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A B S T R A C T

Background: Accurate segmentation of MS lesions on MRI is difficult and, if performed manually, time con-
suming. Automatic segmentations rely strongly on the image contrast and signal-to-noise ratio. Literature ex-
amining segmentation tool performances in real-world multi-site data acquisition settings is scarce.
Objective: FLAIR2, a combination of T2-weighted and fluid attenuated inversion recovery (FLAIR) images, im-
proves tissue contrast while suppressing CSF. We compared the use of FLAIR and FLAIR2 in LesionTOADS, OASIS
and the lesion segmentation toolbox (LST) when applied to non-homogenized, multi-center 2D-imaging data.
Methods: Lesions were segmented on 47 MS patient data sets obtained from 34 sites using LesionTOADS, OASIS
and LST, and compared to a semi-automatically generated reference. The performance of FLAIR and FLAIR2 was
assessed using the relative lesion volume difference (LVD), Dice coefficient (DSC), sensitivity (SEN) and sym-
metric surface distance (SSD). Performance improvements related to lesion volumes (LVs) were evaluated for all
tools. For comparison, LesionTOADS was also used to segment lesions from 3 T single-center MR data of 40
clinically isolated syndrome (CIS) patients.
Results: Compared to FLAIR, the use of FLAIR2 in LesionTOADS led to improvements of 31.6% (LVD), 14.0%
(DSC), 25.1% (SEN), and 47.0% (SSD) in the multi-center study. DSC and SSD significantly improved for larger
LVs, while LVD and SEN were enhanced independent of LV. OASIS showed little difference between FLAIR and
FLAIR2, likely due to its inherent use of T2w and FLAIR. LST replicated the benefits of FLAIR2 only in part,
indicating that further optimization, particularly at low LVs is needed. In the CIS study, LesionTOADS did not
benefit from the use of FLAIR2 as the segmentation performance for both FLAIR and FLAIR2 was heterogeneous.
Conclusions: In this real-world, multi-center experiment, FLAIR2 outperformed FLAIR in its ability to segment
MS lesions with LesionTOADS. The computation of FLAIR2 enhanced lesion detection, at minimally increased
computational time or cost, even retrospectively. Further work is needed to determine how LesionTOADS and
other tools, such as LST, can optimally benefit from the improved FLAIR2 contrast.
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1. Introduction

MRI plays an integral role for diagnosis and monitoring of MS due to
its sensitivity for the depiction of focal lesions, which are character-
istically present in the brain and spinal cord of MS patients (Rovira &
León, 2008; Fazekas et al., 1999; Wattjes et al., 2015; Rovira et al.,
2009). The ability to assess efficacy of new disease modifying treat-
ments relies on the identification of new T2-hyperintense lesions, and
the detection of inflammatory lesion activity (Wattjes et al., 2015;
Miller et al., 1996; Sormani & Bruzzi, 2013; Río et al., 2017). However,
detection and accurate demarcation of MS lesions on MRI is challenging
due to heterogeneity in lesion location, size and shape in addition to
anatomical differences between subjects (García-Lorenzo et al., 2013)
and therefore requires expert knowledge. Manual lesion segmentation
is labor-intensive, time-consuming and subject to intra- and inter-expert
variability (García-Lorenzo et al., 2013; Grimaud et al., 1996; Zijdenbos
et al., 2002; Styner et al., 2008). Recent supervised automated lesion
segmentation methods have shown potential to provide lesion masks
that closely match the manual expert segmentations (Brosch et al.,
2016; Valverde et al., 2017), e.g. by utilizing neuronal networks, but
rely on large training data sets, which are often not readily available.
The need for training in supervised segmentation approaches and em-
pirical selection of tuning parameters have hampered widespread ap-
plication and validation of these tools, and hindered their use particu-
larly in small scale studies. In depth discussions of different supervised
and unsupervised methods are presented in reviews by García-Lorenzo
et al. (2013), Lladó et al. (2012) and Sweeney et al. (2014). For
widespread clinical and research applicability, lesion segmentation
tools should be publicly available and ideally function without manual
fine-tuning of processing parameters to facilitate reproducibility.

Thus, publicly available, automated methods that require no or
minimal training data are of interest, including LesionTOADS (Shiee
et al., 2010), the Lesion Segmentation Toolbox (LST) (Schmidt et al.,
2012), Salem Lesion Segmentation (SLS) (Roura et al., 2015), or Au-
tomated Statistical Interference for Segmentation (OASIS) (Sweeney
et al., 2013), which have been widely applied in reference to other
lesion segmentation approaches (Brosch et al., 2016; Valverde et al.,
2017; Jain et al., 2015; Roy et al., 2014; Valcarcel et al., 2018; de Sitter
et al., 2017; Shinohara et al., 2017). In particular, LesionTOADS and
LST provide ample reference for their lesion segmentation performance.
Both are available as cross-platform software packages; LesionTOADS
as a plug-in to the Java-based MIPAV toolbox, and LST as a plug-in to
SPM, run within MATLAB. Notably, LesionTOADS also provides a seg-
mentation of brain tissues, a functionality that extends its use to cortical
segmentations and atrophy assessments (Huo et al., 2016; Harrison
et al., 2015). Therefore, LesionTOADS has also found widespread ap-
plication in clinical research of MS (Sati et al., 2012; Ozturk et al.,
2010) and beyond (Lampe et al., 2019).

Nonetheless, automated segmentation approaches are also chal-
lenged by the heterogeneous MR appearance of MS lesions and there-
fore generally unable to match manual or semi-automated lesion defi-
nitions (García-Lorenzo et al., 2013). Thus, semi-automatic
segmentation methods, e.g. automated, user-controlled region growing
approaches based on manually placed seed points (McAusland et al.,
2010), continue to remain the standard in clinical studies and provide
the reference for newer, automated techniques. Noteworthy, supervised
as well as unsupervised segmentation methods are often tested on
small, single-site, homogenized imaging data (García-Lorenzo et al.,
2013), which do not correspond to the real-world application of these
approaches to multi-center, often multi-vendor data sets.

Here, our objective was to test the performance of LesionTOADS in a
multi-center clinical trial using non-homogenized 2D-imaging data. We
investigated whether LesionTOADS segmentation benefited from the
use of FLAIR2, a new contrast recently suggested to aid automated le-
sion segmentation methods. FLAIR2-images are obtained through mul-
tiplication of co-registered T2-weighted (T2w) and FLAIR-images, both

standard in MS imaging protocols (Traboulsee et al., 2016). The com-
bination of 3D-T2w and 3D-FLAIR, referred to as FLAIR2, has shown to
improve tissue contrast-to-noise, while simultaneously suppressing CSF
(Wiggermann et al., 2016). Thus, FLAIR2 may aid automated lesion
segmentation methods, potentially also in cases of lower field strengths
and non-3D image acquisitions.

The performance of LesionTOADS, when applied to FLAIR2 in
comparison to FLAIR in the multi-center study, was compared in a
secondary analysis with the segmentations obtained from OASIS, a
segmentation package publicly available within R, and LST for the same
data set. Lastly, we contrasted our findings with the application of
LesionTOADS to data obtained from a single-center, homogenized
imaging study, in the challenging setting of low lesion load volumes in
patients with clinically isolated syndrome (CIS).

2. Methods & materials

2.1. Demographics

MRI scans from a cohort of 47 relapsing-remitting MS patients,
randomly selected from a multi-centre clinical trial performed at 34
different scanning sites, were included in this study. The second cohort
consisted of 40 CIS patients, scanned at baseline at a single-site, prior to
treatment randomization in a clinical trial (NCT00666887).

All patients gave written informed consent. Due to the blinded
nature of the data analysis in these trials, no further demographic in-
formation was available.

2.2. MR image acquisition and processing

2D-FLAIR, 2D-T2w, 2D-Proton Density weighted (PDw), and 3D-T1

weighted (T1w) scans with a variety of acquisition parameters were
selected in the multi-center study in order to reflect the range of values
used in MS imaging studies. All scans were acquired at a voxel size of
0.94×0.94mm2 and 3.00mm slice thickness, at either 1.5 and 3 T,
except for T1w-images, which were acquired with voxel sizes varying
between 0.94× 0.94mm2 to 1×1mm2 and slices of 1 or 1.5mm
thickness. For all T2w, FLAIR and PDw-scans, 60 slices were collected;
T1w-images had more slices due to their reduced slice thickness (be-
tween 116 and 208). Detailed scan parameters for the multi-center
study are provided in Supplementary Table S1. All data concerning the
single-center study were acquired at a 3 T Philips Achieva. The voxel
size was the same as in the multi-center study, 0.94× 0.94× 3mm3,
for all image contrasts. Dual-echo PD/T2w-images were acquired at
TE1= 8.4ms, TE2=80ms, TR=2800ms; FLAIR-images used
TE=125ms, TR=11 s, TI= 2800ms, refocusing flip angle= 125°;
and T1w-images were acquired at TE=10ms, TR=657ms and flip
angle= 50°.

For both studies, a bias correction was performed on all images
using the revised N3 technique as described by Jones & Wong (2002),
prior to further processing. The revised N3 techniques captures areas of
steep inhomogeneity gradients, which are not fully corrected with N3
alone.

All images, T1w, T2w and FLAIR, were co-registered to the PDw-
image space and brain extracted prior to LesionTOADS segmentation
using FLIRT and BET, tools of the FSL software library (Jenkinson et al.,
2002; Smith, 2002). For the purpose of the FLAIR2-image computation,
FLAIR-scans were also co-registered to the T2w-images as described in
Wiggermann et al. (2016). The aligned FLAIR and T2w-scans were then
multiplied, yielding the FLAIR2-image, and subsequently mapped to
PDw for lesion segmentation.

2.3. Semi-automated reference segmentation

Lesions identified by the semi-automatic method described in
McAusland et al. (2010) were used in both studies for comparison with
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LesionTOADS, OASIS or LST. A neuroradiologist identified lesions
consistent with MS pathology on T2w and PDw-scans and marked each
lesion with a minimum of one lesion point. A technician then performed
the semi-automatic growing process to create the reference lesion mask.

2.4. LesionTOADS

LesionTOADS is a topology-preserving segmentation tool (Shiee
et al., 2010) designed to identify and segment white matter (WM) MS
lesions while simultaneously classifying other brain tissues. Since Le-
sionTOADS is optimized for FLAIR and T1w, T1w-images were included
in addition to FLAIR or FLAIR2, respectively. All LesionTOADS para-
meters remained at default, for both the FLAIR and FLAIR2-image
segmentation. The default parameters are listed in Inline Supplemen-
tary Table S2. For this work, the 2014 R4c version of TOADS CRUISE
was downloaded from NITRC on September 28th 2018 and run within
MIPAV version 7.0.1.

2.5. OASIS

OASIS uses logistic regression to estimate the voxel-level probability
of lesion presence based on the voxel intensities on T1w, T2w, PDw and
FLAIR-images (Sweeney et al., 2013). In contrast to LesionTOADS,
OASIS uses the T1w-image as reference and performs a non-linear re-
gistration to the MNI standard space using FSL tools. The user may
provide original, unprocessed or pre-processed images to OASIS. In
order to take full advantage of its pipeline, we used non co-registered,
non-brain extracted images for OASIS. Although OASIS masks brain
tissues from CSF prior to lesion detection, it does not yield further tissue
class segmentations. The OASIS pipeline provides an already trained
segmentation model, based on 15 MS patients and 5 healthy controls.
However, study specific thresholding is recommended and study data
training is possible. For best results, we trained OASIS on four data sets
from our study, for FLAIR and FLAIR2-data individually. OASIS version
3.0.4. was downloaded and installed within R 3.4.4 on February 13th
2019.

2.6. LST

Akin to LesionTOADS, the lesion segmentation toolbox (LST)
(Schmidt et al., 2012) only requires T1w and FLAIR or FLAIR2-images as
input. LST, like OASIS, pre-processes the FLAIR and T1w-data. Tissue
segmentation is performed on the T1w-images and tissue probability
labels are computed in combination with SPM's tissue probability map
of WM. FLAIR-image intensities are subsequently used to create lesion
belief maps for each tissue compartment, considering lesions to be in-
tensity outliers within individual tissue classes. Finally, lesion growing
is performed after thresholding of the gray matter lesion belief map
with a pre-determined threshold. Based on the same four subjects used
for OASIS training, we determined the thresholds of 0.19 and 0.24 for
FLAIR and FLAIR2, respectively. Note that although tissue segmentation
on T1w-images is performed, tissue masks are typically not provided as
one of the LST outputs. LST version 2.0.15 was downloaded and in-
stalled within SPM12, downloaded on November 14th 2018.

2.7. Performance evaluation

We computed the commonly used relative lesion volume difference
(LVD), the Dice coefficient (DSC), sensitivity (SEN) and the symmetric
surface distance (SSD) to assess the performance of FLAIR versus
FLAIR2 for the different segmentation algorithms and studies. LVD re-
presents the relative volume difference between the LesionTOADS,
OASIS or LST and reference lesion segmentation. To assess the overlap
between segmented lesion voxels, not captured by LVD, DSC and SSD
were computed. SSD reflects the closeness of border voxels of the seg-
mentation and the reference, while the DSC assesses the number of true

positive lesion voxels compared to false positive and negative voxels.
Additionally, SEN, another overlap measure which focuses only on the
amount of true positive and false negative voxels, was estimated. All
performance metrics are detailed in Table 1. In a secondary analysis, we
stratified patients based on their absolute detected reference lesion
volume (LV) and categorized them accordingly as patients of high
(> 15 cm3), medium/low (>5 cm3 &<15 cm3) or minimal LV
(< 5 cm3) to test for performance variation. For comparison with other
studies, these volume thresholds were adapted from literature (Schmidt
et al., 2012; Jain et al., 2015).

2.8. Statistical analysis

All performance evaluation indices were calculated separately for
each segmentation tool, comparing FLAIR and FLAIR2 against the semi-
automated reference. In addition, the mean difference between the
FLAIR and FLAIR2 scores as well as the relative improvement score
(meandiff/meanFLAIR) for each metric were computed. Significance of
the improvement was determined using a paired t-test. Furthermore, a
mixed effects model was implemented in R (lme4 package (Bates et al.,
2011)) to assess statistical differences in regard to the chosen input
image (FLAIR/FLAIR2) and the effect of LV for the multi-center study.
The fixed model parameters were complemented with two random ef-
fects, addressing site and patient variability. The site parameter ac-
counts for segmentation differences related to the site-specific imaging
protocols in the multi-center study. Ultimately, pairwise multiple
comparisons for the performance indiceswith respect to LV and the use
of FLAIR or FLAIR2 were carried out using the lsmeans package (Lenth,
2016), which performs a post-hoc Tukey's HSD test and p-value ad-
justment. Since the difference in segmentation performance between
FLAIR and FLAIR2 was mainly of interest, we did not statistically
evaluate the performance differences between LesionTOADS, OASIS
and LST.

3. Results

One patient's FLAIR-image was incorrectly reconstructed with non-
zero signal outside of the brain, and thus no FLAIR2-image could be
obtained. Another patient's FLAIR-image exhibited strong motion-in-
duced inter-slice misalignment (Tam et al., 2009), which prevented co-
registration between FLAIR and T2w. For the multi-center study, Le-
sionTOADS failed to complete processing for two subjects on both the
FLAIR and FLAIR2-image. These data sets were excluded from further
analysis, in addition to one data set for which the imaging parameters
and field strength information were unavailable. Of the remaining 42
multi-center patients, 40 had been scanned at 1.5 T at 30 different sites
and two data sets had been obtained from one 3 T site.

Fig. 1 shows representative lesion masks obtained from the semi-
automated reference method (A) and the corresponding LesionTOADS
segmentation based on FLAIR (B) and FLAIR2 (C) on the respective

Table 1
Definition of the applied evaluation metrics, including the respective scoring
systems and units. Note that the ratios for DSC and SEN are expressed in per-
centages. [Abbreviations: true positives (TP), false positives (FP), false nega-
tives (FN), lesion volume of FLAIR or FLAIR2 (VOLFLAIR), lesion volume of re-
ference segmentation (VOLREF), Euclidean distance (d) on boundary voxels (∂).]

Definition Units Best Worst

LVD −VOLFLAIR VOLREF
VOLREF

| | a.u. 0 +∞

DSC
+ +

TP
FP FN TP

2·
2·

% 100 0

SEN
+

TP
TP FN

% 100 0

SSD ∑ ∑
∈∂ ∈∂

+

∈∂ ∈∂

∪
SEG REFv

min
u REF

d(uv)
v

min
u SEG

d(uv)

card(SEG REF)

mm 0 +∞
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image contrasts for one patient in the multi-center study. The FLAIR2-
based lesion segmentation allowed for better capture of confluent le-
sions compared to the FLAIR-only segmentation, facilitated by the im-
proved tissue contrast of FLAIR2 between MS lesions and surrounding
WM as well as between gray and subcortical WM. The bottom row
displays the FLAIR2-based segmentations of LesionTOADS (F), OASIS
(G) and LST (H). Compared to LesionTOADS, both OASIS and LST
segmented larger volumes, thereby capturing lesions more fully, but
also fluently connected lesion areas. All tools failed to segment smaller
lesions, particularly when they were not periventricular and presented
with lesser hyperintensity.

The estimated LVs for all MS patients in the multi-center study were:
semi-automated reference segmentation: mean/median/range=11.1/
7.4/0.14–48.7 cm3; LesionTOADS FLAIR segmentation: mean/median/
range= 4.2/3.2/0.01–15.9 cm3; LesionTOADS FLAIR2 segmentation:
mean/median/range= 5.8/4.3/0.30–24.3 cm3. In line with the ex-
ample segmentation shown in Fig. 1, both FLAIR and FLAIR2 Le-
sionTOADS underestimated LVs compared to the semi-automated re-
ference segmentation (Fig. 2A). However, FLAIR2 significantly
improved LV estimates compared to using FLAIR alone (p= .018, re-
lative improvement 31.6%). In particular, we noticed an improved
segmentation for LVs > 10 cm3 when using FLAIR2 compared to
FLAIR, although a correct estimation of large LVs appears to be more
challenging as noted by the increasing discrepancy between the Le-
sionTOADS and reference segmentation estimated LVs.

The LesionTOADS results of all evaluation indices are presented in
the top part of Table 2. For comparison, OASIS results are shown in the
middle and LST results in the bottom third. For LesionTOADS, seg-
mentation based on FLAIR2 scored significantly higher than FLAIR in
three of the four indices: LVD: meandiff=−0.2 a.u. (p= .018); DSC:

meandiff=5.2% (p= .19) with a relative improvement of 14%; SEN:
meandiff=6.98% (p= .048) with a relative improvement of 25.1%;
SSD: meandiff=−3.5mm (p= .0097), with the largest relative im-
provement of 47%.

To assess whether these improvements are specific to the use of
FLAIR2 within LesionTOADS, we applied the OASIS segmentation pi-
peline as well as LST to the same data set. A side-by-side comparison of
the LesionTOADS, OASIS and LST segmentation performance, relative
to the semi-automated reference, is shown in Fig. 3. Mean scores and
relative improvements are summarized in Table 2.

DSC showed little discrepancy between the different segmentation
approaches as well as between FLAIR and FLAIR2, hence yielding the
lowest relative improvements of all performance scores. OASIS showed
more variability in LVD ad SSD, achieving on average lower perfor-
mance than LesionTOADS in these two scores. LST similarly varied
more in LVD and SSD, but this variability and the lower performance
were limited to FLAIR2. One exception is SEN, which was notably
higher for both OASIS and LST. Comparison of FLAIR and FLAIR2 with
LST replicated the significant improvement in SEN seen with
LesionTOADS (p= .031), however, SSD was significantly higher when
using LST with FLAIR2 compared to FLAIR (p= .0002).

Pairwise comparison of the OASIS scores obtained using FLAIR and
FLAIR2 yielded no significant differences (LVD p= .38, DSC p= .91,
SEN p= .43, SSD p= .32), although LVD and SSD showed relative
improvements for FLAIR2 over FLAIR similar to LesionTOADS (LVD
55.8%, SSD 21.8% improvement).

A visual comparison of the resulting FLAIR2-based segmentations
from the three segmentation tools is provided in Fig. 4 for two subjects.
LesionTOADS (left) generated more conservative segmentation results
than OASIS (middle) and LST (right), consistently sparing lesion edges

Fig. 1. Example LesionTOADS segmentations shown overlaid on the images that were used to obtain them (top row); Comparison of FLAIR2-based segmentations
obtained by different tools (bottom row). Top row: A) 2D-PDw and the lesion mask (green) obtained by semi-automated seed point selection and lesion growing; B)
2D-FLAIR and the default LesionTOADS segmentation (yellow); C) 2D-FLAIR2 and the respective LesionTOADS segmentation (purple); D) matching 3D-T1w used as
additional input to LesionTOADS, OASIS and LST. Bottom row: Segmentations shown overlaid on FLAIR2: E) PDw-reference; F) FLAIR2-LesionTOADS segmentation;
G) FLAIR2-OASIS segmentation; H) FLAIR2-LST segmentation. LesionTOADS segmented a larger lesion volume when using FLAIR2 compared to FLAIR alone,
achieving a better agreement with the PDw-based reference segmentation, albeit still underestimating the LV. OASIS and LST captured lesions, but also diffuse
abnormalities, to a greater extent.
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in line with the reference segmentation. This leads to reduced false
positive (FP), but also lower true positive (TP) rates. In contrast, OASIS
over-segmented LV by including diffuse FLAIR-hyperintensities in be-
tween focal lesions into the lesion mask. LST reduced the false detection
of diffuse FLAIR-hyperintense regions, but still identified hyper-
intensities adjacent to the ventricles as lesion tissue. Notably, neither

technique captured small lesions that were identified in the reference
segmentation. As the only tool, LST identified hyperintensities in the
corpus callosum just above the ventricles. The over-segmentation in
both OASIS and LST allowed a nearly complete capture of the reference
segmentation, yielding high SEN scores via high TP voxel rates, despite
increased FP rates compared to LesionTOADS.

Fig. 2. (A) Comparison of segmented absolute LVs with respect to the reference segmentation volume. The gray dashed line indicates the level of the reference, expert
segmentation. FLAIR2 improved LesionTOADS segmentation results and gained in particular at LV > 10 cm3. (B) DSC improved significantly when segmenting
FLAIR2 images with larger LVs, less so for FLAIR. The data points suggest that the relationship between LV and DSC may be non-linear, therefore, the linear fit is only
a general indicator of improvement and not meant to model the exact relationship between these parameters.

Table 2
Summary of the mean and standard errors of the lesion segmentation performance scores for all three segmentation tools applied to the multi-centre study data set:
LVD – relative lesion volume difference, DSC – DICE score, SEN – sensitivity, SSD – symmetric surface distance, CI – confidence interval. The relative improvement is
assessed for FLAIR2 with respect to FLAIR (paired t-test, n=42 for all scores). The right-hand column quotes the p-values extracted from the mixed effects model for
the performance comparison of FLAIR versus FLAIR2, when separately modeling the effect of LV.

FLAIR FLAIR2 Difference (FL2-FL) Relative improvement [%] p-value (holm adj.) p-value mixed effects model

95% CI

LesionTOADS
LVD [a.u.] 0.636 ± 0.071 0.436 ± 0.044 −0.201 ± 0.543 31.56 0.018 0.021

(−0.365) – (−0.037)
DSC [%] 36.98 ± 3.00 42.16 ± 2.47 5.19 ± 13.70 14.03 0.190 0.011

1.04–9.33
SEN [%] 27.85 ± 2.60 34.84 ± 2.32 6.98 ± 10.26 25.07 0.048 3.5e-5

3.88–10.09
SSD [mm] 7.40 ± 1.07 3.92 ± 0.76 −3.48 ± 5.15 46.99 0.010 5.5e-5

(−5.04) – (−1.92)

OASIS
LVD [a.u.] 6.07 ± 3.78 2.69 ± 0.72 −3.39 ± 21.04 55.78 0.380 0.322

(−9.75) – (2.97)
DSC [%] 38.79 ± 2.92 38.32 ± 2.80 −0.47 ± 5.71 −1.2 0.910 0.518

(−2.19) – 1.26
SEN [%] 63.0 ± 2.64 59.9 ± 2.85 −3.11 ± 11.53 −4.93 0.430 0.065

(−6.60) – 0.38
SSD [mm] 11.95 ± 2.11 9.34 ± 1.49 −2.61 ± 7.07 21.83 0.320 0.025

(−4.75) – (−0.47)

LST
LVD [a.u.] 1.84 ± 1.45 1.43 ± 0.30 −0.408 ± 9.643 22.19 0.780 0.785

(−3.32) – 2.51
DSC [%] 40.91 ± 2.75 38.22 ± 2.97 −2.69 ± 14.55 −6.58 0.510 0.242

(−7.09) – 1.71
SEN [%] 43.62 ± 3.64 54.26 ± 3.21 10.63 ± 14.48 24.38 0.031 2.6e-5

6.25–15.02
SSD [mm] 4.73 ± 1.45 15.15 ± 2.19 10.42 ± 11.99 −220.3 0.0002 2.0e-7

6.80–14.05
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Since the average performance of LesionTOADS, as well as OASIS
and LST, was lower than reported in previous studies (e.g. mean
DSC < 42.2%, see Table 2, compared to (Shiee et al., 2010; Sweeney
et al., 2013)), we further investigated the effect of LV under varying
acquisition parameters in the multi-center imaging study. The perfor-
mance scores for LesionTOADS are summarized in Fig. 5. LVD (Fig. 5A)
and SEN (C) improved in FLAIR2-based segmentations largely in-
dependent of LV. This was confirmed by the linear mixed effects model,
which showed no significant effect of LV stratification nor an

interaction between the two grouping factors (input MR sequence and
LV, p > .09). Pairwise post-hoc comparisons demonstrated a sig-
nificantly improved LVD when using FLAIR2 over FLAIR at minimal LV
(p= .043) as well as significant improvements in SEN at low/medium
and high LV (p= .0007 and p= .002, respectively).

In contrast, DSC (B) and SSD (D), albeit insignificantly so for SSD,
changed with LV for FLAIR2. Similar, but insignificant trends were
observed for FLAIR. Both, DSC and SSD, indicated that FLAIR2-seg-
mented data sets with larger LVs showed greater comparability to the

Fig. 3. Comparison of the performance of LesionTOADS (LT), OASIStrained (OT) and LST when using FLAIR or FLAIR2 as input. Displayed significances correspond to
the paired t-test results with * indicating p < .05 and ** p < .01. OASIS did not replicate the FLAIR vs. FLAIR2 difference in performance seen with LesionTOADS.
Despite similar DSC and higher SEN, OASIS demonstrated more variability, including higher values for LVD and SSD. LST performance was comparable to
LesionTOADS, but also showed greater LVD and SSD variability with FLAIR2. LST FLAIR2 vs. FLAIR SEN was significantly improved, in line with LesionTOADS.

Fig. 4. Visual comparison of the FLAIR2-based
LesionTOADS (left, purple), OASIS (middle, purple)
and LST (right, purple) segmentations in two sub-
jects (top and bottom), with respect to the semi-au-
tomated reference (green). Similar to the examples
in Fig. 1 F-H, LesionTOADS underestimated the LV in
both cases shown here, while OASIS and LST more
fully captured, and partly over-determined, lesion
voxels. Thereby, LesionTOADS generated fewer FP
voxels, while OASIS and LST achieved high rates of
TP lesion voxels. All tools also segmented unrelated
FLAIR-hyperintensities, such as present adjacent to
the ventricles, but in turn failed to detect small hy-
perintense lesions. (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the web version of this article.)
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reference segmentation. This is reflected in the smaller standard de-
viations for FLAIR2 at greater LVs noted for DSC and SSD in Fig. 5, but
also represented in Fig. 2B, where FLAIR2 segmentation for LVs >
5 cm3 consistently achieved DSC scores> 30%, while some FLAIR-
based LesionTOADS lesion masks continued to exhibit little similarity
to the reference.

Mean and standard errors for all LesionTOADS performance metrics,
when stratified by LV, are summarized in Table 3. In addition, examples
of the segmentation performance of LesionTOADS at different LVs are
displayed in Fig. 6.

Similar dependencies on LV were detected with both OASIS and
LST, which are displayed in Fig. 7. OASIS (A-D) demonstrated LV-de-
pendent improvements for DSC and SSD, while LVD and SEN were less
affected by LV. In contrast to LesionTOADS, OASIS showed little dif-
ference between FLAIR and FLAIR2-based performance scores, even
after accounting for LV. Notably, the significant improvement in SSD
for minimal LV was maintained, although data sets with minimal LVs
were overall poorly segmented. LST (E-H) showed similar LV-depen-
dent improvements in DSC, and a stronger effect of LV on SEN than
observed with LesionTOADS or OASIS. LVD and SSD were LV-in-
dependent for FLAIR-based segmentations, but showed large improve-
ments for FLAIR2. Although FLAIR2 performed similar or better (SEN)
than FLAIR when LVs passed 5 cm3, small LVs segmentations with LST
performed significantly poorer with FLAIR2 compared to FLAIR.

Within the limited scope of 3 T data available within the multi-
center study (n=2 versus n=40 for 1.5 T), the mixed effects model
suggested no significant effect of field strength on the outcomes, except
for SSD (p=0.02), with worse performance at 3 T.

To test the performance of LesionTOADS at higher field strength and
in the challenging setting of lower LVs, we used LesionTOADS to seg-
ment data in a CIS single-site data set, again using FLAIR and FLAIR2.
The performance is summarized in Fig. 8. The mean/median/range LV,
obtained from the reference segmentation, of this cohort was= 4.42/
2.67/0.13–20.98 cm3. 29 of the 40 patients had minimal LVs (LV <
5 cm3), eight patients had LVs 5 cm3 < LV < 15 cm3 and only three
patients counted toward the high LV group in this cohort. There were
no significant differences between FLAIR and FLAIR2 (p > 0.48) with
the exception of SSD (p=0.012). The average scores were LVD=9.73
a.u. and 8.98 a.u.; DSC=28.38% and 25.92%; SEN=49.72% and
46.30%; SSD=12.66mm and 25.75mm, for FLAIR and FLAIR2, re-
spectively. Note that although the DSC values were approximately on
the order of the DSC scores of the multi-center study for LVs < 5 cm3,
LVD and SSD were on average higher, indicating worse performance,
despite approximately doubled SEN. Visual assessment of the segmen-
tation performance, however, seemed to suggest that LesionTOADS
with FLAIR2 should perform better than FLAIR (see lesion [1]), if not
for misclassification of some FLAIR2-hyperintense regions (regions [2]
and [3]).

Fig. 5. FLAIR2-based lesion segmentations showed a clear improvement over FLAIR-based estimates, in particular at high lesion volumes (LVs). The performance
improvement was independent of LV with respect to the estimated relative volume difference (LVD) and sensitivity (SEN). There was a significant improvement in
DSC for segmenting images with medium or higher LV, compared to LVs < 5 cm3. FLAIR2-based DSC improved from a mean of 29.2% to 50.7%, while SSD dropped
from 6.84mm to 1.65mm. The corresponding FLAIR SSD-score remained unchanged. For minimal LVs, FLAIR2-based segmentations significantly improved LVD
(p= .043) and SSD (p= .044). p-values indicating differences between FLAIR and FLAIR2 performance are shown in black, LV related p-values in gray. * indicates
p < .1.
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4. Discussion

We demonstrated that by combining FLAIR and T2w-images prior to
selecting them as input for LesionTOADS, MS lesion segmentation in
lower-field strength, multi-center studies may be enhanced by 14–47%,
depending on the performance evaluation score. Since FLAIR and T2w-
scans are commonly acquired as part of clinical and research MR pro-
tocols for MS (Rovira et al., 2009; Traboulsee et al., 2016), the com-
putation of FLAIR2 and the subsequently improved LesionTOADS seg-
mentation are realized without the need for additional scanning and at
minimal organizational and computational time or financial invest-
ment. The improvement of using FLAIR2 over FLAIR, however, was
limited to the use of LesionTOADS in the multi-center study, and could
not be replicated at lower LVs. Other segmentation tools, e.g. OASIS
and LST, only partially captured the benefits of FLAIR2, indicating that
these tools need further optimization in order to gain from the FLAIR2

contrast.

4.1. Multi-center study

Previously, the value of FLAIR2 was demonstrated using 3D-FLAIR
and 3D-T2w acquired at 3 T (Wiggermann et al., 2016). Based on 5
healthy controls and 7 MS patients, a 133% increase in contrast-to-
noise between gray matter vs. WM and 158% for lesions vs. WM was

observed when using FLAIR2 over FLAIR. It was furthermore described
that the gain in signal-to-noise ratio (SNR) in 3D-acquisitions compared
to 2D-scans allowed for the acquisition of isotropic voxels, providing
robust image registration and permitting image reformatting. For the
present study, FLAIR2 was computed from 2D-scans as 2D-data acqui-
sitions have been, until recently, the standard in clinical trials and
clinical practice. We demonstrated that 2D-FLAIR2 provides sig-
nificantly improved lesion segmentation with LesionTOADS, even when
most data were collected at 1.5 T using non-homogenized image ac-
quisition protocols. While the 2D-results do not necessarily predict the
success of LesionTOADS for 3D-imaging data, the SNR gain suggests
further improvements.

4.2. LesionTOADS

Overall, LesionTOADS underestimated the LV in our data set, even
with FLAIR2. We performed the segmentation with default parameters;
optimizing the parameters and/or modifying the software may increase
performance for both scans, however, this was not the purpose of this
work. If modified, LesionTOADS may also arguably not be classified as
an unsupervised segmentation method, although much fewer data sets
would be required to optimize performance than needed for deep
learning machines. FLAIR2-LesionTOADS with default parameters
seemed to detect the central, most hyperintense parts of MS lesions, but

Table 3
Mean and standard errors for all LesionTOADS segmentation performance indices after stratification by LV (< 5 cm3 (n=15), 5–15 cm3 (n= 15),> 15 cm3

(n=12)): LVD – relative lesion volume difference, DSC – DICE coefficient, SEN – sensitivity, SSD – symmetric surface distance. The mixed effects model p-values are
reported in the second part of the table. Significant values are highlighted in bold font.

LV < 5 cm3 5 cm3 < LV < 15 cm3 LV > 15 cm3

LVD [a.u.]: FLAIR 0.688 ± 0.190 0.551 ± 0.049 0.678 ± 0.196
FLAIR2 0.402 ± 0.097 0.393 ± 0.061 0.531 ± 0.153

DSC [%]: FLAIR 29.55 ± 7.63 41.68 ± 10.8 40.37 ± 11.7
FLAIR2 29.18 ± 7.53 48.36 ± 12.5 50.65 ± 14.6

SEN [%]: FLAIR 25.28 ± 6.53 30.07 ± 7.76 28.30 ± 8.17
FLAIR2 27.61 ± 7.13 39.46 ± 10.2 38.08 ± 11.0

SSD [mm]: FLAIR 9.75 ± 2.52 5.37 ± 1.39 7.01 ± 2.02
FLAIR2 6.84 ± 1.77 2.83 ± 0.73 1.65 ± 0.48

LVD p-values FL - FL2: 0.043 FL - FL2: 0.258 FL - FL2: 0.343
Mini - low (FL): 0.582 Low - high (FL): 0.625 Mini - high (FL): 1.000
Mini - low (FL2): 0.996 Low - high (FL2): 0.583 Mini - high (FL2): 0.626

DSC p-values FL - FL2: 0.93 FL - FL2: 0.059 FL - FL2: 0.011
Mini - low (FL): 0.100 Low - high (FL): 0.977 Mini - high (FL): 0.192
Mini - low (FL2):0.005 Low - high (FL2): 0.933 Mini - high (FL2): 0.003

SEN p-values FL - FL2: 0.365 FL - FL2: 0.0007 FL - FL2: 0.002
Mini - low (FL): 0.469 Low - high (FL): 0.954 Mini - high (FL): 0.703
Mini - low (FL2): 0.05 Low - high (FL2): 0.971 Mini - high (FL2): 0.115

SSD p-values FL - FL2: 0.034 FL - FL2: 0.062 FL - FL2: 0.0008
Mini - low (FL): 0.084 Low - high (FL): 0.554 Mini - high (FL): 0.583
Mini - low (FL2): 0.122 Low - high (FL2): 0.961 Mini - high (FL2): 0.09

Fig. 6. Example FLAIR2-based lesion segmentations
obtained from LesionTOADS at different LVs. Note
that besides the LV, the image contrast of FLAIR2

varied strongly between scans from different sites,
affecting the segmentation quality. Lesions of suffi-
cient hyperintensity in the periventricular area are
well captured, while lesser hyperintensities and le-
sions in the subcortical WM may be missed.
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omitted areas that appeared more diffusely damaged as well as lesion
boundaries and lesions that were not periventricular and appeared less
hyperintense (Fig. 1). In contrast, the T2w and PDw-based semi-auto-
mated segmentation, commonly used for clinical trials, provided a re-
ference closer to the ground truth (McAusland et al., 2010) by more
fully capturing the extent of MS lesions. Our data showed that although
large LVs will be incompletely captured, even by FLAIR2, the areas that
are detected by LesionTOADS are in good correspondence to the re-
ference. The extent of smaller LVs was better captured (lower LVD), but

lacked in overlap to the reference as noted by low DSC and large SSD
scores. By using FLAIR2, LVD improved to under 0.5 (LVDFL

2 = 0.4),
which is better than LesionTOADS achieved in the lesion segmentation
challenge (Shiee et al., 2008). The low DSC and SEN scores agree with
other multi-center studies (Roy et al., 2014), while a single-site,
homogenized imaging study previously achieved better mean DSC of up
to 61% (Jain et al., 2015). However, improvements with respect to LV
were comparable. The aforementioned study reported a 15% change in
DSC between small and larger LVs, in line with the 20% improvement

Fig. 7. LV-dependency of performance scores for OASIS (A-D) and LST (E-H). Similar to LesionTOADS, OASIS and LST performance improved significantly at higher
LVs, increasing DSC and decreasing SSD. For LST, SEN also strongly depended on LV (G). LST-LVD remained statistically unchanged (E), although a clear im-
provement in the LVD estimates for FLAIR2 is apparent between LV < 5 cm3 and larger 5 cm3. After accounting for LV, OASIS showed little difference between
FLAIR and FLAIR2-based segmentations. With LST, FLAIR2 typically performed equal and in some cases better than FLAIR, however, FLAIR2 segmentations failed in
terms of SSD estimation, particularly at minimal LVs.

Fig. 8. Performance of LesionTOADS in low LV, 3 T MR data. Left: The DSC scores were approximately in agreement with the minimal LV scores shown in Fig. 5.
While SEN was higher, LVD and SSD indicated worse performance in this data set. Due to the large variance in achieved scores, there was no difference between the
use of FLAIR and FLAIR2 with the exception for SSD. Right: Although the FLAIR2-based segmentation (B, purple) better captured the extent of lesions than FLAIR (A,
yellow) alone (1), FP voxels were detected in FLAIR2-hyperintense regions (2). The reference segmentation is shown in green. In addition, LesionTOADS may fail to
capture areas of high FLAIR2 signal intensity, such as the center of large lesions (3).
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in our study when using FLAIR2. Note also that deep learning tools
currently achieve sub-optimal DSC scores of 63% (Birenbaum &
Greenspan, 2016). Thus, automated segmentation approaches, like Le-
sionTOADS, may be presently favored given their minimal need for
training data.

4.3. OASIS

In contrast to LesionTOADS, performance of OASIS did not improve
when using FLAIR2 instead of FLAIR for the segmentation. OASIS did
perform less consistent than LesionTOADS for the same data, particu-
larly at lower LVs, introducing larger heterogeneity in the achieved LVD
and SSD segmentation scores. Regardless of the larger variance in
segmentation performance that might limit statistically significant
findings, OASIS likely benefited less from FLAIR2, since it already uti-
lized the input of T2w and FLAIR in addition to T1w and PDw. Thus,
various T2-weightings were already included in OASIS, even when
using FLAIR. Using multiple imaging modalities for MS lesions seg-
mentation agrees with the heterogeneous presentation of MS lesions.
Automated lesion segmentation approaches, however, rely often on few
modalities, e.g. T1w and FLAIR only (Shiee et al., 2010; Schmidt et al.,
2012; Roura et al., 2015; Jain et al., 2015). Incorporating other, pos-
sibly quantitative modalities, as attempted in the MS Lesion Segmen-
tation Challenge, which provided diffusion tensor imaging data (Styner
et al., 2008), may further enhance our ability to segment MS lesions. On
the other hand, as the imaging protocol for MS evolves (Traboulsee
et al., 2016), not all clinical images will continue to be acquired, pos-
sibly posing a challenge for existing segmentation tools that require
now optional scans, such as PDw. The need for data specific thresh-
olding or training adds to the analysis complexity. Initial trials of using
the default threshold of 0.16 (data not shown) yielded largely over-
segmented lesion masks for OASIS. Threshold adjustment alleviated
some of these concerns, however, manual selection of the threshold
enforces ultimately a trade-off between capturing lesion extent and
loosing small lesions. In most cases, sensitivity toward small lesions will
be sacrificed. Nevertheless, even after training and threshold adjust-
ment, OASIS continued to incorporate diffuse FLAIR-hyperintense re-
gions into the segmented lesion masks. The over-segmentation with
OASIS resulted in lower LVD and SSD. SEN scores, however, were high,
since SEN only considers TP and false negative (FN) voxels, not FP.
Thus, relying on SEN alone as an indicator of segmentation perfor-
mance, may lead to erroneous assessments. Note also that OASIS was
the only tool which performed consistently worse at lower LVs, in-
dependent of the use of FLAIR or FLAIR2.

4.4. LST

LST also over-segmented lesions, albeit less so than OASIS, largely
sparing diffuse hyperintense regions. Thus, SEN was higher than for
LesionTOADS, but all other scores indicated similar performance.
Notably, LST replicated the significant improvement in SEN of FLAIR2

over FLAIR. In contrast, SSD for FLAIR2-LST was significantly higher
than for FLAIR and higher than observed with LesionTOADS. This
pattern was more apparent when investigating the performance of LST
relative to LV. The deficiency for accurate segmentation of small LVs
with FLAIR2 was expressed by large LVD and SSD, despite high SEN.
Both scores normalized compared to FLAIR at higher LVs. This shortfall
was only noted for FLAIR2, not LST-FLAIR, which achieved comparable
results to FLAIR-based LesionTOADS, showing no LV-dependency in
LVD and SSD. Since the performance difference between FLAIR and
FLAIR2 was primarily noted on SSD, it is likely that LST segments hy-
perintensities at the gray matter – WM boundary, possibly due to CSF
leakage from image co-registration errors. Further FP may be detected
adjacent to the ventricles, increasing LVD and decreasing DSC, while
maintaining SEN. If the tissue probability and lesion belief maps can be
adjusted to account for possible artefacts at tissue boundaries, LST-

performance could improve, and FLAIR2-based segmentations could
possibly achieve similar or better results than FLAIR.

The multi-site data acquisition, while a drawback, is also a strength
of our study. For the 2013 review (García-Lorenzo et al., 2013) of 47
MS lesion segmentation approaches, 11 used the two-site data provided
for the MS lesion segmentation challenge (Styner et al., 2008) and only
two validated their methods using multi-centre data. Moreover, the 42
and 40 data sets included here exceed the cohort size of most of these
publications; 29 studies had 20 data sets or less in their analyses and the
largest cohort comprised 41 patients. We demonstrated in this larger,
multi-center cohort that by changing the input image contrast used by
LesionTOADS, lesion segmentations were significantly improved in this
real-world setting. While other tools need to be optimized to handle
amplified hyperintensities appearing on FLAIR2, FLAIR2 already per-
formed similar or better in some cases than FLAIR.

4.5. CIS single-center study

To test whether LesionTOADS in combination with FLAIR2 also
enhanced segmentation performance at higher field strength, we ap-
plied LesionTOADS to 40 data sets of CIS patients acquired at 3 T. Note
that this data did not overlap with the 3 T data from the multi-center
study. In this data set, LesionTOADS-FLAIR2 did not demonstrate ben-
efits over FLAIR. Notably, the data set included primarily patients with
minimal LVs, on average less than half of the LV detected in the multi-
center MS cohort. As shown, LesionTOADS performance improved with
increasing LV. Thus, DSC was low and LVD and SSD were high in this
data set, in agreement with the scores presented for the minimal LV
group in Fig. 5. Notably, using LesionTOADS un-optimized for small
LVs, may lead to an overestimation of LV, if the true LV is small (Roy
et al., 2014). Despite similar performance scores, visual image inspec-
tion demonstrated that FLAIR2-based segmentations captured better the
lesion extent (Fig. 8). However, amplified hyperintensities unrelated to
lesion tissue may lead to mis-segmentation in FLAIR2. Mis-segmenta-
tion may in part occur as over-segmentation due to enhanced brightness
of voxels in periventricular areas, where diffuse FLAIR-hyperintensities
are present, or in cortical areas, where the WM - gray matter contrast
difference is enhanced, similar to the contrast of double inversion re-
covery images. Moreover, mis-registration can lead to CSF leaking into
the FLAIR2-image. Parameter optimization in LesionTOADS may be
able to address these issues partly by specifying the distance between
lesion voxels and cortex as well as ventricles. However, improving the
WM segmentation that is performed within LesionTOADS rather than
relying on parameter tuning will provide a more generalized and
standardized approach to segmentation improvement. Note that, al-
though considered the reference ground truth, manual or semi-manual
expert segmentation will also be image contrast dependent and can be
prone to errors. Finally, enhanced FLAIR2-hyperintensities may be
missed by LesionTOADS, as shown in Fig. 8, where the center of the
large lesion remained undetected. This may be considered an inherent
property of LesionTOADS and its fuzzy C-means clustering. In case that
a voxel presents very high intensity on FLAIR2, it may be far from any
centroid in the clustered space and may thus produce equal, un-
predictable memberships. This may in part explain the continued
under-segmentation of LV by means of LesionTOADS segmentation,
despite the improved contrast-to-noise of FLAIR2. A pre-processing step
could be applied to threshold the intensities of FLAIR2, prior to Le-
sionTOADS segmentation.

4.6. Limitations

We focused our study on LesionTOADS, one of the publicly available
automated segmentation tools that had been previously evaluated in
the 2008 MS Grand Segmentation Challenge (Styner et al., 2008). Other
segmentation tools may benefit even more, or possibly less, from the
combination of FLAIR and T2w as shown here for example with OASIS
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and LST. Publicly available, state-of-the-art lesion segmentation tools
have been widely compared, however, depending on the evaluation
score, assessments vary broadly.

Among the publicly available tools, Souplet's approach (Souplet
et al., 2008) ranked highest in the initial challenge just above Le-
sionTOADS, indicating high similarity in their performance (Lladó
et al., 2012). Although Cabazas et al. (Cabezas et al., 2014) showed that
LST outperformed Souplet's method, as assessed by DSC and SSD, which
would therefore suggest a better performance than LesionTOADS, Jain
et al. (Jain et al., 2015) in fact, showed that on average LesionTOADS
had greater precision and achieved higher DSC than LST, with equal
SEN. LST yielded considerably lower DSC scores at LV < 5 cm3 than
LesionTOADS. Noting that approximately one third of our patients in
the multi-center study and 72.5% of patients in our single-center study
had LVs < 5 cm3, using LST may be suboptimal, although it was shown
to provide the most comparable LV estimates. Notably, our data showed
comparable LVD and DSC scores at small LVs between the two seg-
mentation tools. However, LesionTOADS-FLAIR2 improved LVD in our
multi-center study compared to FLAIR significantly at LVs < 5 cm3

(p=0.043), while retaining performance on all other scores. SLS per-
formed better than LesionTOADS in the detection of FP lesion voxels
and in terms of volume differences, while LST achieved superior seg-
mentation accuracy (Brosch et al., 2016). For this study, LesionTOADS
was chosen because it was readily available, its comparable and fa-
vorable performance, and because it provides ample reference for
comparisons (Brosch et al., 2016; Sweeney et al., 2013; Jain et al.,
2015). LesionTOADS moreover facilitates simultaneous tissue segmen-
tation, not available using most other segmentation methods, and does
not require costly licenses, a possibly limiting factor for accessing some
tools, e.g. such as implemented within SPM/Matlab.

4.7. Evaluation metrics

A wide range of parameters exists that can be used to assess the
quality of segmentations with respect to a reference. DSC and SEN are
the most frequently used (Lladó et al., 2012), but other scores such as
the lesion-wide TP or FP rates may need to be considered when de-
termining the segmentation precision of small lesions in the cortex or
the deep WM, where partial volume effects play a larger role (García-
Lorenzo et al., 2013). Although the same T1w-images were used in
combination with FLAIR and FLAIR2, the contrast combination of the
two input images will ultimately determine the success of Le-
sionTOADS. The default parameters, which were employed in our
study, that work optimally for the T1w-FLAIR input, may not be ideal
for T1w-FLAIR2. Double inversion recovery (DIR) is currently suggested
to be the most suitable sequence for the detection of cortical lesions,
which are generally not captured by lesion segmentation algorithms,
but DIR suffers from limited SNR and relatively long data acquisition
times (Geurts et al., 2011). FLAIR2 provides image contrast similar to
DIR at a higher spatial resolution and with improved SNR and contrast-
to-noise ratio (Wiggermann et al., 2016). Fig. 1C demonstrates the
enhanced contrast of the cortical gray matter, which could provide a
starting point for cortical lesion segmentation, particularly at higher
field strength.

Overall, our study suggests that the computation of FLAIR2 is par-
ticularly beneficial if the image quality of FLAIR itself is lower, possibly
due to lower SNR at lower field strength as observed in our multi-center
study. Whether FLAIR2 will be beneficial at higher field strength re-
mains to be shown. Improved WM delineation and adjustments of the
FLAIR2-image intensity may be needed to take full advantage of the
benefits of FLAIR2 in LesionTOADS as well as with other segmentation
tools.

5. Conclusion

The computation of FLAIR2 from FLAIR and T2w-images increases

the performance of automated lesion segmentation with LesionTOADS
at minimal additional scan time or computational cost, in the setting of
multi-center, lower field strength non-homogenized 2D-data acquisi-
tions. As long as both FLAIR and T2w-scans are available, whether ac-
quired 2D or 3D, FLAIR2 can be obtained, and used for automated
segmentation of MS lesions. Further work is needed to determine how
segmentation tools can ideally benefit from the improved FLAIR2 con-
trast.
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