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Abstract Successful kidney transplantation corrects many
of the metabolic abnormalities associated with chronic
kidney disease (CKD); however, skeletal and cardiovascu-
lar morbidity remain prevalent in pediatric kidney trans-
plant recipients and current recommendations from the
Kidney Disease Improving Global Outcomes (KDIGO)
working group suggest that bone disease—including
turnover, mineralization, volume, linear growth, and
strength—as well as cardiovascular disease be evaluated
in all patients with CKD. Although few studies have
examined bone histology after renal transplantation, current
data suggest that bone turnover and mineralization are
altered in the majority of patients and that biochemical
parameters are poor predictors of bone histology in this
population. Dual energy X-ray absorptiometry (DXA) scan-
ning, although widely performed, has significant limitations
in the pediatric transplant population and values have not been
shown to correlate with fracture risk; thus, DXA is not
recommended as a tool for the assessment of bone density.
Newer imaging techniques, including computed tomography
(quantitative CT (QCT), peripheral QCT (pQCT), high
resolution pQCT (HR-pQCT) and magnetic resonance imag-
ing (MRI)), which provide volumetric assessments of bone
density and are able to discriminate bone microarchitecture,
show promise in the assessment of bone strength; however,
future studies are needed to define the value of these
techniques in the diagnosis and treatment of renal osteodys-
trophy in pediatric renal transplant recipients.
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Introduction

Childhood and adolescence are critical periods for bone
mass gain since about 90% of peak bone mass is acquired
before the age of 18 years and decreased peak bone mass
may increase fractures risk in adulthood [1]. In both adults
and children with chronic kidney disease (CKD), cardio-
vascular disease accompanies all subtypes of bone disease,
necessitating that discussions of renal osteodystrophy also
consider cardiovascular pathology [2]. Although successful
kidney transplantation corrects many of the metabolic
abnormalities associated with CKD, morbidity—including
osteopenia, growth failure, spontaneous fractures, avascular
necrosis, and increased cardiovascular mortality—remains
prevalent in pediatric kidney transplant recipients [3–6].
Over the past decade, studies from the United States and
Europe have highlighted the skeletal and vascular morbid-
ities experienced by the pediatric renal transplant popula-
tion; Bartosh et al. demonstrated a 44% prevalence of short
stature (height Z score less than −1.88 for age), a 41%
prevalence of bone-joint abnormalities and a 23% preva-
lence of fractures [3]; Groothoff et al. reported short stature
(height below –2 SD for age) in 61%, bone disease in 35%
[4], and nearly 50% with cardiovascular disease [5]; while
Helenius et al. reported a markedly increased vertebral
fracture rate, along with scoliosis, back pain, and degen-
erated discs, in children receiving solid organ transplanta-
tion, the majority of whom had received kidney transplants
[7, 8]. Although current recommendations from the Kidney
Disease Improving Global Outcomes (KDIGO) working
group suggest that bone disease—including turnover,
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mineralization, volume, linear growth, and strength—as
well as cardiovascular disease be evaluated in all patients
with CKD, including those post renal transplantation [2],
large gaps exist in our current knowledge as to the
pathophysiology of mineral, bone, and vascular disease
post-transplantation and few evidence-based treatment
paradigms are available. This review discusses the known
features of CKD mineral and bone disorder (CKD-MBD) in
the pediatric renal transplantation, highlighting gaps in
current knowledge and areas of ongoing research.

Mineral metabolism

Dramatic changes in serum mineral metabolism occur
immediately after renal transplantation as circulating
levels of phosphorus, magnesium, and PTH decline and
25(OH)vitamin D and 1,25(OH)2vitamin D values in-
crease [9–11]. Calcineurin inhibition, which induces renal
magnesium wasting, often induces hypomagnesemia [11],
while hyperparathyroidism and elevated circulating fibro-
blast growth factor 23 (FGF-23) concentrations promote
renal phosphate excretion and often cause serum phos-
phate concentrations to decline to below the normal range
[9, 12, 13].

Chronically increased circulating FGF-23 levels may
subsequently contribute to hypophosphatemia and low calci-
triol levels, which persist for months after transplantation [12–
15]. Elevated PTH values may also persist in some patients
and hypercalcemia, in combination with hyperparathyroid-
ism, has been traditionally considered a sign of autonomous
PTH secretion and an indication for parathyroidectomy in
transplant recipients [16, 17]. Cinacalcet, a calcimimetic
agent, has been used in recent years as an alternative to
parathyroidectomy in this population as it suppresses PTH
and normalizes serum calcium concentrations in almost all
patients within a few weeks [18–21]. Unfortunately, the
systemic benefit of this form of therapy is unclear; indeed,
recent data have demonstrated a 50% prevalence of
adynamic bone disease in hypercalcemic, hyperparathyroid
renal transplant recipients [22] with long-term calcimimetic
therapy exacerbating this form of renal osteodystrophy [23].

25(OH)Vitamin D deficiency is also a common problem
due to dietary restrictions [24], reduced sun exposure as a
result of chronic illness, decreased skin synthesis of
vitamin D in response to sunlight compared with
individuals with normal kidney function [25, 26], and
increased catabolism of 25(OH)vitamin D through
24-hydroxylase [27]. Although 25(OH)vitamin D stores
improve after renal transplantation, values remain low in a
significant percentage of patients, particularly in African
Americans, contributing to increased PTH levels in these
individuals [10].

Bone disease

In 2003, Bartosh et al. reported the historical prevalence of
skeletal morbidities in 217 children undergoing transplantation
from 1967 to 1969 at the University of Wisconsin [3]. The
following year, Groothoff et al. published a similar study on
the experience of 397 Dutch children undergoing renal
transplantation from 1972 to 1992 [4]. In these two large
cohorts, clinical bone disease was found to persist into
adulthood in many patients who had undergone renal
transplantation as children, with long-term bone and joint
disorders reported in 35–41% and with as many as 18%
complaining of disability from their bone disease [4].
Fractures were reported to have occurred in 23%, with
avascular necrosis developing in a similar number of patients
[3, 4]. In 2009, Valta et al. described an 8% prevalence of
vertebral fractures [6] in a cohort of 106 pediatric renal
transplant recipients who had been followed for 0 to 16
(median 5) years, while Helenius et al. reported that rates of
non-vertebral fractures in 196 children receiving organ
transplants (135 with kidney transplants) between 1983 and
2002 were similar to healthy controls, although the age and
sex adjusted hazard rate for vertebral fractures in transplant
recipients was a startling 61.3 as compared to controls [8].
These clinical findings highlight the high prevalence of
skeletal (and particularly vertebral) fragility in the pediatric
transplant population; however, accurate prediction of which
patients are likely to experience fractures remains problematic.

Bone histology remains the gold standard for the
diagnosis of lesions of bone turnover and mineralization;
unfortunately, bone biopsy is an invasive technique that is
not widely performed and a paucity of data exist as to the
spectrum of bone histologic lesions in pediatric renal
transplant recipients treated with current-day immunosup-
pressive regimens. In adult kidney recipients, the fibrosis
and markedly increased rates of bone turnover present in
dialysis patients with secondary hyperparathyroidism are
much improved 6 months after kidney transplantation [28].
However, cross-sectional studies demonstrate that even
years after transplantation the majority of transplant
recipients continue to display abnormal bone histology.
Some patients display persistently elevated rates of bone
turnover while others develop adynamic lesions and,
unfortunately, biochemical parameters, including serum
PTH levels, are unable to discriminate between these
various bone lesions [29–32]. Although only one study
has been performed in pediatrics, a similar disconnect exists
between bone formation rate and PTH levels in younger
patients. A cross-sectional study published in 1998 reported
the bone biopsy data from 47 pediatric kidney recipients
who received steroids, cyclosporin, and antimetabolites as
immune-suppression. In this study, 10% of patients had
evidence of adynamic bone lesion while another 23% had
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high turnover renal osteodystrophy [33]. Similar to the
adult studies, PTH measurements did not correlate with
bone turnover and many patients with adynamic bone
displayed PTH levels greater than 100 pg/ml [33].
Although bone turnover was variably normal, increased,
or decreased, defective skeletal mineralization was highly
prevalent with increased osteoid volumes and reduced
mineral apposition rates [33]. The etiology of these
observed abnormalities in bone turnover and mineralization
was likely multifactorial, including persistent and de novo
abnormalities in mineral metabolism [14] and medication-
mediated changes in mineral metabolism and bone histology.
Glucocorticoids have been shown to decrease intestinal
calcium absorption [34] and increase FGF-23 levels [15]
while inhibiting osteoblastic activity, decreasing bone for-
mation, inhibiting genes for type I collagen, the IGFs,
BMPs, TGF-beta, and RANK-Ligand [35–37] and increas-
ing osteoclastic activity and bone resorption [38–41]. As a
result, glucocorticoid use is linked to a decrease in trabecular
bone by BMD and a decrease in bone formation rate [42].
Cyclosporine increases both bone formation and bone
resorption while reducing cancellous bone volume [43, 44]
and sirolimus has been shown to impair longitudinal growth
by disrupting VEGF and IGF-1 signaling [45]. By contrast,
azathioprine appears to have minimal impact on skeletal
remodeling [46]. The specific roles of other immunosup-
pressive agents, such as mycophenolate mofetil, on bone
formation and mineralization have yet to be evaluated. Due to
the myriad of effects that glucocorticoids exert on bone
histology, the use of steroid-free immune-suppressant regi-
mens has the potential to greatly improve bone histology in the
post-transplant period. Unfortunately, the bone histology
associated with currently used immunosuppressant treatment
regimens, including steroid-free protocols, is unknown.

Imaging studies assess skeletal mineral content and
structure and are thus often used to assess bone health in
both adults and children post kidney transplantation. The
most widely used technique is DXA scanning, and in adult
patients, this technique has demonstrated significant verte-
bral bone loss soon after renal transplantation; indeed, an
8.8±7.0% loss in spinal bone mineral density has been
noted by 18 months post-transplantation, the majority
occurring in the first 6 months. Although over 50% of the
subjects evaluated in one study had spinal bone mineral
densities that were in a range associated with an increased
fracture risk [28], a reduction of BMD in the spine after
transplantation may represent a normalization of trabecular
bone structure with stable or increasing spinal bone density
reflecting the actions of persistently elevated PTH levels on
trabecular bone. Interestingly, and consistent with the
concept that decreasing bone density may actually reflect
a normalization of renal osteodystrophy after transplanta-
tion, radial shaft (i.e., cortical bone) density has not been

consistently shown to decrease but rather increases in some
patients [28]. Although bone loss also occurs in children, its
characterization is incomplete due to problems with the use
of DXA scanning. The major limitations of DXA in
pediatric CKD include: a reliance on areal rather than
volumetric density, a parameter which changes with
growth; an inability to distinguish between trabecular and
cortical bone which may be independently altered in CKD;
and an inability to evaluate trabecular microarchitecture, a
key determinant of bone quality. The presence of vascular
calcification also confounds the DXA technique since
calcium deposits in vascular tissue may be interpreted by
the scan as bone density; indeed, the use of lateral DXA has
been advocated as a method for determining the amount of
vascular calcification in adult CKD patients [47]. The
difficulty in determining appropriate “normal” ranges for
growth-retarded and chronically ill children pose addition-
al problems [48]. Likely as a result of these limitations,
bone density determined by DXA does not correlate with
fracture risk in pediatric transplant recipients and current
ICSD guidelines state that DXA scanning is inappropriate
for use in children with CKD [49, 50]. In 2001, the
evaluation of a cohort of 33 pediatric renal transplant
recipients using three different evaluation criteria, with
norms based on chronological age, height-age, and
gender-matched controls, respectively, illustrated some of
these problems, demonstrating that the apparent preva-
lence of low bone density varies considerably depending
on the technique used to evaluate the data [51]. In a more
recent study, Valta et al. [6] attempted to address these
issues by correcting for bone age in a cohort of 106
prevalent pediatric renal transplant recipients. Using this
technique, average Z score for bone density at the lumbar
spine, hip and whole body were −0.5, –0.2, and −0.3,
respectively. Higher PTH levels, female gender, and an
age greater than 15 years were all independently associ-
ated with lower bone density while the use of recombinant
growth hormone was associated with improved bone
density at the lumbar spine. Although BMD decreased in
the first year post-transplantation, values increased subse-
quently to an average Z score of −0.2 at 5 years post-
transplantation. Interestingly, despite the fairly normal
BMD values, the authors reported a concerning high
(8%) rate of vertebral fractures [6], suggesting that normal
values on DXA did not adequately reflect underlying bone
pathology. Despite its limitations, serial DXA scans are
recommended for therapeutic monitoring in children with
symptomatic metabolic bone disease [50] and, although
further studies are warranted, serial DXA measurements
may prove useful in the therapeutic monitoring of some
selected patients post-renal transplantation [52].

Due to the technical limitations for DXA, new bone-
imaging techniques derived from QCT, pQCT, HR-pQCT,
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and MRI, ultrasound and bone texture analysis, have been
developed. These non-invasive techniques are associated
with little or no radiation exposure and both CT and MRI
provide three-dimensional assessments of bone area and
density, avoiding many of the growth-related issues of
DXA in children [52]. Peripheral QCT is a promising
method for assessing bone mass and mineral density
determined by this method predicts future fractures in
adults [48, 53]. Newer, high-resolution pQCT scanners
have improved precision and the feasibility of this
technique has been demonstrated in healthy children [54]
and in those with primary hyperoxaluria [55]. Although
the ability of pQCT to predict future fracture risk has not
been evaluated in renal transplant recipients, Rüth et al.
identified a decrease in cortical thickness and muscular
force at the forearm in 55 adolescent renal transplant
recipients, a change that may contribute to the increased
fracture risk in these patients [56]. Bone ultrasound has
also been evaluated in a cohort of 40 children and young
adults with renal transplants; despite normal overall
mineral density, a decrease in apparent cortical thickness
was identified in this study [57]. MRI is another promising
technique; however, data are lacking on its use in the
pediatric renal transplantation population. Outcomes-based
studies are lacking with all of these novel techniques, and
future studies are warranted; however, their ability to assess
volumetric bone density, to discriminate cortical from
trabecular bone, and to resolve trabecular microarchitecture
suggest the potential to yield clearer understanding of bone
mass and structure.

Growth

In both Europe and the United States, a 44–61%
prevalence of decreased final adult height has been
reported [3, 4], thus representing the most prevalent
long-term skeletal morbidity in the pediatric population.
At the time of renal transplantation, the mean height
deficit for all pediatric patients is 1.78 SD below normal
height for age and gender, representing a height percentile
of less than the 4th percentile [58]. The deficit is greater
for males (SD: –1.82 for males versus −1.72 for females),
younger patients, and those with prior transplants. Post-
transplantation, children less than 6 years of age experi-
ence an improvement in mean growth deficit, while older
children do not [58]. Immunosuppressant medications,
persistent secondary hyperparathyroidism, low levels of
circulating vitamin D [59], skeletal resistance to growth
hormone, and the persistence of defective skeletal miner-
alization may all contribute [33]. Early case reports and
clinical series suggested that children receiving steroid-
free immunosuppressive regimens, those treated with

alternate day steroids and those with better height SDS at
the time of transplant attain the greatest final adult height
[58, 60–62]. Recently, the TWIST trial, the first large (98
patients per arm) randomized, controlled trial evaluating
the effect of early steroid withdrawal versus a standard
steroid-based regimen has demonstrated greater catch-up
growth at 6-month post-transplantation in children in the
early steroid withdrawal arm of the study. In this study, the
greatest gains in height were observed in pre-pubertal
children [63]. Longer follow-up is needed in order to
determine whether these height gains are sustained in the
long term.

Cardiovascular calcification

Although renal transplantation improves survival, cardio-
vascular disease remains prevalent in the post-transplant
period. The mortality rate in patients with CKD is
markedly higher than that of the general population and
cardiovascular disease is the leading cause of death in
both children and adults post renal transplantation [58,
64, 65]. In contrast to the calcifications of atherosclerotic
plaques that develop with age in the vascular intima of
individuals with normal kidney function, vascular calcifi-
cation in the uremic milieu develops primarily in the
tunica media. Electron beam computed tomography
(EBCT) measurements in young adults who were treated
with maintenance dialysis as children have demonstrated
the presence of vascular calcification in a significant
percentage [64]. Arteries obtained from patients undergo-
ing renal transplantation have been shown to express core
binding factor-1 (Cbfa1), a protein believed to trigger
mesenchymal cell to osteoblast transformation [66].
Upregulation of the sodium-dependent phosphate transporter
PIT-1 [67] and other pro-mineralization factors such as
osteopontin, bone sialoprotein, osteonectin, alkaline phos-
phatase, type I collagen, and bone morphogenic protein-2
(BMP-2) are also potentiated by the uremia [68–71]. By
contrast, expression of calcification inhibitors, such as fetuin
A, matrix gla protein, and Klotho is suppressed [72–75].
Increased levels of circulating FGF-23 may also contribute
to progressive vascular disease, as elevated values are
correlated with vascular calcification in adult dialysis
patients [76] and mortality in the general population [77]
as well as in dialysis [78] and CKD patients [79].

In the majority of adult patients, the rate of vascular
calcification slows considerably post-transplantation; how-
ever, despite normalization of serum calcium and phosphorus
levels, these lesions often do not regress [80, 81] (Fig. 1),
and, in some patients, particularly those treated with
warfarin therapy, an accelerated progression of vascular
calcifications may even be observed [82]. EBCT is not
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used to evaluate vascular calcification in children; how-
ever, EBCT data from young adults who developed renal
failure as children, as well as autopsy and biopsy data
indicate that vascular calcification is present in children
with late stages of CKD [83] and those treated with
maintenance dialysis [64, 80, 84, 85], particularly those
treated with high doses of calcium-containing phosphate
binders [64]. Moreover, studies using carotid ultrasound
have repeatedly demonstrated abnormal intimal-medial
thickness (IMT) and vascular distensibility in pediatric
renal transplant recipients in comparison with healthy
controls [86–90]. Mitsnefes et al. have reported that the
presence of hypertension is strongly linked to increased IMT
and poor vessel distensibility in children after renal transplan-
tation [86], while Bilginer et al. have related the length of
time on dialysis to increased IMT [87], and Van Summeren
et al. described lower fetuin A levels in transplanted patients
than in controls, although these levels were not directly
correlated with degree of vascular thickness [88].

Treatment options

Because mineral, bone, and vascular metabolism are integral-
ly linked in patients with CKD [91], treatment must take each
of these factors into consideration. As detailed above, the
data on the spectrum of CKD-MBD is limited and reliable
imaging techniques for the assessment of bone and vascular
disease are not widely available. In both adults and children,
minimizing or avoiding steroids have yielded the most
promising results; indeed, total dose of glucocorticoid
exposure has also been linked to bone loss [35, 92] and
children treated on steroid-free immunosuppressant protocols
experience greater catch-up growth post-transplantation than
do those treated with steroids [60]. Alternate forms of
corticosteroids have also been shown promise in lessening
the deleterious effects on bone; the use of deflazacort has
been reported to cause less bone loss than prednisone [93].
Recombinant human growth hormone (rhGH) has been used
in children with significant height deficit after kidney
transplantation. A substantial increase in linear growth
occurs within the first year of rhGH therapy, but the
magnitude of growth response may decline thereafter [94].

Vitamin D (in both 25(OH)vitamin D and 1,25(OH)2
vitamin D forms) and calcium have also been advocated by
some for the prevention of bone loss; however, initiation of
therapy after the first year of transplantation in this
population has not been shown to have any sustained or
significant benefit [95]. By contrast, the use of bisphosph-
onates (alendronate) in adults an average of 5 years post-
transplantation increases BMD by as much as 4.5%,
compared with a 5.8% decrease in BMD in calcitriol
treated patients [96]. However, bisphosphonates are con-
troversial in patients with renal impairment, may induce
adynamic bone disease [97], are not recommended by
KDIGO in patients with advanced stages of CKD [2], and
are controversial in children with immature skeletons,
particularly as the risk to future pregnancies is unknown.

Treatment options aimed specifically at curbing cardiovas-
cular calcifications are also limited. In an open-label trial
evaluating the effect of fluvastatin on cardiovascular mortality
and graft loss, cardiac mortality was decreased by 29% after
6.7 years of follow-up in adults after renal transplantation,
although all-cause mortality and graft loss did not differ
between groups [98]. Pre-clinical data has also suggested that
statins may also reverse the effects of corticosteroids on bone,
preventing osteonecrosis by decreasing adipogenic and
increasing osteogenic bone marrow stromal cell differentia-
tion [99, 100] and, in a single-arm observational study,
Pritchet reported a 1% incidence of osteonecrosis in 284
transplant recipients followed for an average of 7.5 years,
which appeared to be an improvement from historical
controls [101]. However, in a subsequent prospective study
of 2,881 patients, 383 of whom received statins, no difference

Fig. 1 Change in coronary artery calcification in renal transplant
recipients (a) and hemodialysis patients (b) in subjects with baseline
calcification. Reprinted with permission from Moe et al. NDT 2004;
19:2387–2393
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in the rates of osteonecrosis was noted between groups [102].
Studies in children have not been performed.

Conclusions

Although successful transplantation corrects many of the
metabolic abnormalities associated with the development of
CKD-MBD, abnormalities in mineral metabolism and bone
and vascular biology persist after successful renal transplanta-
tion. Limited data exist on bone histology after transplantation
while DXA, the most widely used imaging technique, does not
predict fracture risk and is thus not recommended in children
with CKD. New imaging techniques based on CT and MRI
have the potential to provide more detailed information as to
bone quality and microarchitecture, however, the correlation
between these techniques and clinical outcomes are unknown.
Current recommendations from the Kidney Disease Improv-
ing Global Outcomes working group suggest that all patients
with CKD be evaluated for mineral, bone, and vascular
consequences of CKD-MBD, and further research is much
needed in order to enhance skeletal and cardiovascular health
in this population.

Questions (answers appear following the reference list)

1. In post-transplantation renal osteodystrophy

A. PTH levels correlate closely with bone turnover
B. bone turnover returns to the normal range in all patients
C. defects in skeletal mineralization are common
D. adynamic bone disease is rare

2. In pediatric renal transplant recipients, bone density

A. is best assessed using DXAwith age-matched controls
B. is best assessed usingDXAwith height-matched controls
C. is best assessed using DXAwith gender-matched controls
D. cannot reliably be assessed by DXA

3. Post renal transplantation, cardiovascular disease

A. resolves within the first 2 years
B. improves (in adults) with the use of lipid-lowering

agents
C. is unrelated to traditional risk factors, such as hypertension
D. is minimal in children

4. The leading cause of death in children post renal
transplantation is

A. cardiovascular disease
B. cancer
C. infection
D. trauma

5. After renal transplantation growth

A. improves equally in all age groups, from infancy to
adolescence

B. improves with steroid-avoidant and steroid-
minimizing immunosuppressant protocols

C. does not respond to growth hormone
D. is no longer a clinical problem

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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