sung, J. J. Y. (2003). A major outbreak of severe acute respiratory syn-
drome in Hong Kong. The New England Journal of Medicine, 348(20),
1986–1994. https://doi.org/10.1056/NEJMoa030685

Liu, W., Zhu, H. M., Niu, G. J., Shi, E. Z., Chen, J., Sun, B., Chen, W. Q.,
Zhou, H. G., & Yang, C. (2014). Synthesis, modification and docking
studies of 5-sulfonyl isatin derivatives as SARS-CoV 3C-like protease
inhibitors. Bioorganic & Medicinal Chemistry, 22(1), 292–302. https://
doi.org/10.1016/j.bmc.2013.11.028

Lu, I. L., Mahindroo, N., Liang, P. H., Peng, Y. H., Kuo, C. J., Tsai, K. C.,
Hsieh, H. P., Chao, Y. S., & Wu, S. Y. (2006). Structure-based drug
design and structural biology study of novel nonpeptide inhibitors of
severe acute respiratory syndrome coronavirus main protease. Journal
of Medicinal Chemistry, 49(17), 5154–5161. https://doi.org/10.1021/
jm060207o

Makov, G., & Payne, M. C. (1995). Periodic boundary conditions in ab ini-
tio calculations. Physical Review B, 51(7), 4014–4022. https://doi.org/
10.1103/PhysRevB.51.4014

Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC,
and SPC/E water models at 298 K. The Journal of Physical Chemistry A,
105(43), 9954–9960. https://doi.org/10.1021/jp003020w

Niu, C., Yin, J., Zhang, J., Vederas, J. C., & James, M. N. (2008). Molecular
docking identifies the binding of 3-chloropyridine moieties specifically
to the S1 pocket of SARS-CoVMpro. Bioorganic & Medicinal Chemistry,
16(1), 293–302.

Ojha, P. K., Mitra, I., Das, R. N., & Roy, K. (2011). Further exploring rm2
metrics for validation of QSPR models. Chemometrics and Intelligent
Laboratory Systems, 107(1), 194–205. https://doi.org/10.1016/j.chemo-
lab.2011.03.011

Park, H. S., & Jun, C. H. (2009). A simple and fast algorithm for K-medoids
clustering. Expert Systems with Applications, 36(2), 3336–3341. https://
doi.org/10.1016/j.eswa.2008.01.039

Park, J. Y., Kim, J. H., Kim, Y. M., Jeong, H. J., Kim, D. W., Park, K. H.,
Kwon, H. J., Park, S. J., Lee, W. S., & Ryu, Y. B. (2012). Tanshinones as
selective and slow-binding inhibitors for SARS-CoV cysteine proteases.
Bioorganic & Medicinal Chemistry, 20(19), 5928–5935. https://doi.org/
10.1016/j.bmc.2012.07.038

Peiris, J. S. M., Lai, S. T., Poon, L. L. M., Guan, Y., Yam, L. Y. C., Lim, W.,
Nicholls, J., Yee, W. K. S., Yan, W. W., Cheung, M. T., Cheng, V. C. C.,
Chan, K. H., Tsang, D. N. C., Yung, R. W. H., Ng, T. K., & Yuen, K. Y.
(2003). Coronavirus as a possible cause of severe acute respiratory
syndrome. The Lancet, 361(9366), 1319–1325. https://doi.org/10.1016/
S0140-6736(03)13077-2

Petersen, H. G. (1995). Accuracy and efficiency of the particle mesh
Ewald method. The Journal of Chemical Physics, 103(9), 3668–3679.
https://doi.org/10.1063/1.470043

Rizvi, S. M. D., Shakil, S., & Haneef, M. (2013). A simple click by click
protocol to perform docking: AutoDock 4.2 made easy for non-bioin-
formaticians. EXCLI Journal, 12, 831–857.

Roy, K. (Ed.). (2015). Quantitative structure-activity relationships in drug
design, predictive toxicology, and risk assessment. IGI Global.

Roy, K. (2018). Quantitative structure-activity relationships (QSARs): A few
validation methods and software tools developed at the DTC labora-
tory. Journal of the Indian Chemical Society, 95(12), 1497–1502.

Roy, K., & Ambure, P. (2016). The “double cross-validation” software tool
for MLR QSAR model development. Chemometrics and Intelligent

Laboratory Systems, 159, 108–126. https://doi.org/10.1016/j.chemolab.
2016.10.009

Roy, K., Ambure, P., & Kar, S. (2018). How precise are our quantitative
Structure-Activity Relationship Derived Predictions for New Query
Chemicals? ACS Omega, 3(9), 11392–11406. https://doi.org/10.1021/
acsomega.8b01647

Roy, K., Das, R. N., Ambure, P., & Aher, R. B. (2016). Be aware of error
measures. Further studies on validation of predictive QSAR models.
Chemometrics and Intelligent Laboratory Systems, 152, 18–33. https://
doi.org/10.1016/j.chemolab.2016.01.008

Roy, K., & Ghosh, G. (2010). Exploring QSARs with extended topochemi-
cal atom (ETA) indices for modeling chemical and drug toxicity.
Current Pharmaceutical Design, 16(24), 2625–2639. https://doi.org/10.
2174/138161210792389270

Roy, K., & Mitra, I. (2011). On various metrics used for validation of pre-
dictive QSAR models with applications in virtual screening and
focused library design. Combinatorial Chemistry & High Throughput
Screening, 14(6), 450–474. https://doi.org/10.2174/13862071
1795767893

Roy, P. P., Leonard, J. T., & Roy, K. (2008). Exploring the impact of size of
training sets for the development of predictive QSAR models.
Chemometrics and Intelligent Laboratory Systems, 90(1), 31–42. https://
doi.org/10.1016/j.chemolab.2007.07.004

Soteras Guti�errez, I., Lin, F.-Y., Vanommeslaeghe, K., Lemkul, J. A.,
Armacost, K. A., Brooks, C. L., & MacKerell, A. D. (2016).
Parametrization of halogen bonds in the CHARMM general force field:
Improved treatment of ligand–protein interactions. Bioorganic &
Medicinal Chemistry, 24(20), 4812–4825. https://doi.org/10.1016/j.bmc.
2016.06.034

Thiel, V., Ivanov, K. A., Putics, �A., Hertzig, T., Schelle, B., Bayer, S.,
Weißbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., Gorbalenya,
A. E., & Ziebuhr, J. (2003). Mechanisms and enzymes involved in SARS
coronavirus genome expression. The Journal of General Virology, 84(Pt
9), 2305–2315. https://doi.org/10.1099/vir.0.19424-0

Topliss, J. G., & Edwards, R. P. (1979). Chance factors in studies of quanti-
tative structure-activity relationships. Journal of Medicinal Chemistry,
22(10), 1238–1244. https://doi.org/10.1021/jm00196a017

Toropova, M. A. (2017). Drug metabolism as an object of computational
analysis by the Monte Carlo method. Current Drug Metabolism, 18(12),
1123–1131. https://doi.org/10.2174/1389200218666171010124733

Tsai, K.-C., Chen, S.-Y., Liang, P.-H., Lu, I.-L., Mahindroo, N., Hsieh, H.-P.,
Chao, Y.-S., Liu, L., Liu, D., Lien, W., Lin, T.-H., & Wu, S.-Y. (2006).
Discovery of a novel family of SARS-CoV protease inhibitors by virtual
screening and 3D-QSAR studies. Journal of Medicinal Chemistry, 49(12),
3485–3495. https://doi.org/10.1021/jm050852f

Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., &
Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of
Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/
jcc.20291

Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recog-
nition by the novel coronavirus from Wuhan: An analysis based on
decade-long structural studies of SARS coronavirus. Journal of
Virology, 94(7), e00127-20. https://doi.org/10.1128/JVI.00127-20

Wold, S., Sj€ostr€om, M., & Eriksson, L. (2001). PLS-regression: A basic tool
of chemometrics. Chemometrics and Intelligent Laboratory Systems,
58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1

Yap, C. W. (2011). PaDEL-descriptor: An open source software to calcu-
late molecular descriptors and fingerprints. Journal of Computational
Chemistry, 32(7), 1466–1474. https://doi.org/10.1002/jcc.21707

Zhavoronkov, A., Zagribelnyy, B., Zhebrak, A., Aladinskiy, V., Terentiev, V.,
Vanhaelen, Q., Bezrukov, D. S., Polykovskiy, D., Shayakhmetov, R.,
Filimonov, A., & Bishop, M. (2020). Potential non-covalent SARS-CoV-2
3C-like protease inhibitors designed using generative deep learning
approaches and reviewed by human medicinal chemist in virtual
reality. ChemRxriv. http://doi.org/10.26434/chemrxiv.12301457.v1

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 27

https://doi.org/10.1080/1062936X.2020.1776388
https://doi.org/10.1080/1062936X.2020.1776388
https://doi.org/10.1021/ci500020m
https://doi.org/10.1056/NEJMoa030685
https://doi.org/10.1016/j.bmc.2013.11.028
https://doi.org/10.1016/j.bmc.2013.11.028
https://doi.org/10.1021/jm060207o
https://doi.org/10.1021/jm060207o
https://doi.org/10.1103/PhysRevB.51.4014
https://doi.org/10.1103/PhysRevB.51.4014
https://doi.org/10.1021/jp003020w
https://doi.org/10.1016/j.chemolab.2011.03.011
https://doi.org/10.1016/j.chemolab.2011.03.011
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1016/j.bmc.2012.07.038
https://doi.org/10.1016/j.bmc.2012.07.038
https://doi.org/10.1016/S0140-6736(03)13077-2
https://doi.org/10.1016/S0140-6736(03)13077-2
https://doi.org/10.1063/1.470043
https://doi.org/10.1016/j.chemolab.2016.10.009
https://doi.org/10.1016/j.chemolab.2016.10.009
https://doi.org/10.1021/acsomega.8b01647
https://doi.org/10.1021/acsomega.8b01647
https://doi.org/10.1016/j.chemolab.2016.01.008
https://doi.org/10.1016/j.chemolab.2016.01.008
https://doi.org/10.2174/138161210792389270
https://doi.org/10.2174/138161210792389270
https://doi.org/10.2174/13862071
https://doi.org/10.1016/j.chemolab.2007.07.004
https://doi.org/10.1016/j.chemolab.2007.07.004
https://doi.org/10.1016/j.bmc.2016.06.034
https://doi.org/10.1016/j.bmc.2016.06.034
https://doi.org/10.1099/vir.0.19424-0
https://doi.org/10.1021/jm00196a017
https://doi.org/10.2174/1389200218666171010124733
https://doi.org/10.1021/jm050852f
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1128/JVI.00127-20
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1002/jcc.21707
http://doi.org/10.26434/chemrxiv.12301457.v1

	Abstract
	Introduction
	Material and methods
	Dataset
	Molecular descriptors
	Dataset splitting
	Variable selection and model development
	Statistical validation parameters
	Domain of applicability
	Molecular docking study
	MD simulation

	Results and discussions
	QSAR modeling
	Applicability domain
	Model randomization
	Molecular docking analysis

	Molecular docking interactions analysis of the most active compounds from the dataset
	Molecular docking analysis of the least active compounds from the dataset
	Correlation of docking analysis results with the developed 2D-QSAR model
	MD simulation analysis
	Screening of the external datasets

	Conclusion
	Disclosure statement
	Weblinks 
	Funding
	Orcid
	References


