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Abstract.—It is widely recognized that different regions of a genome often have different evolutionary histories and that
ignoring this variation when estimating phylogenies can be misleading. However, the extent to which this is also true for
morphological data is still largely unknown. Discordance among morphological traits might plausibly arise due to either
variable convergent selection pressures or else phenomena such as hemiplasy. Here, we investigate patterns of discordance
among 282 morphological characters, which we scored for 50 bee species particularly targeting corbiculate bees, a group
that includes the well-known eusocial honeybees and bumblebees. As a starting point for selecting the most meaningful
partitions in the data, we grouped characters as morphological modules, highly integrated trait complexes that as a result
of developmental constraints or coordinated selection we expect to share an evolutionary history and trajectory. In order to
assess conflict and coherence across and within these morphological modules, we used recently developed approaches for
computing Bayesian phylogenetic information allied with model comparisons using Bayes factors. We found that despite
considerable conflict among morphological complexes, accounting for among-character and among-partition rate variation
with individual gamma distributions, rate multipliers, and linked branch lengths can lead to coherent phylogenetic inference
using morphological data. We suggest that evaluating information content and dissonance among partitions is a useful step
in estimating phylogenies from morphological data, just as it is with molecular data. Furthermore, we argue that adopting
emerging approaches for investigating dissonance in genomic datasets may provide new insights into the integration
and evolution of anatomical complexes. [Apidae; entropy; morphological modules; phenotypic integration; phylogenetic
information.]

Morphological modules are clusters of characters
that co-vary tightly with one other, but that are
relatively evolutionarily independent of other characters
(Wagner and Altenberg 1996; Armbruster et al. 2014).
Over long time periods, characters in the same
module are expected to evolve in an integrated
fashion (Klingenberg 2014); as such, modules are often
considered “quasi-independent” evolutionary units
(Lewontin 1978), whose “individuality” are maintained
through time by their underlying gene regulatory
networks (Wagner 2007; Erwin and Davidson 2009).
Morphological modules are therefore historical units—
much in the same way that genes are—connected
through development by their particular character-
identity gene regulatory networks (Rieppel 2005;
Wagner 2014). We can learn about this history from
the phylogenetic distributions of the morphological
characters in different modules (e.g., Geeta 2003; Serb
and Oakley 2005; Arendt 2008; Clarke and Middleton
2008). Indeed, this approach has been extensively
explored in paleomorphological studies interested in
mosaic evolution (reviewed in Clarke and Middleton
2008) and was demonstrated to be a useful way to
address evolutionary trends in morphological modules.
Furthermore, the emerging use of anatomical ontologies
(Mabee et al. 2007, 2012; Yoder et al. 2010; Seltmann
et al. 2012; Tarasov and Génier 2015; Wipfler et al. 2016;
Tarasov et al. 2019) and novel phylogenetic comparative

methods for multivariate phenotypes (e.g., Clavel et al.
2015; Caetano and Harmon 2019; Adams and Collyer
2019) now allow us to investigate these patterns in a
coherent way and at an unprecedented scale.

Concurrent with the above-mentioned methodolo-
gical developments for studying morphological
modules, there has been a resurgence of interest
in modeling the evolution of morphological data
(often, in conjunction with molecular data) to estimate
phylogenies (Lewis 2001; Nylander et al. 2004; Clarke
and Middleton 2008; Ronquist et al. 2012a; Wright
et al. 2015; Klopfstein et al. 2015; Giribet 2015; Wipfler
et al. 2016; Tarasov 2019; Wright 2019) particularly in
the context of node-dating and tip dating (Pyron 2011;
Ronquist et al. 2012a; Lee et al. 2014; Parins-Fukuchi 2018;
Rosa et al. 2019), and to delimit species (e.g., Solís-Lemus
et al. 2014). We share the enthusiasm of other researchers
about this line of research (Giribet 2015; Wipfler et al.
2016); integrating molecular and phenotypic data will
likely provide a richer understanding of evolutionary
history and processes than either would on its own.
However, as the scale of morphological data increases,
we will have to confront new challenges. One such
under-theorized issue (but see Serb and Oakley 2005) is
that, just like in the well-studied context of molecular
phylogenetics (Maddison 1997; Liu and Pearl 2007;
Edwards 2009), different parts of the “phenome”
may have different evolutionary histories due to
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discordance in the gene trees underlying phenotypic
traits (a phenomenon dubbed “hemiplasy”; Avise and
Robinson 2008; Hahn and Nakhleh 2016; Guerrero and
Hahn 2018; Mendes et al. 2019a), or similar apparent
evolutionary histories due to convergence (Losos 2011;
Rosenblum et al. 2014). In molecular phylogenetics,
it is typically assumed that though there may be
topological conflict between gene trees, there is not
conflict within genes (i.e., intralocus recombination
occurs at negligibly low rates; but see, for example,
Mendes et al. 2019b); that is to say that the genes are
considered evolutionary units. For phenotypic data,
we suggest that one biologically meaningful way to
partition a dataset is into morphological modules (i.e.,
anatomical complexes)—as a result of coordinated
selection and developmental/genetic constraints, we
expect such modules to cohere over evolutionary time
(Lewontin 1978; Wagner 1996; Geeta 2003; Serb and
Oakley 2005). Such an approach is in alignment with the
view of “hierarchical phylogenetics” (Serb and Oakley
2005) and allows for understanding phylogenetic
patterns and underlying processes at different scales
of interest. It further provides a sound basis for
investigating the long-term coordination of traits both
within and across modules (Geeta 2003). This opens
up the possibility of inferring phylogeny and studying
the underlying processes of morphological evolution
at the same time. As such, investigating the evolution
of morphological modules and inferring phylogenetic
relationships from morphological datasets are not
different problems, but the same problem, viewed from
two different perspectives.

Our first measure for assessing conflict between
anatomical partitions is based on the information
content of different hypothesized morphological
modules. The entropy H of any (discrete) distribution
can be quantified as

H =−�log(pi)pi

where pi is the probability of observing the ith
possible configuration of the distribution (Shannon
1948). Information gain I can be expressed as a loss
of entropy; in other words, if more information is
added to a system, the probability distribution becomes
more concentrated. Lindley (1956) proposed a Bayesian
interpretation of this information content. If H∗ is the
entropy of posterior marginal distribution and H is the
entropy of prior marginal distribution, then the Lindley’s
information measure is simply defined as

I =H−H∗.

Lewis et al. (2016) recently showed that the information
content of any particular subset of the data could
be quantified as how much more concentrated the
posterior distribution of topologies is compared to
the prior (assuming a discrete uniform prior on all
possible topologies). While Lindley’s information metric
is useful for comparing the relative ability of different

subsets of the data to inform phylogenetic inference, a
more meaningful measure for assessing conflict between
morphological modules is the related phylogenetic
dissonance.

Lewis et al. (2016) defined phylogenetic dissonance as
follows: if H∗

merged is the entropy of the merged posterior
distributions from k subsets of data, H∗

average is the
average entropy among all k individual subsets of data,
then the phylogenetic dissonance D can be calculated as

D=H∗
merged −H∗

average.

The average entropy of posterior distributions, thus,
must be less than or equal to the entropy obtained by
merging posterior distributions from separate analyses
of each individual subset (Lewis et al. 2016). In
other words, if the average entropy is less than the
entropy from the merged distributions, there is conflict
(i.e., dissonance) among the information provided
by the different subsets (e.g., gene or morphological
partitions of the data). If morphological modules
appear to be evolving at least partly independently, as
organismal biologists often suppose, then investigating
the information content of each module would be a
sensible way of evaluating how internally integrated
they are, whereas investigating the conflict among
different modules would indicate how independent
different modules are.

Bayes factors (BFs) are ratios of marginal likelihoods
(i.e., the likelihood of data integrated over all parameters
values of a model) used to compare different models in
a Bayesian framework (Kass and Raftery 1995; Brown
and Lemmon 2007). To assess the significance of different
values of phylogenetic dissonance, Neupane et al. (2019)
proposed using BFs to compare alternative models for
concatenated datasets. A similar strategy was taken by
Rosa et al. (2019) with morphological data, but they
used a partitioning strategy based on among-character
compatibility as estimated by their homoplasy (thus not
based on morphological/developmental criteria) and
did not evaluate the informational dissonance between
datasets. Comparing partitioned models employing
different priors for tree topology, branch lengths and
rate heterogeneity can potentially allow disentangling
of how each anatomical partition (i.e., morphological
module) can impact the topology of species trees (e.g.,
Clarke and Middleton 2008; Tarasov and Génier 2015).
Indeed, this can be very important when dealing with
morphological data, since different portions of the
phenotype can potentially exhibit contrasting rates of
character change (Harrison and Larsson 2015) or favor
different phylogenetic hypotheses (Geeta 2003; Serb and
Oakley 2005; Arendt 2008). Using BFs for this purpose
is a sound method to select between competing models
(Brown and Lemmon 2007), allowing the selection of
an appropriate model to best fit morphological data,
accounting for among-character and among-partition
rate variation (Rosa et al. 2019).

In this work, we evaluate the Bayesian phylogenetic
information (BPI) content of morphological data
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(including 282 characters and 50 taxa representing
corbiculate bees as well as closely related non-corbiculate
bee species) to discriminate among tree topologies
and compute the phylogenetic dissonance among
seven anatomical partitions. The corbiculate bee clade
(Hymenoptera: Apidae) is certainly one of the best-
studied groups of bees due to their ubiquity worldwide
and relevance in the research of complex social behaviors
(e.g., Noll 2002; Kawakita et al. 2008; Almeida and
Porto 2014). The clade provides a good case model to
investigate the effects of morphological disparity and
informational conflicts in phylogenetic inference with
morphological data. The group includes the familiar
honeybees (Apis spp.: Apini) and bumblebees (Bombus
spp.: Bombini), as well as orchid bees (Euglossini)
and the large and diverse group of the stingless bees
(Meliponini) (Michener 2007). The relationships among
these four lineages have been intensely debated over the
last 30 years and are a typical example of discordance
between morphological and molecular datasets in
phylogenetic inference (reviewed by Almeida and Porto
2014). Depending on the hypothesis considered, complex
eusocial behaviors are interpreted to have evolved once
(e.g., Roig-Alsina and Michener 1993; Noll 2002) or
twice (e.g., Kawakita et al. 2008; Cardinal and Danforth
2011; Romiguier et al. 2016; Bossert et al. 2019) in bees.
Investigating the relationships in the corbiculate clade
would thus impact not only how we address issues about
incongruence between molecular and morphological
data, but also clarify our current understanding about
social evolution in bees.

To make better use of information contributions from
different morphological modules, deal with possible
conflicts, and at the same time infer the phylogenetic
relationships of corbiculate bees, an appropriate
partitioned model is essential. We compared different
models and partitioning schemes using BFs to assess
the best model to employ morphology-based partitioned
datasets in phylogenetic inference. We found that despite
considerable conflict among information provided
by distinct morphological modules, accounting for
among-character and among-partition rate variation can
lead to coherent and robust inference of phylogeny
using morphological data. Our findings support the
traditional relationships held with morphological data
for corbiculate bees, with Apini sister to Meliponini, in
agreement with most previous studies using this same
kind of data.

MATERIALS AND METHODS

The BPI content and dissonance among seven
morphological complexes (Supplementary Fig. S1;
all supplementary files and data are available on
Dryad at https://doi.org/10.5061/dryad.dz08kprvc)
were estimated with the software Galax (Lewis et al.
2016) adopting the same strategy outlined in Lewis
et al. (2016) and Neupane et al. (2019). This strategy
requires that a marginal posterior distribution of tree

topologies be sampled for each partition (e.g., gene or
morphological complex) and its entropy estimated and
compared to that of the marginal prior distribution
to calculate the Lindley’s information (Lindley 1956;
Lewis et al. 2016). The information values from different
partitions were then used to calculate the phylogenetic
dissonance among them (Lewis et al. 2016; Neupane
et al. 2019). The morphological dataset used for this
study was modified from Porto and Almeida (in prep.,
Supplementary Files S1–S3 available on Dryad) and
the organization of characters in anatomical partitions
is summarized in Supplementary Table S1 available
on Dryad. This dataset comprises 282 characters from
external and internal skeletal anatomy coded for
50 taxa of bees, including 23 species of corbiculate
bees and 27 apid outgroups (Supplementary File S3
available on Dryad). The anatomical partitions were
based on the overall pattern of body tagmosis in
Hexapoda (reviewed in Angelini and Kaufman 2005),
but recognizing that in Apocrita the first abdominal
segment is morphofunctionally integrated into the
thorax (Vilhelmsen et al. 2010), resulting in three
main body regions: head (HD), mesosoma (MS) and
metasoma (MT). The other anatomical partitions were
defined by recognizing that arthropod appendages and
their derivatives (i.e., MP: mouthparts, LG: legs, WG:
wings and GN/ST: male genitalia and female sting
apparatus) have mostly distinct developmental basis
(e.g., Rogers et al. 2002; Angelini and Kaufman 2005;
Elias-Neto and Belles 2016) and possibly constitute
separate morphofunctional modules.

Three sets of analyses with characters organized
in different partitioning schemes were performed
(Supplementary Table S1 available on Dryad): (i) by
anatomical complex, with characters organized into
seven morphological partitions, as defined above (7-
PAR); (ii) by anatomical allocation, with characters
organized into two partitions depending on whether
they were external or internal structures of the body
(2-PAR); and (iii) with all characters comprising one
partition (FULL). Additionally, individual analyses for
each morphological partition (i.e., HD, MP, MS, WG,
LG, MT, and GN) were performed to evaluate the
phylogenetic information to tree topology from different
body regions and thus obtain structure trees (i.e.,
the individual trees inferred from each anatomical
partition; Serb and Oakley 2005). To obtain the posterior
distributions of tree topologies used in Galax, Bayesian
analyses were carried out in MrBayes v.3.2.7. (Ronquist
et al. 2012b) and ran on the CIPRES platform (Miller
et al. 2011). Analyses were performed with 4 runs with
4 chains each for 1.0×107 generations, sampling every
100th generation, and discarding the first 25% of each run
as burn-in. The only exceptions were the following: for
the reduced dataset (seven taxa only, see the Discussion
section), analyses were run for 5.0×106 generations; and
for the best model overall (see Results section), analysis
was run for 2.0×107 generations. To ensure better mixing
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among chains, the temperature was set to 0.025. The
following set of priors was used in all analyses:

Tree topology �∼ Discrete Uniform (1,|T|)
Tree length L∼ Exponential (0.1)

Edge length proportions �∼ Dirichlet (1.0,...,1.0)

Discrete Gamma shape �∼ Exponential (1.0)
(when per partition among-character rate variation
was allowed)

Rate multiplier r ∼ Dirichlet (1.0,...,1.0) (when
among-partition rate variation was allowed)

As suggested by previous authors (e.g., Clarke and
Middleton 2008; Tarasov and Génier 2015; Neupane et al.
2019; Rosa et al. 2019), to evaluate partitioning schemes
and conflict among partitions, we compared different
models for the two concatenated datasets (i.e., 7-PAR
and 2-PAR). We evaluated five sets of concatenated
models: (a) unlinked topologies and unlinked branch
lengths; in this case, each partition was allowed to
have its own independent tree topology and the total
marginal likelihood of the model was obtained as the
sum of marginal likelihoods of each partition analyzed
separately (i.e., the SEPARATE model of Neupane et al.
2019); (b-c) linked topologies and unlinked branch
lengths; (d-e) linked topologies and linked branch
lengths with linked or (f-g) unlinked rate multipliers;
and (h-i) linked topologies without among-partition
rate variation. For all sets of models, among-character
rate variation was either allowed (using a per partition
discretized gamma function) or disallowed in order to
evaluate its effect (i.e., b vs. c, d vs. e, f vs. g, h vs. i).
In total, nine concatenated models were evaluated per
partitioning scheme in addition to the two FULL models
(a and b, with and without among-character variation
accommodated), thus resulting in 20 models studied.
The models evaluated embraced a broad range of
possible combinations of among-partition and among-
character rate variation in the concatenated datasets.

Models were compared using BFs with marginal
likelihoods estimated via stepping-stones sampling (Xie
et al. 2010) as implemented in MrBayes (Ronquist et al.
2012b). BFs were calculated as 2× (ln(M0) – ln(M1)) and
the resultant values were interpreted using the scale
proposed by Kass and Raftery (1995), where BF >10 is
interpreted as strong evidence in favor of model M0. The
stepping-stones sampling was performed with 4 runs of
4 chains each including 50 steps of 1.0×106 generations
totalizing 5.0×107 generations. In all Bayesian analyses
executed, convergence among chains and parameters
was assessed by manually evaluating the uniformity of
log-likelihood trace plots, standard deviation split values
less than 0.01, effective sample size (ESS) values greater
than 200 and values of Potential Scale Reduction Factor
(PSRF) equal to 1.0 (Gelman and Rubin 1992).

RESULTS AND DISCUSSION

The results from the estimation of BPI content and
dissonance of the dataset are presented in Table 1 and
Supplementary Table S2 available on Dryad. The overall
information content estimated for the full dataset was
between 94.2% and 95.3% (Supplementary Table S2
available on Dryad, FULLa and FULLb, respectively).
The information content varied from 58.9% (MT) to
78.0% (LG) considering individual anatomical partitions
and was higher for external (92.3%, EXT) than that
for internal characters (82.0%, INT) (Supplementary
Table S2 available on Dryad). The estimated values
of dissonance among individual runs in the analyses
of each anatomical partition indicate that convergence
of posterior distributions of tree topologies has been
achieved for most partitions (Supplementary Table S2
available on Dryad, lower values of D (%), between
0.6% and 1.3%), but not for the smaller ones (i.e.,
WG and MT: <20 characters). Since dissonance values
are considerably higher in these cases (WG and MT:
2.9% and 5.7%, respectively), this may indicate that
more samples from the posterior distributions would
be needed to achieve convergence or that the number
of characters in those partitions (i.e., 16 chars for WG
and 11 chars for MT) was not sufficient to provide
a reasonable topological inference, thus resulting in
sparse posterior distributions. The estimated value of
dissonance among anatomical partitions was about
14.0% and 11.7% using the 7-PAR and the 2-PAR
partitioning schemes, respectively (Table 1). This shows
that, despite the high information content provided by
each individual partition (as shown by I (%) values >
50% in Supplementary Table S2 available on Dryad),
there is considerable conflict within the morphological
dataset.

The results from the comparisons among
concatenated models with different partitioning
schemes, numbers of parameters and alternative priors
on tree topology, branch lengths and character rates
are presented in Table 2 and Supplementary Table S3
available on Dryad. The best model overall was the 7-
PARf, which has seven partitions, per partition gamma,
a linked tree topology shared across all partitions,
and branch lengths linked through individual rate
multipliers. This model allows for among-character and
among-partition rate variation (i.e., heterogeneity inside
and across the seven anatomical modules) indicating
that this particular parameterization is important to
accommodate the degree of phylogenetic dissonance
observed in this dataset.

Concatenated models with a linked tree topology
(i.e., same topology inferred for all partitions; 2PARb-i,
7-PARb-i) were favored over unlinked (2-PARa and 7-
PARa). For models with linked topology and unlinked
branch lengths (2-PARb-c, 7-PARb-c), equal rates (rates =
equal) was favored over among-character rate variation.
For all concatenated models with linked branch
lengths (with or without among-partition rate variation
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TABLE 1. Bayesian phylogenetic information content and dissonance estimated among all morphological complexes

Analysisa Nb Cc H*d Ie I (%)f Dg D (%)h

7 partition scheme
Run 1

HD 74,975 0.00 40.863 130.571 76.164 — —
MP 74,991 0.00 38.927 132.508 77.293 — —
MS 74,981 0.00 37.987 133.447 77.842 — —
WG 74,999 0.00 58.582 112.852 65.828 — —
LG 74,981 0.00 37.206 134.228 78.297 — —
MT 75,000 0.00 66.419 105.015 61.257 — —
GN 75,000 0.00 48.037 123.397 71.979 — —
Average 74,989.6 0.00 46.860 124.574 72.666 — —
Merged 524,927 0.00 54.494 116.940 68.213 7.634 14.009

Run 2
HD 74,963 0.00 40.926 130.508 76.127 — —
MP 74,988 0.00 38.945 132.489 77.283 — —
MS 74,987 0.00 38.007 133.427 77.830 — —
WG 75,000 0.00 58.436 112.998 65.913 — —
LG 74,969 0.00 37.195 134.239 78.304 — —
MT 75,000 0.00 66.600 104.835 61.151 — —
GN 75,000 0.00 47.910 123.524 72.053 — —
Average 74,986.7 0.00 46.860 124.574 72.666 — —
Merged 524,907 0.00 54.499 116.935 68.210 7.639 14.017

Run 3
HD 74,975 0.00 40.703 130.732 76.257 — —
MP 74,986 0.00 39.008 132.426 77.246 — —
MS 74,989 0.00 38.095 133.340 77.779 — —
WG 75,000 0.00 58.580 112.854 65.829 — —
LG 74,976 0.00 37.141 134.293 78.335 — —
MT 75,000 0.00 66.623 104.812 61.138 — —
GN 74,998 0.00 47.938 123.496 72.037 — —
Average 74,989.1 0.00 46.870 124.565 72.660 — —
Merged 524,924 0.00 54.512 116.922 68.202 7.642 14.019

Run 4
HD 74,966 0.00 40.787 130.647 76.208 — —
MP 74,994 0.00 38.961 132.473 77.273 — —
MS 74,981 0.00 38.058 133.376 77.800 — —
WG 75,000 0.00 58.398 113.036 65.936 — —
LG 74,980 0.00 37.255 134.179 78.269 — —
MT 75,000 0.00 66.703 104.731 61.091 — —
GN 75,000 0.00 47.969 123.466 72.019 — —
Average 74,988.7 0.00 46.876 124.558 72.657 — —
Merged 524,921 0.00 54.531 116.903 68.191 7.655 14.038

Mean 0.00 54.509 116.925 68.204 7.642 14.021

(Continued)

accommodated through rate multipliers, 2-PARd-i, 7-
PARd-i), per partition among-character rate variation
was favored (rates = gamma, unlink shape (all)); the same
pattern was found for the unpartitioned models (FULLa-
b). For all concatenated models (2-PARa-i, 7-PARa-i),
among-partition rate variation accommodated through
linked branch lengths and individual (unlinked) rate
multipliers (2-PARf-g, 7-PARf-g) was favored over linked
rate multipliers (2-PARd-e, 7-PARd-e) or unlinked
branch lengths (2-PARb-c, 7-PARb-c).

It is important to note that concatenated models
including unlinked topology or unlinked branch lengths
were not favored despite the overall dissonance found
across anatomical partitions using both partitioning
schemes (2-PAR: 11.7% and 7-PAR: 14.0%). It is indeed
intriguing, but one possible interpretation would be
that models allowing for unlinked topology or unlinked
branch lengths were too costly in terms of marginal
likelihoods since a tree topology and all associate branch

lengths should be estimated for each partition. ESS
and PSRF values (i.e., higher than 200 and close to
1.0, respectively) indicate that the additional parameters
were reasonably estimated, so the reason why models
with unlinked topologies and/or branch lengths were
not favored for this dataset may lie in other unknown
factors. Nonetheless, among-partition rate variation can
be accommodated simply by using linked branch lengths
and rate multipliers, as have been demonstrated in
previous works dealing with partitioned morphological
datasets (Clarke and Middleton 2008; Tarasov and
Génier 2015; Rosa et al. 2019). Another interesting
result is that individual (unlinked) rate multipliers were
favored over linked rate multipliers when associated
with linked branch lengths. Although the interpretation
of this particular finding is not straightforward, a similar
result was found in Tarasov and Génier (2015) when
analyzing a partitioned morphological dataset for dung
beetles.
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TABLE 1. Continued

Analysisa Nb Cc H*d Ie I (%)f Dg D (%)h

2 partition scheme
Run 1

EXT 51,018 0.383 13.248 158.186 92.272 — —
INT 74,849 0.00 30.604 140.831 82.148 — —
Average 62,933.5 0.191 21.926 149.509 87.210 — —
Merged 125,867 0.034 24.829 146.605 85.517 2.903 11.694

Run 2
EXT 50,998 0.381 13.274 158.160 92.257 — —
INT 74,841 0.00 30.608 140.827 82.146 — —
Average 62,919.5 0.190 21.941 149.493 87.201 — —
Merged 125,839 0.033 24.838 146.596 85.511 2.897 11.665

Run 3
EXT 51,116 0.381 13.262 158.172 92.264 — —
INT 74,822 0.00 30.502 140.932 82.207 — —
Average 62,969 0.191 21.882 149.552 87.236 — —
Merged 125,938 0.034 24.774 146.661 85.549 2.891 11.671

Run 4
EXT 51,078 0.385 13.229 158.205 92.283 — —
INT 74,864 0.00 30.609 140.825 82.145 — —
Average 62,971 0.193 21.919 149.515 87.214 — —
Merged 125,942 0.033 24.829 146.605 85.517 2.910 11.719
Mean 0.033 24.817 146.617 85.523 2.900 11.687

aCodes making reference to morphological partitions and partitioning schemes: 7-PAR: characters organized using the 7-partition scheme
(i.e., HD, MP, ... GN); 2-PAR: characters organized using the 2-partition scheme (i.e., EXT and INT); HD: characters from head (not including
mouthparts); MP: characters from mouthparts; MS: characters from mesosoma (not including wings and legs); WG: characters from wings;
LG: characters from legs; MT: characters from metasoma (not including male genitalia and female sting apparatus); GN: characters from male
genitalia and female sting apparatus; EXT: all external characters; INT: all internal characters.
bNumber of unique tree topologies sampled in the posterior.
cEstimated posterior coverage (Larget 2013).
dEntropy of marginal posterior tree topology distribution.
ePhylogenetic information (Lindley 1956).
fPhylogenetic information expressed as percentage of maximum.
gPhylogenetic dissonance (Lewis et al. 2016).
hPhylogenetic dissonance expressed as percentage of total.

The tree obtained from the Bayesian analysis
with the best model overall (7-PARf) is shown in
Figure 1. All corbiculate bee tribes (i.e., Apini,
Bombini, Euglossini and Meliponini) and their closest
relatives (i.e., Centridini) were recovered with posterior
probability close to 1.0. These results show that
despite the considerable conflict among information
provided by different morphological modules (i.e.,
12∼14%), accounting for among-character and among-
partition rate variation can lead to coherent and robust
inference of phylogeny using morphological data in
a Bayesian framework. Our main result supports the
traditional relationships held with morphological data
for corbiculate bees, with Apini and Meliponini as sister-
groups, in agreement with most previous studies using
this same kind of data (e.g., Roig-Alsina and Michener
1993), but in contrast with hypotheses based in molecular
data (e.g., Bossert et al. 2019; Supplementary Fig. S2
available on Dryad). It is remarkable that the conflict
between morphology and molecules still persists even
after exploring a wide range of partitioning schemes and
models that account for heterogeneity in evolutionary
rates.

The violin plots depicted in Figure 2 show that
one possible explanation for the dissonance in this
dataset would be due to differing rates of character

evolution, since heterogeneity in rates can be found
both inside each partition (Fig. 2a) and, to a lesser
degree, among partitions (Fig. 2b). The second best
model overall (2-PARf) also includes per partition
gamma and linked branch lengths with individual rate
multipliers, thus reinforcing the idea that accounting for
rate heterogeneity among characters and partitions is
indeed an important feature of the model, independent
from the number of partitions. Interestingly, models
allowing for each anatomical partition to have its own
free tree topology and associated branch lengths (e.g.,
7-PARa and 2-PARa; the total marginal likelihood of
the partitioned model, in this case, was calculated as
the sum of the marginal likelihoods estimated in the
analyses of each individual partition, as suggested in
Neupane et al. 2019 in their SEPARATE model) were
not favored over models with a linked tree topology
(e.g., 7-PARb-i and 2-PARb-i). Completely partitioned
models winning over shared topology models would be
expected if, for example, the phylogenetic information
provided by different partitions was in high degree
of conflict. Models treating the whole dataset as a
single partition (FULLa-b) were not favored as well
(BFs against them >100). This latter scenario would be
expected, for example, if rates of character evolution
were considerably homogeneous across the dataset.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
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TABLE 2. Comparisons among models with different partitioning schemes and parameters

Modela N.Ch.b N.Part.c N.Par.d ACVe APVf Br.L.g Treeh MgLki BFj

HD 42 1 5 Gamma — — — −864.64 —
MP 52 1 5 Gamma — — — −860.60 —
MS 57 1 5 Gamma — — — −988.84 —
WG 16 1 5 Gamma — — — −469.52 —
LG 49 1 5 Gamma — — — −870.88 —
MT 11 1 5 Gamma — — — −276.00 —
GN 55 1 5 Gamma — — — −718.55 —
EXT 181 1 5 Gamma — — — −3086.19 —
INT 101 1 5 Gamma — — — −1503.71 —
7-PARa 282 7 — — — — Unlinked −5049.03 1729.85
7-PARb 282 7 23 Gamma — Unlinked Linked −4530.43 692.66
7-PARc 282 7 16 Equal — Unlinked Linked −4434.17 500.14
7-PARd 282 7 11 Gamma Linked mult Linked Linked −4430.65 493.10
7-PARe 282 7 4 Equal Linked mult Linked Linked −4523.30 678.40
7-PARf * 282 7 17 Gamma Unlinked mult Linked Linked −4184.10 0*
7-PARg 282 7 10 Equal Unlinked mult Linked Linked −4269.10 170.64
7-PARh 282 7 11 Gamma — Linked Linked −4430.07 491.94
7-PARi 282 7 4 Equal — Linked Linked −4499.36 630.52
2-PARa 282 2 — — — — Unlinked −4589.90 811.60
2-PARb 282 2 8 Gamma — Unlinked Linked −4466.73 565.26
2-PARc 282 2 6 Equal — Unlinked Linked −4440.65 513.10
2-PARd 282 2 6 Gamma Linked mult Linked Linked −4435.33 502.46
2-PARe 282 2 4 Equal Linked mult Linked Linked −4474.89 581.58
2-PARf 282 2 7 Gamma Unlinked mult Linked Linked −4262.96 157.72
2-PARg 282 2 5 Equal Unlinked mult Linked Linked −4368.60 369.00
2-PARh 282 2 6 Gamma — Linked Linked −4434.13 500.06
2-PARi 282 2 4 Equal — Linked Linked −4543.79 719.38
FULLa 282 1 5 Gamma — — — −4432.65 497.10
FULLb 282 1 4 Equal — — — −4543.97 719.74
aCodes referring to morphological partitions and partitioning schemes follow those presented in Table 1 and Supplementary Table S1 available
on Dryad: FULL: characters organized using the 1-partition scheme (i.e., all 282 chars comprising one partition).
bNumber of characters in each morphological partition/partitioning scheme.
cNumber of partitions in the model.
dNumber of parameters in the model.
eAmong-character rate variation was accommodated using per partition discretized gamma distribution with four rate categories.
fAmong-partition rate variation was accommodated using unlinked branch lengths (see branch lengths prior) or linked branch lengths and rate
multipliers (linked or unlinked); linked rate multipliers (linked mult) means that multipliers for each partition are allowed to vary constraining
the mean across all partitions to be 1.0; unlinked rate multipliers (unlinked mult) means that each partition is allowed to have its own multiplier
estimated independently.
gBranch lengths prior: unlinked means that branch length proportions were allowed to differ across different partitions; linked means that all
partitions share the same branch length proportions.
hTree topology prior: unlinked means that tree topology is allowed to differ across different partitions (i.e., each partition can have its own
inferred tree); linked means that all partitions share the same inferred tree topology.
iMarginal likelihood of the model.
jBayes factors calculated relative to the best model overall (indicated with *).

Therefore, the scenario found here seems to fall into an
intermediate situation.

The trees obtained from analyses of individual
morphological partitions (Fig. 3) demonstrate that many
clades recovered with posterior probability greater than
0.9 are also found in the analysis obtained with the best
model overall (7-PARf) (indicated as color-filled circles
at nodes of the online version of Fig. 1). When inspecting
the trees summarized in Figure 3, it is possible to observe
that individual partitions were decidedly informative to
the trees they imply (as for example, values of I (%)
> 50%), but despite their unique individual majority
rule tree topologies, many clades are shared among
them and with the tree from the best model overall
(e.g., Centridini was recovered with the partitions HD,
LG, and GN; Euglossini with the partitions HD, MP,
MS, LG, and GN). The dissonance inferred for this

dataset, therefore, is likely not the result of pervasive
conflict among tree topologies of individual partitions.
Instead, the dissonance may stem from a mixture of
factors, as for example, very low resolution in trees
obtained from some partitions (e.g., MT) or focal clades
varying in position in different trees (e.g., HD vs. WG).

As pointed out before, dissonance may also stem
from differing rates of character evolution among
partitions. The relatively slowly evolving partitions
(e.g., Fig. 2b: HD, MP, MS, and GN) share many
clades among themselves and with the best model
tree (7PARf). As for example, Apini, Meliponini, and
Apini + Meliponini are always recovered, despite the
lower support in some cases (e.g., Meliponini in HD
and MP). Some of the sharpest disagreements among
datasets, however, occur in relatively fast evolving
partitions (e.g., Fig. 2b: WG and LG) or those with

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
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FIGURE 1. Tree topology obtained from the analysis with the best model overall (7-PARf). Numbers next to nodes indicate posterior probabilities
of clades. Filled circles indicate clades with posterior probability greater than 0.9 in the analyses of individual morphological partitions (as shown
in Fig. 3). Top-left box presents a summary of the organization of characters into anatomical modules (as shown in Supplementary Fig. S1 available
on Dryad); numbers denote the amount of characters in each anatomical partition (percentages shown in parentheses). Codes making reference
to morphological partitions follow those presented in Tables 1 and Supplementary Table S1 available on Dryad. For the color figure, refer to the
online version of this paper available at Systematic Biology (https://doi.org/10.1093/sysbio/syaa059). Photos: Eduardo Almeida.

the fewest characters (e.g., WG and MT). For example,
monophyly of the well-supported corbiculate tribes
Meliponini and Euglossini is not recovered with WG
nor Apini with LG. Furthermore, some controversial
relations are recovered with fast evolving partitions,
such as Bombini + Euglossini sister to Manueliini
with WG, and Tetrapediini + Ctenoplectriini sister to
Centridini with LG. These spurious results suggest that
convergence due to fast evolving characters can be a
possible explanation for dissonance at least in some
partitions (WG and LG). The effects of fast evolving
partitions can be further linked to the fact that characters
may plausibly be under distinctive selective pressures or
morphofunctional constraints.

Despite our finding that there is substantial
dissonance between different morphological modules,
each partition is highly informative for a particular
subclade (or set of subclades) (Fig. 3; Supplementary
Table S2 available on Dryad). Different clades (e.g.,
Apini, Bombini, Centridini, Euglossini, and Meliponini)
are shared among the individual partition trees and are
also recovered in the tree from the best model overall

(Fig. 1). This shows that despite dissonance, different
morphological modules provide complementary
information. Some clades are recovered only with
particular partitions (e.g., Centridini: HD, LG, and GN)
or only with low posterior probability (e.g., Meliponini:
HD, MP, and GN). When all the information from
different anatomical modules is put together, the
resolution of the final tree is improved, both with
an increase in number of clades recovered, and
higher posterior probabilities for those clades (Fig. 1).
Therefore, trees obtained from individual anatomical
modules, as expected, are different, but not necessarily in
complete conflict. In this regard, we have demonstrated
that estimating the BPI content and dissonance in
morphological datasets can be used to assess the
contributions of individual partitions (i.e., modules)
and understand the conflicts among them, in addition
to detect where and explain how information and
conflicts influence the final species tree. This kind of
informational analysis would be viewed as a desirable

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://doi.org/10.1093/sysbio/syaa059
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
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FIGURE 2. Violin plots showing the posterior distributions of (a) rate variances (1/alpha) and (b) rate multipliers for each morphological
partition in the analysis with the best model overall (7-PARf). Discretized gamma distributions with a four-rate shape alpha parameter were
used to accommodate among-character rate variation in each individual partition. Rate multipliers and linked branch lengths were employed to
accommodate among-partition rate variation, as suggested by Rosa et al. (2019). Codes and colors making reference to morphological partitions
follow those presented in Figure 1 (top-left box) and Table 1. For the color figure, refer to the online version of this paper available at Systematic
Biology (https://doi.org/10.1093/sysbio/syaa059).

step in any phylogenetic inference from partitioned
morphological data, just as it is with molecular data.

We have demonstrated that emerging approaches
applied to evaluate conflict among partitions in
molecular datasets (Lewis et al. 2016; Neupane et al.
2019) can be explored to understand incongruence in
morphological datasets as well. The use of a measure of
entropy as a proxy to the information content of data
is a natural choice in a Bayesian framework (Lindley
1956; Lewis et al. 2016). Since the prior distribution
of tree topologies is known (i.e., the discrete uniform
prior probability depends only on the total number of
taxa N in a given tree: 1/N) and the posterior can be
sampled via Metropolis-coupled Markov-chain Monte-
Carlo, the total information can be accurately estimated
with conditional clade distributions (Larget 2013) as
discussed by Lewis et al. (2016). One potential problem
with this approach, as stated by Lewis et al. (2016), is
that as the total number of taxa increases, the coverage
(i.e., unique tree topologies sampled in the posterior
relative to the maximum possible number of rooted
tree topologies under a discrete uniform prior) steadily
decreases. In this scenario, the BPI is systematically
overestimated (Lewis et al. 2016). We should note
as well that in some real datasets the approxi-
mations of Larget used by Lewis et al. may not hold

(Whidden and Matsen 2015). To evaluate these effects
in our dataset, we further estimated the information
content of the morphological matrix of Porto and
Almeida (in prep.) using a reduced dataset including
only seven taxa (Supplementary Files S4 and S5
available on Dryad), thus ensuring that the coverage of
the posterior would be around 100% (Supplementary
Tables S4 and S5 available on Dryad; Fig. S3). We have
observed that the overall information estimated for each
morphological partition in the larger dataset (i.e., 50
taxa) was considerably higher (5.3∼209.6%) than that
in the scenario with only seven taxa (e.g., WG, LG,
MT and GN) or, in some cases (e.g., HD, MP and
MS), slightly lower (0.3∼7.3%). The exceptionally high
information values estimated for the larger dataset were
for particular cases involving smaller partitions (e.g.,
WG: 16 chars and MT: 11 chars) or partitions with more
missing information for non-corbiculate taxa (e.g., LG
and GN). The values of dissonance estimated were also
different, with about 14% and 12% dissonance found
respectively for the 7-PAR and 2-PAR schemes in the
analysis of the larger dataset (Table 1) and about 24%
and 8% respectively for the smaller one (Supplementary
Table S5 available on Dryad).

The relationship between information content and
number of characters (i.e., partition size) is not so

https://doi.org/10.1093/sysbio/syaa059
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
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FIGURE 3. Tree topologies obtained from analyses of each individual morphological partition. Codes for partitions follow those of
Supplementary Table S1 and Figure S1 available on Dryad and are indicated in the bottom-right corner of each tree. Color-coding of branches
and clades indicating certain bee tribes follows Figure 1. Circles: black denotes clades with posterior probability greater than 0.90; gray stands
for clades with posterior between 0.90 and 0.75; white indicates clades with posterior between 0.75 and 0.50. N = number of characters in each
partition; I = total information estimated in favor of a given tree topology expressed as a percentage of the maximum. For the color figure, refer
to the online version of this paper available at Systematic Biology (https://doi.org/10.1093/sysbio/syaa059).

straightforward. Lewis et al. (2016) have shown that
as the partition size increases to a given threshold
(particular to each dataset), the information provided
by data turns redundant with that already available
(as for example, see the simulations presented in Fig. 1
of Lewis et al. 2016); in other words, more and more
characters favor the same few tree topologies. The
relationship between information content and number

of taxa is also entangled in this problem. Lewis et al.
(2016) demonstrated that information is systematically
overestimated when the number of taxa grows more than
seven terminals. But another possible effect of this bias
would be that the distribution of information among
clades also changes, since the overall information can
be split into clade-specific components (Larget 2013;
Lewis et al. 2016). For a dataset with a fixed number

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa059#supplementary-data
https://doi.org/10.1093/sysbio/syaa059
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of characters, if the number of taxa increases, the
total information initially available becomes potentially
scattered among more and more clades through smaller
clade-specific information components, as estimated
with the conditional clade distributions (Larget 2013;
Lewis et al. 2016).

We emphasize here that exploring emerging
approaches for investigating dissonance in genomic
datasets may provide new insights into integration
and evolution of anatomical complexes. Morphological
characters and groups of characters are expected to be
linked by underlying hidden processes maintaining
their identity and continuity through time and across
species (Rieppel 2005; Wagner 2007; Tarasov 2020).
Understanding how the information is partitioned in
different anatomical modules and how the individual
phylogenetic hypotheses implied by them conflict with
each other can help us to not only make more reliable
phylogenetic inferences but also to provide new insights
into the evolution of phenotypic integration.
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