
fnagi-14-916020 May 19, 2022 Time: 14:31 # 1

ORIGINAL RESEARCH
published: 25 May 2022

doi: 10.3389/fnagi.2022.916020

Edited by:
Yuanpeng Zhang,

Nantong University, China

Reviewed by:
Lijun Xu,

Nanjing Institute of Technology (NJIT),
China

Min Shi,
Fuzhou University of International

Studies and Trade, China

*Correspondence:
Guangjun Li

liguangjun@whsu.edu.cn

Specialty section:
This article was submitted to

Alzheimer’s Disease and Related
Dementias,

a section of the journal
Frontiers in Aging Neuroscience

Received: 08 April 2022
Accepted: 09 May 2022
Published: 25 May 2022

Citation:
Liu R, Li G, Gao M, Cai W and

Ning X (2022) Large Margin and Local
Structure Preservation Sparse

Representation Classifier
for Alzheimer’s Magnetic Resonance

Imaging Classification.
Front. Aging Neurosci. 14:916020.

doi: 10.3389/fnagi.2022.916020

Large Margin and Local Structure
Preservation Sparse Representation
Classifier for Alzheimer’s Magnetic
Resonance Imaging Classification
Runmin Liu1, Guangjun Li1* , Ming Gao2, Weiwei Cai3,4 and Xin Ning5

1 College of Sports Engineering and Information Technology, Wuhan Sports University, Wuhan, China, 2 College of Sports
Science and Technology, Wuhan Sports University, Wuhan, China, 3 School of Artificial Intelligence and Computer Science,
Jiangnan University, Wuxi, China, 4 AiTech Artificial Intelligence Research Institute, Changsha, China, 5 Institute
of Semiconductors, Chinese Academy of Sciences, Beijing, China

Alzheimer’s disease (AD) is a progressive dementia in which the brain shrinks as
the disease progresses. The use of machine learning and brain magnetic resonance
imaging (MRI) for the early diagnosis of AD has a high probability of clinical value and
social significance. Sparse representation classifier (SRC) is widely used in MRI image
classification. However, the traditional SRC only considers the reconstruction error and
classification error of the dictionary, and does not consider the global and local structural
information between images, which results in unsatisfactory classification performance.
Therefore, a large margin and local structure preservation sparse representation
classifier (LMLS-SRC) is developed in this manuscript. The LMLS-SRC algorithm uses
the classification large margin term based on the representation coefficient, which
results in compactness between representation coefficients of the same class and
a large margin between representation coefficients of different classes. The LMLS-
SRC algorithm uses local structure preservation term to inherit the manifold structure
of the original data. In addition, the LMLS-SRC algorithm imposes the `2,1-norm on
the representation coefficients to enhance the sparsity and robustness of the model.
Experiments on the KAGGLE Alzheimer’s dataset show that the LMLS-SRC algorithm
can effectively diagnose non AD, moderate AD, mild AD, and very mild AD.

Keywords: Alzheimer’s disease, sparse representation classifier, image classification, magnetic resonance
imaging, KAGGLE Alzheimer’s dataset

INTRODUCTION

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease that usually progresses
slowly in the early stages and gets worse over time (Katabathula et al., 2021). AD often occurs in the
elderly. The initial symptoms are easy to forget recent events. With the development of the disease,
the symptoms may include language problems, disorientation, mood swings, loss of self-care ability,
etc., which will eventually seriously affect the daily life of the elderly. Currently, about 90 million
people worldwide suffer from AD of varying degrees. It is estimated that by 2050, the number
of AD patients will reach 300 million (Wong, 2020). The specific symptoms of very mild AD are
progressive decline in memory or other cognitive functions, but do not affect the ability of daily
living. According to statistics, about 10–15% of very mild AD will eventually transform into AD
(Porsteinsson et al., 2021). Current scientific and clinical research has not yet clearly identified the
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pathogenesis and etiology of AD, and there is no fully effective
treatment drug. AD is uncontrollable and irreversible after being
diagnosed. However, if patients can be intervened and treated in
the early stage of mild cognitive impairment (MCI), it is hoped
that the onset of AD will be delayed by 5 years, and even stop the
progression of AD in the stage of MCI, and no longer worsen
into AD, reducing the number of patients with AD by 40%
(Venugopalan et al., 2021).

In the past decade, neuroimaging techniques have been
widely used in the classification and prediction of AD. Among
them, magnetic resonance imaging (MRI) is a non-contact
imaging technology that can provide detailed three-dimensional
anatomical images of the brain and provide effective information
for the classification and prediction of AD (Al-Khuzaie and
Duru, 2021). The AD classification algorithms based on machine
learning usually extract the required features from the collected
medical images by manual or semi-manual methods. Various
parts of the brain regions of AD patients will atrophy to varying
degrees due to the progression of the disease process. The
volume, shape and texture information of the hippocampus,
gray matter, white matter, and cerebral cortex of the brain are
important features to distinguish AD and healthy people (Lee
et al., 2020; Gao, 2021). To classify AD MRI images, some studies
extract the volume information of the whole brain or part of
the brain. Some scholars segment different regions of the brain
and take the volume of each segment as features. According to
the anatomical automatic labeling brain region template, some
researchers divide the entire brain or part of the brain region
into multiple regions and then obtain the features for each
region. AD Patients often experience cerebral cortex atrophy
and ventricular enlargement, and early AD patients usually
have hippocampal atrophy (van Oostveen and de Lange, 2021).
Therefore, some scholars use the volume information of different
regions of interest such as the hippocampus as features based on
medical prior knowledge. Another common feature extraction
method is the morphometric measurement method, which is
often implemented based on MRI images and PET images. For
example, Al-Khuzaie and Duru (2021) took the overall shape of
the brain in MRI images as features. Katabathula et al. (2021)
used the shape information of the hippocampus as features. Brain
gully dilation is often seen in AD patients. Furthermore, texture
features are also widely used in MRI images. Gao (2021) extracted
the grayscale co-occurrence matrix of images as features. Hett
et al. (2018) used 3D Gabor filter to extract and classify multi-
directional texture features of MRI images.

Classifiers such as sparse representation classifier (SRC),
logistic regression (LR), support vector machine (SVM), and
decision tree (DT) are widely used in AD MRI image
classification. For example, Kruthika et al. (2019) used a multi-
level classifier to classify AD MRI images. They first used a naive
Bayes classifier, and then used SVM as secondary classification
to classify the data with confidence lower than the threshold.
Liu et al. (2015) proposed a multi-view learning algorithm based
on inherent structure of mild cognitive impairment (MCI) MRI
images, which used the multi-view features of MCI images to
train multiple SVMs, and then fused and discriminated each
classifier result. Altaf et al. (2018) used SVM, random forest, and

K-nearest neighbor (KNN) to train AD classifiers, respectively,
and the final classification result was the weighted sum of
the results of each classifier. Yao et al. (2018) used the idea
of hierarchical classification to classify AD MRI images. They
initially classified samples into four classes (AD, healthy, MCI,
converted MCI), then they trained several binary classifiers (AD
and converted MCI, healthy and MCI), and finally got a classifier
that can classify all samples into four classes. Pan et al. (2019)
proposed an algorithm to integrate multi-level features based
on FDG-PET images, and simultaneously considered the region
features and connectivity between regions to classify AD or MCI
from healthy people. Finally, multiple SVMs were used for voting
classification, and good results had been achieved in multiple
binary classification tasks.

Magnetic resonance imaging image features usually suffer
from high dimensionality and small sample size, which may
lead to overfitting in data-driven machine learning methods
(Jiang et al., 2019). To solve this problem, most existing
methods adopt feature selection or feature representation to
exploit the potential knowledge of data. Sparse representation is
one of the widely used feature representation methods. Sparse
representation can explore potential relationships within the data
(Gu et al., 2021). Chang et al. (2015) proposed a dictionary
learning algorithm based on sparse decomposition of stacked
prediction. They used the spatial pyramid matching method to
encode representation coefficients, and used SVM to classify
the pathological state of tumors. Shi et al. (2013) developed a
multi-modal SRC algorithm for lung histopathological image
classification, which used genetic algorithm to guide the learning
of three sub-dictionaries of color, shape and texture, and
then combined sparse reconstruction error and majority voting
algorithm for classification of lung histopathology images. He
(2019) proposed a spatial pyramid matching algorithm based
on joint representation coefficient, which utilized the three
color channel information of RGB, and converted the grayscale
description operator into a color description operator, which
improved the image classification performance. Jiang et al. (2019)
extracted features from breast cancer histopathological images
based on stacked sparse autoencoder, and used Softmax function
to detect cell nuclei in histopathological images. Zhang et al.
(2016) realized the fusion of global and local features of the
nuclear image, and then combined the ranking and majority
voting algorithm to classify the histopathological images of
breast cancer. The above algorithms can effectively extract image
features by introducing the sparsity of the image, and the
extracted features have good reconstruction properties, but they
do not have good discriminative ability.

To improve the diagnosis of MCI and AD based on
MRI images, we propose large margin and local structure
preservation sparse representation classifier (LMLS-SRC) in this
manuscript. The traditional SRC only uses the classification
error term to control the classification accuracy, and does not
fully consider the class label information of the representation
coefficients. Different from the traditional SRC, the LMLS-
SRC algorithm introduces the classification margin term
of representation coefficients into the sparse representation
classifier, so that the similar representation coefficients are
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compact in the representation space, and the dissimilar
representation coefficients are separated as much as possible
in the representation space. Experiments on the KAGGLE
Alzheimer’s dataset verify the advantages of our algorithm. Major
contributions of this manuscript are highlighted below: (1)
Considering the global information of the data by using the
large margin term, the obtained dictionary is discriminative,
and the representation coefficient has the small intra-class
distance and large inter-class distance. (2) The local structure
preservation term is introduced, which can inherit the manifold
structure of the original data. (3) The `2,1-norm term on the
representation coefficients is used, which can enhance the sparsity
and robustness of the representation coefficients.

BACKGROUNDS

Dictionary-Based Sparse Representation
Classifier
Using SRC algorithm in image classification, how to design
effective dictionary and representation coefficient for
feature representation is the key factor to determine the
algorithm performance (Wright et al., 2009). There are three
aspects considered in the design of SRC algorithm: (1) The
reconstruction error of the representation coefficients is small, so
that the samples are as close to the original samples as possible
in the sparse representation; (2) The representation coefficients
are constrained to make the representation coefficients as sparse
as possible; (3) The discrimination term should be considered
to better extract more discriminative information of data
(Jiang et al., 2013).

Let X = [X1, ..., XK] ∈ Rd×N be the K-classes training sample
set, Xk = [x1, ..., xNk ] be the k-th class training sample subset,
k = 1, 2,. . ., K,N = N1 + N2 + · · · + NK . d is the dimensional
of samples. The SRC algorithm for image classification can be
represented as,

min
D,A
||X-DA||2F + λg(A)+ ηf (D,A,Y), (1)

where Y is the class label matrix of X. D ∈ Rd×m is the learned
dictionary, and A ∈ Rm×N is the representation coefficient
matrix of X. m is the size of dictionary. In model training, the data
reconstruction item ||X-DA||2F is to ensure the representation
ability of the dictionary D, so that the reconstruction error of
the training data is minimized, and the reconstructed image is as
close to the original sample as possible. The regularization term
is used to constrain the sparsity of the representation coefficients,
which is usually represented as,

g(A) = ||A||p. (2)

where || · ||p is the regularization term of the representation
coefficient A (p < 2), which makes the representation coefficient
as sparse as possible. f (D,A,Y) is the discriminative function
term of representation coefficient for classification to ensure the
discriminative ability of D and A.

To obtain a discriminative dictionary, Yang et al. (2017)
developed a supervised Fisher discrimination dictionary learning

(FDDL), which associated the elements in the dictionary
with the class labels of the samples based on the Fisher
discrimination criterion. Jiang et al. (2013) proposed the
discriminative Label consistent K-SVD (LC-KSVD) algorithm.
Zhang et al. (2019) proposed a robust flexible discriminative
dictionary learning (RFDDL) algorithm based on subspace
recovery and enhanced locality. This algorithm improved image
representation and classification by enhancing representation
coefficient robustness. The computational complexity of the SRC
representation coefficient is usually high. To quickly obtain the
representation coefficients, Ma et al. (2017) proposed the local
sparse representation algorithm, which used the KNN criterion
to select k samples adjacent to the current sample to build
a dictionary matrix. In this way, the size of the dictionary is
reduced and the process of representation coefficient is greatly
accelerated. Similarly, inspired by the KNN criterion, Zheng and
Ding (2020) developed a sparse KNN classifier based on group
lasso strategy and KSVD algorithm. Wang et al. (2018) proposed
a SRC algorithm based on the `2-norm, which replaced the `1-
norm with the `2-norm to constrain the coefficients. Ortiz and
Becker (2014) proposed an approximate linear SRC algorithm.
Authors used least square algorithm to select the training samples
corresponding to the absolute values of the k largest coefficients
to build a sub-dictionary.

KAGGLE Alzheimer’s Image Dataset
The experiments in this manuscript are carried out on the
KAGGLE Alzheimer’s image dataset (Loddo et al., 2022). The
KAGGLE Alzheimer’s dataset contains a total of four types of
MRI images: non AD (3,200 images), very mild AD (2,240
images), mild AD (896 images) and moderate AD (64 images),
with the resolution of 176 × 208. The KAGGLE Alzheimer’s
dataset does not provide detailed information on patient
status. Figure 1 shows some example images of the KAGGLE
Alzheimer’s dataset.

THE PROPOSED ALGORIHTM

Objective Function
The purpose of sparse representation is to represent the sample
with as few elements as possible on a given dictionary, so that
a more concise representation of the sample can be obtained,
and the useful information contained in the sample can be easily
obtained. Thus the core problem of sparse representation is
how to compute sparse coding coefficients on a given learned
dictionary. Compared with the commonly used `1-norm and `2-
norm, `2,1-norm can improve the robustness of the model and
reduce the computational complexity. Thus, we introduce `2,1-
norm constraint on representation coefficients in LMLS-SRC, i.e.,

51 = arg min
D,A
{||X-DA||2F + λ1||A||22,1}, (3)

where λ1 is a constant.
We define a large margin term on representation coefficient

that relies on a specific neighborhood size for intra-class
and inter-class representation coefficients. The large margin
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term minimizes the intra-class distance of the representation
coefficient and maximizes the inter-class distance of the
representation coefficient, so as to improve the difference
between the representation coefficients of different classes. The
large margin term on representation coefficient can be written as,

f (ai) = arg min{
∑
t∈Ck

||ai − at||2

Nk
−

∑
j/∈Ck

||ai − aj||2

N − Nk
}, (4)

where
∑

t∈Ck
||ai−at ||2

Nk
represents the distance between ai and the

sparse representation of the same class.
∑

j/∈Ck
||ai−at ||2
N−Nk

represents
the distance between ai and the sparse representation of the
different class. Ck is the index set of the k-th class sample.

We build the intra-class similarity matrix Qw and inter-class
similarity matrix Qb based on representation coefficient. The
elements of the matrix Qw and matrix Qb are expressed as,

qwij =
{

1/Nk, if i, j ∈ Ck
0, otherwise

(5)

qbij =
{

1/(N − Nk), if i ∈ Ck, j /∈ Ck
0, otherwise

(6)

Then the large margin term on representation coefficient can
be expressed as,

52 = arg min
A

1
N
∑N

i=1 f (ai)

=
1
N
∑N

i=1
∑N

j=1(q
w
ij ||ai − aj||2 − qbij||ai − aj||2)

=
1
N

(
2
∑N

i=1 a2
i − 2

∑N
i=1
∑N

j=1 aiq
w
ij aj
)
−

1
N

(∑N
i=1 a2

i +
∑N

j=1 a2
j q

b
jj − 2

∑N
i=1
∑N

j=1 aiq
b
ijaj
)

= tr( 1
N AT(2I− 2Qw)A)− tr( 1

N AT(I+ Q̃b
− 2Qb)A)

= tr( 1
N AT(I− 2Qw

− Q̃b
+ 2Qb)A)

= tr(ATSA)

(7)

where S = 1
N (I− 2Qw

− Q̃b
+ 2Qb). The matrix Q̃b is the

diagonal matrix with the element being the column-sum of Qb .
Following the principle of local structure preservation, if two

images are close in the original space, they should also have
similar representation coefficients. To this end, we construct
a similarity matrix P that reflects the intrinsic local structure
between images. The element of matrix P is defined as,

pij =

{
exp

(
−
||xi−xj||22

2σ2

)
, if xi ∈ N(xj) or xj ∈ N(xi),

0, otherwise,
(8)

where N(xj) represents the k nearest neighbors of xj .
The local structure preservation term on representation

coefficient is expressed as,

53 = arg min
A

∑N
i,j pij||ai − aj||22

= tr(AT(P− P̃)A)

= tr(ATLA),

(9)

where the graph Laplacian matrix L is L = P− P̃,P̃ is the
diagonal matrix with the element being the row-sum of P.

The LMLS-SRC algorithm is a supervised learning model.
Using the class labels of all training samples, we use a linear
classifier W for representation coefficient A and dictionary D, i.e.,

54 = arg min
W,A
||WA–Y||2F+λ5||W||2F. (10)

In summary, the objective function of the LMLS-SRC
algorithm can be written as,

F(D,A,W) = min
D,A,W

51 +52 +53 +54, (11)

i.e.,

min
D,A,W

||X–DA||2F + λ1||A||22,1 + λ2tr(ATSA)

+λ3tr(ATLA)+ λ4||WA–Y||2F + λ5||W||2F,
s.t. ||di||22 ≤ 1,∀i

(12)

where λ1,λ2,λ3,λ4, and λ5 are trade-off parameters.
By alternately optimizing the representation coefficient

A, dictionary D and classifier parameter W, the following
performance can be obtained as: (1) the dictionary D has
more sparse representation performance, which enhances the
reconstruction of the sample by the dictionary. (2) LMLS-
SRC maximizes the distance between different classes of
representation coefficients and greatly reduces the similarity
between different classes of representation coefficients. (3)
The representation coefficient is more discriminative, which is
beneficial to the performance of image classification.

Optimization
(1) Fix D, W, and update A. Eq. (12) can be written by,

min F(A) = ||X–DA||2F + λ1||A||22,1 + λ2tr(ATSA)

+λ3tr(ATLA)+ λ4||WA–Y||2F. (13)

According to the definition of `2,1-norm, ||A||22,1=tr(AT�A).
� is a diagonal matrix whose elements are setting by �ii =

1/(2||Ai||2) where Ai represents the i-th row of A.
Equation (12) can be re-written by,

min F(A) = ||X–DA||2F + λ1tr(AT�A)+ λ2tr(ATSA)

+λ3tr(ATLA)+ λ4||WA–Y||2F. (14)

Setting ∂F(A)
/
∂A = 0, we can obtain,

∂L
∂A
= 2DTDA− 2DTX+ (2λ13+ 2λ2S+ 2λ3L)A

+2λ4(WTWA–WTY). (15)

A can obtained by the updated by,

A
∗

= (DTD+ λ13+ λ4WTW+ λ2S+ λ3L)−1

(λ4WTY+DTX). (16)

(2) Fix A, W, and update D. Equation (12) can be written by,

min F(D) = ||X–DA||2F,
s.t. ||di||22 ≤ 1,∀i

(17)
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We can solve Eq. (17) by the following Lagrangian dual
function,

min F(D, σ) = ||X–DA||2F +
m∑
i=1

γi
(
||di||22 − 1

)
, (18)

where γi is the Lagrange multiplier of i-th atoms.
We build a diagonal matrix 2 with the element 2ii = γi.

Equation (18) can be written by,

min F(D, 2) = ||X–DA||2F + tr(DTD2)− tr(2). (19)

Setting ∂F(D, 2)
/
∂D = 0, we can obtain,

D
∗

= XAT(AAT
+2)−1. (20)

(3) Fix A and D, and update W. Equation (12) can be written
by,

min F(W) = λ4||WA–Y||2F + λ5||W||2F. (21)

Setting ∂F(W)
/
∂W = 0, we can obtain,

W
∗

= λ4YAT(λ4AAT
+λ5I)−1. (22)

The optimization steps of LMLS-SRC algorithm are shown in Algorithm 1.

Input: training set X and its label matrix Y, tolerance error δ, maximum number of
iterations maxiter, parameters λ1,λ2,λ3,λ4, and λ5,

Output: parameters D, A, and W.

Initialize: initialize D and A using the LC-KSVD algorithm, W = I, m = 1,

Calculate matrices Qw, Qb, and P;

While not converged and m ≤ maxiterdo

Calculate D(m) by Eq. (20);
Calculate A(m) by Eq. (16);
Calculate W(m) by Eq. (22);

Check the convergence condition |F(D(m),A(m),W(m))−F(D(m−1),A(m−1),W(m−1))|
F(D(m−1),A(m−1),W(m−1))

<δ

m = m + 1

end while

EXPERIMENTS

Experimental Settings
In clinical diagnosis, AD classification tasks consist of two
categories. The first is the AD binary classification task,
which extracts features based on MRI images and uses
machine learning models to classify normal individuals
and AD patients, which can help doctors diagnose AD
patients. The second is the classification of various ADs,
especially the diagnosis and identification of mild AD and
very mild AD. Early prediction of AD can help to take
treatment and intervention measures in the early stage of
AD. Therefore, in this manuscript, we design binary, three-
class and four-class classification tasks on the KAGGLE
Alzheimer’s dataset.

Volume analysis is the commonly used feature extraction
method in AD classification. Volumetric feature extraction is

divided into two categories: density maps and predefined area
methods. AD MRI image is mainly related to the volume of the
density map structure, cortical structure, subcortical structure
and other regions. In this manuscript, we use FSL (FMRIB
software library) toolbox to extract MRI features (Jenkinson et al.,
2012). FSL is a library of comprehensive analysis tools for brain
imaging data such as MRI, developed by the FMRIB Centre in
Oxford. We use the FSL toolbox to calculate the volume, area
and thickness characteristics of various brain tissues in brain MRI
images. In the comparison experiment, the LMLS-SRC algorithm
is compared with SRC (Wright et al., 2009), logistic regression
(LR) (Tsangaratos and Ilia, 2016), linear discriminant (LD) (Kim
et al., 2011), LC-KSVD, FDDL, and sparse representation-based
discriminative metric learning (SRDML) (Zhou et al., 2022). The
radial basis function (RBF) kernel is used in LR. The default
settings are used to produce test results from these classifiers
using the MATLAB classification learner toolbox. The RBF kernel
and the regularization parameters for all comparison algorithms
range from 10−3 to 103. The number of dictionary atoms in SRC
and dictionary learning is set as the number of training samples.
Indicators of classification performance include classification
accuracy, sensitivity, specificity, precision, F1-score, and G-mean.
We carry out 5-fold cross-validation strategy and record the
experimental results.

Experimental Results
(1) Binary classification task. The main goal of this work is to
classify brain MRI into AD and non AD classes. We utilized 3,200
and 62 MRI images for non AD and AD classes, respectively.
We randomly selected 1,000 MRI images from the non AD class
images to increase the moderate AD class dataset to 620 MRI
images using data augmentation techniques. The comparative
training and test results in binary classification task are shown
in Tables 1, 2, respectively.

(2) Three-class classification tasks. The main goal of this work
was to classify brain MRI into three classes: non AD, mild AD,
and moderate AD. Using data augmentation techniques, these
three classes of datasets contain 3,200, 700, and 620 images,
respectively. We randomly selected 1,000 MRI images from the
non AD class. The comparative training and test results in three-
class classification task are shown in Tables 3, 4, respectively.

(3) Four-class classification tasks. The main goal of this work
is to classify brain MRI images into four classes: very mild AD,
non AD, mild AD, and moderate AD. Similar to the three-
class classification task described, we randomly selected 1,000
MRI images each from non AD class images and very mild
AD, respectively, and used data augmentation to increase the
moderate dementia dataset to 520 MRI images. The number of
images in the four categories of very mild AD, non AD, mild AD,
and moderate AD are 1,000, 1,000, 700, and 520, respectively. The
comparison training and test results in four-class classification
task are shown in Tables 5, 6, respectively.

We can see that all the comparison algorithms have the highest
classification accuracy in the binary classification task (AD and
non AD). It shows that these machine learning algorithms have
excellent performance in the classification and diagnosis of AD.
It is more practical to classify patients, very mild AD, non
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FIGURE 1 | Example samples of the KAGGLE Alzheimer’s dataset, (A) Non AD, (B) Moderate AD, (C) Mild AD, (D) Very Mild AD.

AD, mild AD, and moderate AD into four classes, and this
classification task is more difficult. The classification accuracy of
all the comparison algorithms on the four-class task is slightly
lower than that on the two-class task. However, the LMLS-SRC
algorithm achieves the best results in these tables, indicating that
our algorithm has a great improvement in the diagnosis of AD.

In Tables 2, 4, 6, the LMLS-SRC algorithm improves the
classification accuracy of the second best algorithm by 2.84, 3.00,
and 2.41%, respectively. This shows that the dictionary learned in
this study has better reconstruction performance for the samples
of same class and better discriminative performance for samples
of different classes. KSVD, LC-KSVD, and LMLS-SRC are SRC
algorithms. The KSVD and LC-KSVD algorithms only constrain
the discriminative ability of the representation coefficients,
and do not take into account the large margin between the
representation coefficients of different classes. Therefore, the
discriminative ability of the learned dictionary obtained by KSVD
and LC-KSVD is still weak. The dictionary learned by the
LMLS-SRC algorithm in this manuscript is combined with the

classification large margin criterion, which directly constrains the
intra-class distance and inter-class distance of the representation
coefficients. Compared with the other three algorithms, the inter-
class differences of the dictionary learned by our algorithm are
more discriminative.

Parameter Analysis
(1) Convergence analysis. The update of {(D), (A), (W)} in
the objective function are three convex optimization problems.
That is, when other parameters are fixed, the iterative solution
of dictionary D, representation coefficient A and classifier
parameter W is the convex problem. The solution of dictionary D
is obtained by Eq. (20). The solution of dictionary A is obtained
by Eq. (16). The solution of dictionary W is obtained by Eq. (22).
Figure 2 shows the convergence of the LMLS-SRC algorithm. As
shown in Figure 2, it can be seen that the classification accuracy of
the LMLS-SRC algorithm tends to be parallel to the X-axis from
the 10th iteration. Here, it can be considered that our algorithm
converges after 12 iterations.
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TABLE 1 | The comparative training results (with standard deviation) in binary
classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean

LD 81.30 81.99 80.06 80.58 82.26 81.02

(2.84) (3.15) (2.80) (3.32) (3.27) (2.97)

LR 82.15 82.62 81.79 82.68 82.51 82.20

(2.55) (2.66) (2.70) (2.35) (2.56) (2.60)

SRC 82.10 78.97 77.33 77.63 77.55 78.15

(2.35) (2.01) (2.64) (1.62) (1.43) (2.28)

LC-KSVD 80.27 81.34 78.94 80.85 79.93 80.13

(2.54) (2.12) (2.63) (1.82) (2.07) (1.59)

FDDL 83.16 84.47 81.38 85.20 82.86 82.91

(2.64) (??) (1.83) (1.45) (1.69) (1.54)

SRDML 85.71 85.91 85.09 84.10 85.08 85.50

(2.15) (2.23) (1.75) (1.88) (1.74) (1.96)

LMLS-SRC 89.80 90.39 87.87 88.89 90.43 89.12

(2.02) (1.35) (2.06) (1.35) (1.28) (1.19)

The bold values in Tables 1–6 are the best experiment results.

TABLE 2 | The comparative test results (with standard deviation) in binary
classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean

LD 80.92 81.64 80.44 81.45 80.70 81.04

(2.26) (1.69) (2.10) (2.06) (1.62) (1.37)

LR 81.61 82.28 80.96 82.81 80.79 81.62

(1.71) (2.58) (2.70) (1.04) (1.88) (2.64)

SRC 82.91 83.18 82.86 83.07 82.94 83.02

(1.75) (2.46) (2.28) (1.16) (1.87) (2.37)

LC-KSVD 82.15 82.59 80.51 82.78 82.56 81.54

(2.74) (1.38) (2.80) (2.55) (1.96) (1.93)

FDDL 82.89 84.26 81.71 84.35 83.23 82.98

(2.23) (1.50) (1.43) (1.14) (2.02) (1.46)

SRDML 85.44 87.13 84.35 86.42 85.42 85.73

(2.14) (2.20) (2.10) (2.74) (2.05) (2.15)

LMLS-SRC 88.28 90.15 86.75 90.08 88.31 88.43

(2.07) (2.06) (1.67) (1.92) (1.18) (1.68)

TABLE 3 | The comparative training results (with standard deviation) in three-class
classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean

LD 80.13 80.70 80.52 79.57 80.94 80.61
(2.72) (1.92) (2.24) (2.28) (2.34) (2.36)

LR 81.31 82.55 80.25 81.17 81.82 81.39
(2.55) (2.30) (2.03) (2.62) (2.19) (2.16)

SRC 81.94 82.20 80.46 81.09 81.17 81.33
(2.20) (2.49) (2.59) (2.10) (2.21) (2.54)

LC-KSVD 83.80 85.54 81.64 83.94 83.32 83.57
(1.76) (1.68) (2.98) (2.23) (1.80) (2.24)

FDDL 84.04 86.12 81.13 83.93 84.32 83.59

(2.30) (2.61) (2.33) (2.24) (2.36) (2.47)

SRDML 85.39 86.82 84.88 86.32 86.86 85.85

(2.33) (2.00) (2.37) (2.05) (2.33) (2.02)

LMLS-SRC 89.32 91.38 86.81 88.86 89.00 89.07

(1.84) (1.20) (2.81) (2.12) (1.53) (1.83)

TABLE 4 | The comparative test results (with standard deviation) in three-class
classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean

LD 78.47 79.40 77.83 78.94 78.76 78.61

(2.16) (1.99) (2.50) (2.29) (1.60) (2.23)

LR 79.43 80.38 78.75 79.50 78.99 79.56

(2.02) (2.56) (2.19) (1.95) (2.18) (1.75)

SRC 80.23 80.22 79.26 79.31 79.47 79.74

(1.79) (2.53) (2.30) (2.54) (1.39) (2.31)
LC-KSVD 81.72 82.22 80.59 81.19 81.05 81.40

(1.31) (2.34) (2.41) (2.22) (1.35) (2.40)
FDDL 82.26 83.12 80.87 82.53 82.39 81.98

(2.20) (2.37) (1.42) (2.56) (2.44) (1.84)
SRDML 84.90 85.66 83.86 85.27 85.11 84.76

(2.27) (2.49) (1.80) (2.83) (2.13) (2.12)
LMLS-SRC 87.90 89.25 86.53 88.71 88.44 87.88

(1.81) (2.02) (2.04) (1.74) (1.81) (2.27)

TABLE 5 | The comparative training results (with standard deviation) in four-class
classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean

LR 79.70 80.06 78.70 81.49 79.23 79.37

(1.47) (2.15) (2.20) (2.73) (1.48) (2.10)

LR 80.81 81.71 79.41 80.87 80.40 80.55

(1.88) (1.47) (2.09) (2.11) (1.22) (1.27)

SRC 80.86 82.38 79.92 78.97 80.41 81.14

(2.02) (2.29) (1.84) (1.37) (1.62) (2.05)
LC-KSVD 82.61 84.10 80.92 82.36 83.52 82.50

(2.16) (1.58) (1.55) (2.02) (2.32) (1.59)
FDDL 83.85 84.56 82.70 83.46 84.09 83.63

(1.56) (2.80) (2.29) (3.09) (2.07) (2.53)
SRDML 85.91 86.46 83.28 83.39 84.97 84.85

(2.05) (2.63) (2.34) (2.16) (1.55) (2.48)
LMLS-SRC 86.58 87.64 85.93 86.93 86.21 86.78

(1.59) (1.13) (2.45) (2.00) (1.49) (1.66)

(2) Training set size. The size of the training set usually directly
determines the performance of machine learning algorithms.
Figure 3 shows the classification accuracy of the LMLS-SRC
algorithm on binary-class, three-class and four-class classification
tasks under different training sets of each subclass. The X-axis
represents the training sample size N of each subclass, N = [50,
100,. . ., 400]. From Figure 3, we can see that the accuracy
of LMLS-SRC increases with the increase of training samples.
When the training sample size of each subset reaches 200, the
performance of the LMLS-SRC algorithm is basically stable,
indicating that the LMLS-SRC algorithm can achieve better
performance without too many training samples.

(3) Regularization parameters. The LMLS-SRC algorithm has
five regularization parameters λ1,λ2,λ3,λ4, and λ5, and the
regularization parameters are all obtained in [1.0E-3. . ., 1.0E+3].
λ2 controls the role of the large margin term. λ3 controls the role
of the local structure preservation term. λ4 controls the role of
the linear classifier. Figure 4 shows the classification accuracy of
the LMLS-SRC algorithm in the binary, three-class and four-class
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TABLE 6 | The comparative test results (with standard deviation) in four-class
classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean

LD 77.67 79.69 77.51 78.40 77.50 78.59

(2.22) (1.51) (2.15) (2.52) (2.08) (1.80)

LR 78.56 79.60 78.47 78.59 78.23 79.03

(1.89) (2.51) (1.60) (2.74) (1.43) (2.01)

SRC 79.40 79.77 79.06 80.25 79.15 79.41

(2.13) (2.33) (2.68) (1.44) (2.32) (2.50)

LC-KSVD 81.25 81.77 81.34 80.87 81.55 81.55

(2.40) (2.19) (1.59) (2.36) (2.08) (1.86)

FDDL 81.45 81.06 80.02 80.67 80.69 80.54

(1.33) (2.00) (2.09) (2.73) (1.25) (2.05)

SRDML 83.13 82.10 82.94 83.56 83.17 82.52

(2.06) (2.26) (2.04) (1.49) (1.99) (2.15)

LMLS-SRC 85.54 86.19 84.51 86.15 85.97 85.34

(1.59) (2.03) (2.12) (1.63) (1.06) (2.07)

FIGURE 2 | Convergence of the LMLS-SRC algorithm.

FIGURE 3 | Classification accuracy of local structure preservation sparse
representation classifier (LMLS-SRC) under different training sets of each
subclass.

tasks with different λ2, λ3, and λ4, respectively. Figure 4 shows
that the performance of the LMLS-SRC algorithm varies greatly
with different λ2, λ3, and λ4, while fixing the other parameters.
Therefore, it is reasonable to use a grid search strategy to optimize
the regularization parameters.
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FIGURE 4 | Classification accuracy of LMLS-SRC with different regularization
parameters, (A)λ2, (B)λ3, and (C) λ4.

CONCLUSION

With the acceleration of the global aging trend, one of the
problems brought about is the rapid increase in the number
of AD patients. The pathogenesis and effective treatment of
AD are still unclear at present. Early detection, classification,
and prediction of AD, and targeted care and treatment of
patients on this basis can delay the progression of AD. Machine
learning algorithms that can automatically extract information
and complete inference have good application prospects in
AD classification and prediction. Therefore, this manuscript
conducts research based on the application of SRC algorithm
in AD classification. The research content mainly includes two
aspects: model construction and model performance evaluation.
The proposed LMLS-SRC algorithm introduces the large margin
term and local constraint term in the traditional SRC model,
and obtains the dictionary and representation coefficients with
discriminative ability while maintaining the data manifold
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structure. The effectiveness of the LMLS-SRC algorithm is
validated on the KAGGLE Alzheimer’s dataset.

Although the LMLS-SRC algorithm shows the advantages
compared with some excellent algorithms, there are still some
problems to be solved. In the future, we will mainly focus on
the following aspects: (1) The LMLS-SRC algorithm belongs
to the shallow model. How to design the deep model of the
sparse representation algorithm needs to be further studied. (2)
In this manuscript, brain MRI images are used as the basic
data to study the application of AD classification. Multimodal
data can provide richer information, and how to extract
AD-related features from multimodal data can be studied
in the future. (3) This manuscript uses the volume features
extracted by using FSL tool. Extracting various features for
AD classification can be done in the next future. (4) In
practical applications, image classification often encounters small
samples or even a single training sample, and traditional SRC
algorithms cannot effectively handle such situations. How to
deal with the single training sample is the work to be further
studied in the future.
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