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Acinar cell death and inflammatory response are two important events which

determine the severity of acute pancreatitis (AP). Endoplasmic reticulum (ER)

stress and necroptosis are involved in this process, but the relationships

between them remain unknown. Here, we analyzed the interaction between

ER stress and necroptosis and the underlying mechanisms during AP.

Experimental pancreatitis was induced in Balb/C mice by caerulein (Cae) and

lipopolysaccharide (LPS) or L-arginine (L-Arg) in vivo, and pancreatic acinar

cells were also used to follow cellular mechanisms during cholecystokinin

(CCK) stimulation in vitro. AP severity was assessed by serum amylase, lipase

levels and histological examination. Changes in ER stress, trypsinogen

activation and necroptosis levels were analyzed by western blotting,

enzyme-linked immunosorbent assay (ELISA), adenosine triphosphate (ATP)

analysis or lactate dehydrogenase (LDH) assay. The protein kinase C (PKC)a
-mitogen-activated protein kinase (MAPK) -cJun pathway and cathepsin B

(CTSB) activation were evaluated by western blotting. Activating protein 1 (AP-

1) binding activity was detected by electrophoretic mobility shift assay (EMSA).

We found that ER stress is initiated before necroptosis in CCK-stimulated acinar

cells in vitro. Inhibition of ER stress by 4-phenylbutyrate (4-PBA) can

significantly alleviate AP severity both in two AP models in vivo. 4-PBA

markedly inhibited ER stress and necroptosis of pancreatic acinar cells both

in vitro and in vivo. Mechanistically, we found that 4-PBA significantly reduced

CTSB maturation and PKCa-JNK-cJun pathway -mediated AP-1 activation

during AP. Besides, CTSB inhibitor CA074Me markedly blocked PKCa-JNK-
cJun pathway -mediated AP-1 activation and necroptosis in AP. However,

pharmacologic inhibition of trypsin activity with benzamidine hydrochloride

had no effect on PKCa-JNK-cJun pathway and necroptosis in CCK-stimulated

pancreatic acinar cells. Furthermore, SR11302, the inhibitor of AP-1,

significantly lowered tumor necrosis factor (TNF) a levels, and its subsequent
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receptor interacting protein kinases (RIP)3 and phosphorylated mixed

lineagekinase domain-like (pMLKL) levels, ATP depletion and LDH release rate in

CCK-stimulated pancreatic acinar cells. To sum up, all the results indicated that

during AP, ER stress promoted pancreatic acinar cell necroptosis through CTSB

maturation, thus induced AP-1 activation and TNFa secretion via PKCa-JNK-cJun
pathway, not related with trypsin activity. These findings provided potential

therapeutic target and treatment strategies for AP or other cell death-

related diseases.
KEYWORDS

acute pancreatitis, endoplasmic reticulum stress, necroptosis, cathepsin B, activating
protein-1
Introduction

Acute pancreatitis (AP), the most common diseases of

pancreas in the globe, sometimes is lethal. But the pathogenic

mechanisms have not been fully elucidated, and no effective

treatment is available (1–3). Pancreatic necrosis is an important

cause of AP worsening and patient’s death (4, 5). Necrosis has

long been considered as a haphazard or passive event, but found

to be regulated as well. Programmed necrosis appears as

necroptosis, pyroptosis, ferroptosis or other types (6–9).

Among them, necroptosis is the best investigated form, which

involves the activation of receptor interacting protein kinases

(RIP) 3 - mixed lineage kinase domain-like (MLKL) pathway (6,

7). He’s team and Zhang’s team found almost at the same time

that RIP3 deletion improved experimental AP in mice (6, 7).

Besides, we reported the imbalance between RIP1 and RIP3

shifted cell death to necrosis in our previous studies, which

unraveled that necroptosis promotes the development of AP

(10). But the underlying mechanisms of necroptosis remain

unclear in AP.

Endoplasmic reticulum (ER) stress activation is an early

event during experimental AP, and inhibition of ER stress

obviously alleviates pancreatic injury (11–14). In response to

ER stress, three proteins are activated, including activating

transcription factor 6 (ATF6), inositol-requiring ER-to-

nucleussignal kinase 1 (IRE1) and protein kinase-like ER

kinase (PERK), then leads to expression of glucose-related

peptide 78 (GPR78), small intron from X-box–binding protein

1 (sXBP1), C/EBP homology protein (CHOP) and so on (13, 15).

Previous studies have demonstrated that inhibition of ER stress

by 4-phenylbutyric acid prevented vital organ injury and

intestinal epithelial cell apoptosis in rats with AP (16, 17).

Although ER stress is widely reported to be associated with

apoptosis, recent studies have revealed that it can trigger

necroptosis in L929 cells, microglia/macrophages or
02
hepatocyte (18–20). However, the regulatory role of ER stress

on necroptosis of pancreatic acinar cells and its mechanisms

need to be further explored.

Intrapancreatic trypsinogen activation is an important

initiating event of AP, during which, cathepsin B (CTSB)

cleaved trypsinogen to mature trypsin and released its NH2-

terminal trypsinogen activating peptide (TAP), an indicator of

trypsinogen activation (21). Therefore, necroptosis, ER stress

and CTSB-induced trypsinogen activation are all involved in

AP (14). Their relationship is so complex that it needs to be

clarified during AP. On the one hand, activation of ER stress

increased CTSB activity, while inhibition of ER stress decreased

it in isolated pancreatic acinar cells in AP (22). On the other

hand, excessive CTSB released from lysosomes into the cytosol

can convert the cell death pathway to necrosis during AP (23).

Therefore, CTSB may serve as a key molecule mediating

trypsin-induced necrosis and ER stress-induced necroptosis.

To illuminate the role and mechanisms of CTSB in AP are of

great significance for further elucidating the pathogenesis of

AP. Generally, necroptosis is started by engagement of death

receptors with the ligands, such as tumor necrosis factor-a
(TNFa) (24), which is encoded by transcription factors, for

example, nuclear factor-kappa B (NF-kB) and activating

protein-1 (AP-1) (25, 26). Besides, ER stress can induce the

synthesis of inflammatory cytokines through these

transcription factors (20, 24). However, as is reported,

necroptosis blockade by RIP3 siRNA had no effect on

trypsinogen activation (10). Furthermore, previous studies

showed that activation of protein kinase C (PKC), mitogen-

activated protein kinases (MAPKs) and -AP-1, subsequently

induced autocrine production of TNFa and cell necroptosis

(24). Therefore, in present study, we intervened ER stress,

CTSB, trypsin or AP-1 respectively, then investigated the

effects of ER stress on necroptosis during AP and its

specific mechanisms.
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Materials and methods

Reagents

Caerulein (Cae; cat # C9026), L-arginine (L-Arg; cat #

A5131), lipopolysaccharide (LPS; cat # L2880), cholecystokinin

8 (CCK 8, cat # C2175), 4-phenylbutyrate (4-PBA; cat #

SML0309), and benzamidine hydrochloride (Ben; cat #

434760) were purchased from Sigma-Aldrich Chemical (St.

Louis, MO, USA). CA074 Methyl ester (CA074Me, cat #

S7420) was purchased from Selleck Chemicals (Houston, TX,

USA). SR11302 (cat # 160162-42-5) was purchased from

APExBIO (Houston, TX, USA). Antibodies against X-box–

binding protein 1 (sXBP1, cat # sc-7160) and receptor

interacting protein kinase 3 (RIP3, cat # sc-135171) were from

Santa Cruz Biotechnology (Dallas, TX, USA). Antibodies against

C/EBP homology protein (CHOP, cat # 2895), cathepsin B

(CTSB, cat # 31718), phosphorylated protein kinase a (p-

PKCa, cat # 9375), phosphorylated c-Jun NH2-terminal

kinase (p-JNK, cat # 4668), phosphorylated extracellular

signal-regulated kinas (p-ERK, cat # 4370), phosphorylated

p38 mitogen activated protein kinases (p-p38MAPK, cat #

4511), phosphorylated cJun (p-cJun, cat # 3270) and

IL1b(3A6) (cat # 12242) were from Cell Signaling Technology

(Danvers, MA, USA). Antibodies against mixed lineage kinase

domain-like (MLKL, cat # ab172868), phosphorylated mixed

lineagekinase domain-like (pMLKL, cat # ab196436) and Ly6G

(cat # ab25377) were from Abcam (Cambridge, MA, USA).

Antibodies against glucose-related peptide 78 (GPR78, cat #

11587-1-AP) and TNFa (cat # 60291-1-Ig) were from

Proteintech Biotechnology (Wuhan, China). Antibody against

IL6 (cat # BS6419) was purchased from Bioworld Technology(St.

Louis Park, MN, USA),and antibody against b-actin (cat #

AF0003) was from Beyotime Biotechnology (Shanghai, China).

Nuclear and cytoplasmic protein extraction kit was from Pierce

(Rockford, IL, USA). The biotin-labeled probe containing the

activating protein 1 (AP-1) binding site was purchased from

Beyotime Biotechnology (Shanghai, China). The light shift

chemilumines-cent EMSA kit was from Pierce (Rockford,

IL, USA).
Mouse strains

Balb/C mice (6 ~8 weeks, 20~22g, male) were purchased

from Shanghai SLAC Laboratory Animal Co Ltd (Shanghai,

China). All mice were kept in pathogen-free conditions in

individually-ventilated cages (4 ~6 mice per cage) at 23 ± 2°C

and a 12 h dark/light cycle with free access to water and standard

rodent diet before experiment. All mice were allocated into

groups in a completely randomized manner (n = 6 per group)

to conduct the experiment. All experiments were approved by
Frontiers in Immunology 03
the Animal Ethics Committee of Shanghai Jiao Tong University

School of Medicine (SYXK 2013-0050, Shanghai, China.).
Induction of experimental AP
and treatments

Two AP models were built in vivo, both are widely used,

rapidly induced and noninvasive (27). One is induced by

injections of caerulein (100 mg/kg, i.p. with 1 h interval

between injections, ten injections) and LPS (5 mg/kg, i.p.

administered immediately after the last injection of caerulein)

as reported before (28, 29). Controls received normal saline (NS)

equivalent to caerulein. The first caerulein injection was defined

as 0 h. The ER stress inhibitor (4-PBA, 4mg per mouse) or the

CTSB inhibitor (CA074Me, 10 mg/kg) was injected

intraperitoneally (i.p.) 0.5 h before the first caerulein injection

and mice were sacrificed at 12 h. The other model is induced by

L-Arg (4 g/kg, 8%, pH=7.0, with 1 h interval between injections,

two injections) as previously described (30–33). Control mice

received equal NS instead of L-Arg. The second L-Arg injection

is defined as day 0. 4-PBA (4mg per mouse) was injected 0.5 h

i.p. before the first L-Arg injection, and equivalent 4-PBA was

added everyday in the following two days. Mice were sacrificed

at day 3. Serum and pancreas were collected. Histological scoring

of haematoxylin and eosin (H&E) sections were performed by

two experienced pathologists (32–34).
Serological test

Blood samples of each group were collected and centrifuged

at 250 g for 20 min at 4°C. Serum amylase and lipase activities

were measured by enzyme dynamics chemistry, according to the

manufacturer’s instructions in a Roche/Hitachi Modular

Analytics System (Roche, Basel, Switzerland).
Haematoxylin and eosin and
immunohistochemical staining

Mice pancreas specimens were fixed in 4% neutral

paraformaldehyde for 24 ~48 h, embedded in paraffin, and cut

into 4 mm sections for H&E staining by standard procedures.

Endogenous peroxidase was neutralized by 3% hydrogen

peroxide. Then sections were incubated overnight at 4°C with

monoclonal antibody against Ly6G (1:100). After being rinsed in

PBS for three times, sections were incubated with secondary

antibody for 1 h at 37°C and then imaged by an ultrasensitive SP

kit and a DAB kit (Fuzhou Maxin, China). Pancreatic tissue

section were scored on a range of 0 to 3 (0 represented normal

appearance and 3 meant severe), based on the presence of
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necrosis, edema and inflammation (35). The pathologists were

blinded to the experiment groups.
Pancreatic acinar cell isolation and in
vitro cultures

Pancreatic acinar cells were isolated from Balb/C mice as

described previously, using collagenase digestion with minor

modifications (32, 33, 36). Primary pancreatic acinar cells were

incubated at 37°C in Dulbecco’s modified Eagle’s medium/Ham

(DMEM) F-12 medium containing 10% fetal bovine serum

(FBS). Acinar cells were pre-treated with ER stress inhibitor 4-

PBA (2.5 mM, 5 mM, 10 mM) or CTSB inhibitor (CA074Me; 50

mM) or trypsin inhibitor Ben (1 mM) or AP-1 inhibitor SR11302

(10 mM) for 30 min, and then stimulated by 200 nM CCK 8 for

30 min or 6 h. Cells were collected at the time points as indicated

in the Figure legends.
Western blotting

Pancreatic tissue and pancreatic acinar cell extracts were

used for western blotting analysis. Total amounts of protein were

detected using the bicinchoninic acid assay method (Beyotime

Biotechnology, China). Proteins (40 mg per lane) were separated
by 10% SDS-PAGE at 120V and transferred to nitrocellulose

membranes (Millipore, Mass, USA) for 30 ~ 60 min. Membranes

were then incubated with primary antibodies against polyclonal

GRP78 (1:1000), sXBP1 (1:400), RIP3 (1:400), MLKL (1:1000),

IL-1b (1:1000), IL-6 (1:1000) and p-PKCa (1:400); monoclonal

CHOP (1:1000), pMLKL (1:1000), CTSB (1:1000), p-JNK

(1:1000), p-ERK (1:1000), p-p38MAPK (1:1000), p-cJun

(1:1000), TNFa (1:1000) and b-actin (1:1000) overnight at 4°

C. After being washed with PBS containing 0.1% Tween,

membranes were probed by secondary antisera labelled with

goat anti-mouse or goat anti-rabbit IR-Dye 700 or 800 cw for 1 h

at 37°C. Membranes were scanned by an Odyssey Infra-red

Scanner (LI-COR, Lincoln, NE, USA). Representative blot

images were presented from three separate experiments.

Relative expression of target proteins was expressed as fold

changes compared to normal control after normalized to

b-actin.
ATP analysis

Cell survival assay was performed according to the

manufacturer’s instructions of Cell Titer-GloLuminescent Cell

Viability Assay kit (Promega, Madison,WI). Briefly, 50 mL ATP

detection reagents were added into 100 mL cell suspension in a 96-

well culture plate, and the levels of bioluminescence were recorded
Frontiers in Immunology 04
using a SpectraMax 190 system (Molecular Devices, San Jose,

CA, USA).
Lactate dehydrogenase assay

Quantitative analysis of cytotoxicity can be achieved by

detecting the activity of LDH released into the culture

supernatant from injured cells using LDH Cytotoxicity Assay

Kit (Beyotime Biotechnology, Shanghai, China) according to the

manufacturer’s instructions. Briefly, pancreatic acinar cells in

each group were collected and centrifuged at 100 g for 5 min at

4°C. A triplicate set of wells for the culture medium background

with no cells were served as minimum (blank LDH), and

untreated normal control cells lysed to yield LDH completely

were used for maximum (total LDH), respectively. Then 120 mL
of supernatant and 60 mL of LDH detection reagent were mixed

in a 96-well plate for 30 min. A SpectraMax 190 system

(Molecular Devices, San Jose, CA, USA) was used to detect the

absorbance at 490 nm. The LDH release rate was calculated

according to the following formula: LDH release rate

(%) = [(sample LDH – blank LDH)/(total LDH – blank

LDH)] × 100%.
Measurement of activated trypsin

Trypsinogen activation peptide (TAP) is a small peptide

released from trypsinogen during its activation (37). Therefore,

TAP concentration can indirectly reflect the levels of

trypsinogen activation. TAP levels of pancreatic acinar cells

were measured by enzyme-linked immunosorbent assay

(ELISA) according to the manufacturer’s protocols (Westang

Bio-Tech, Shanghai, China).
Electrophoretic mobility shift assay

The binding activity of AP-1 was detected by EMSA. A biotin-

labelled probe containing AP-1 binding site was incubated with 10

mg nuclear extracts for 30min at room temperature. Protein-DNA

complexes were separated by 5% polyacrylamide gel in 0.5x Tris

Buffer EDTA at first and then transferred to a positively charged

nylon membrane. The biotin-labelled DNA was examined by a

chemiluminescent detection kit.
Statistical analysis

All the data are presented as Mean ± SEM, from at least three

replicates with six mice per group. The distribution of data was

assessed by Kolmogorov–Smirnov test at first. If data followed a

Gaussian distribution, parametric tests were carried out: Student’s
frontiersin.org
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t test for two groups and one-way ANOVA for three or more

groups. If data were not normally distributed, non-parametric

tests were performed: Mann–Whitney test for two groups and

Kruskal–Wallis test for three or more groups. All analyses were

performed using GraphPadPrism (version 7.00 for Windows,

GraphPad Software, La Jolla California USA, www.graphpad.

com). p value <0.05 was considered as statistically significant.
Results

ER stress was initiated before
necroptosis in CCK-stimulated
pancreatic acinar cells

It is reported that several pathological events such as ER stress

and necroptosis are involved in AP (38). To investigate the

relationship of ER stress and necroptosis in AP, pancreatic

acinar cells were stimulated by 200 nM CCK in vitro, ER stress

indicators such as GRP78, sXBP1 and CHOP, and necroptosis

markers such as RIP3 and pMLKL were detected by western

blotting. Data showed that GRP78, sXBP1 and CHOP were
Frontiers in Immunology 05
elevated significantly at 0.5 ~1 h (Figure 1A); RIP3 and pMLKL

were markedly increased at 6 h (Figure 1B). That is to say, ER

stress was activated in the early stage of CCK stimulation in acinar

cells, while necroptosis activated in the late stage. Besides,

trypsinogen was activated at 0.5 h (Figure 1C). Then we

induced ER stress in acinar cells by 2 mM thapsigargin (Tg) for

6 h. As shown in Supplementary Figure 1, RIP3 level was

increased at 12 ~24 h and MLKL was phosphorylated at 18 ~24

h in a dose-dependent manner. However, ATP depletion was only

slightly elevated (about 5 ~10%), and trypsinogen cannot be

activated by 2 mM Tg. Therefore, ER stress may regulate

necroptosis, independent of trypsinogen activation.
Inhibition of ER stress alleviated
necroptosis during AP

In order to explore the relationship between ER stress and

necroptosis, 4-PBA (2.5 mM, 5 mM, 10 mM), a specific inhibitor

of ER stress, was used 30 min in advance and then stimulated by

200 nM CCK in vitro. Data indicated that GRP78, sXBP1 and

CHOP levels were dose-dependently inhibited by 4-PBA in
A

B

C

FIGURE 1

ER stress was initiated before necroptosis in CCK-stimulated pancreatic acinar cells. Pancreatic acinar cells were stimulated by 200 nM CCK for
0.5 h, 1 h, 3 h and 6 h. (A) Immunoblot analysis of GRP78, sXBP1 and CHOP levels in pancreatic acinar cells. (B) Immunoblot analysis of RIP3,
MLKL and pMLKL levels in pancreatic acinar cells. (C) ELISA of serum TAP in pancreatic acinar cells. All experiments were performed at least
three times. Data are presented as Mean ± SEM. *p < 0.05 0.5 h CCK versus 0.5 h normal control (NC), #p < 0.05 1 h CCK versus 1 h NC,
+p < 0.05 3 h CCK versus 3 h NC, dp < 0.05 6 h CCK versus 6 h NC. CCK, cholecystokinin.
frontiersin.org

http://www.graphpad.com
http://www.graphpad.com
https://doi.org/10.3389/fimmu.2022.968639
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2022.968639
CCK-stimulated acinar cells (Figure 2A). Furthermore, we found

that 4-PBA significantly blocked necroptosis in a dose-

dependent manner in CCK-stimulated acinar cells in vitro,

manifested in the decreased RIP3 and pMLKL levels. 4-PBA

also significantly reduced CCK-induced ATP depletion, and

LDH release rate in CCK-stimulated pancreatic acinar cells

(Figure 2C, D). In addition, TAP levels were elevated after

CCK stimulation, which were remarkably reduced after 4-PBA

treatment (Figure 2E). These data showed that ER stress

inhibition by 4-PBA significantly alleviated pancreatic acinar

cell necroptosis during AP in vitro.

In vivo, caerulein and LPS-induced APmodel in Balb/C mice

were built with or without 4-PBA treatment at 0.5 h in advance.

Histological examination showed that the extent of pancreatic
Frontiers in Immunology 06
injury in 4-PBA-treated mice was less severe than that in AP

group at 12 h after the first caerulein injection (Figure 3A, B).

Amylase and lipase activities were markedly decreased in the

sera of 4-PBA-treated mice compared to AP groups (Figure 3C).

Furthermore, we examined the infiltration of Ly6G+ neutrophils

in the pancreatic tissue by immunohistochemistry staining. Data

showed that 4-PBA reduced Ly6G+ neutrophil infiltration in

pancreas when compared to AP groups (Figure 3D). 4-PBA

treatment blocked the upregulation of ER stress indicators such

as GRP78, sXBP1 and CHOP, and necroptosis markers such as

RIP3 and pMLKL during AP (Figure 3E, F). In addition, the

serum TNFa, IL1b and IL6 levels were also markedly decreased

in 4-PBA pre-treated mice compared to AP group (Figure 3G).

L-Arg-induced AP model were also built with or without 4-PBA
A

B

D EC

FIGURE 2

ER stress inhibition reduced necroptosis in CCK -stimulated pancreatic acinar cells. (A) Pancreatic acinar cells were pre-treated with ER stress
inhibitor 4-PBA (2.5 mM, 5 mM, 10 mM) for 30 min and then stimulated by 200 nM CCK for 0.5 h. Immunoblot analysis of GRP78, sXBP1 and
CHOP levels in pancreatic acinar cells. (B) Pancreatic acinar cells were pre-treated with ER stress inhibitor 4-PBA (2.5 mM, 5 mM, 10 mM) for
30 min and then stimulated by 200 nM CCK for 6 h. Immunoblot analysis of RIP3, MLKL and pMLKL levels in pancreatic acinar cells. (C)
Pancreatic acinar cells were pre-treated with ER stress inhibitor 4-PBA (2.5 mM, 5 mM, 10 mM) for 30 min and then stimulated by 200 nM CCK for
1 h, 3 h and 6 h. Cell viability analysis of ATP levels in pancreatic acinar cells. (D, E) Pancreatic acinar cells were pre-treated with ER stress
inhibitor 4-PBA (2.5 mM, 5 mM, 10 mM) for 30 min and then stimulated by 200 nM CCK for 6 h. (D) LDH release analysis of pancreatic acinar cells.
(E) ELISA of serum TAP in pancreatic acinar cells. All experiments were performed at least three times. Data are presented as Mean ± SEM.
*p < 0.05 versus NC, #p < 0.05 versus CCK. CCK, cholecystokinin; 4-PBA, 4-phenylbutyrate.
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treatment. The similar results were obtained at day 3 after the

second L-Arg injection, as shown in Figure 4. We found that 4-

PBA significantly alleviated pancreatic injury assessing by

histological examination and pathological score analysis;

reduced serum amylase and lipase levels; and markedly
Frontiers in Immunology 07
decreased GRP78, sXBP1, CHOP, RIP3 and pMLKL levels in

pancreatic tissue during L-Arg-induced AP (Figure 4A-E).

Collectively, these results suggested that inhibition of ER stress

by 4-PBA alleviated pancreatic necroptosis during AP both in

vitro and in vivo.
A B

D

E F G

C

FIGURE 3

ER stress inhibition alleviated necroptosis in caerulein and LPS-induced AP model. In vivo, AP was induced by injection of caerulein (100 mg·kg-1)
and LPS (5 mg·kg-1) in Balb/C mice, and treated with 4-PBA (4mg per mouse, i.p., 0.5 h before the first caerulein injection). (A) Representative
micrographs of H&E-stained pancreatic sections (200 ×). (B) Histological scores were determined as described in Methods. (C) Change in serum
activity of amylase (up) and lipase (down). (D) Representative micrographs of neutrophil marker Ly6G immunohistochemical analyses in
pancreas (200 ×). (E) Immunoblot analysis of GRP78, sXBP1 and CHOP levels of pancreatic tissue in mice. (F) Immunoblot analysis of RIP3, MLKL
and pMLKL levels of pancreatic tissue in mice. (G) Immunoblot analysis of TNFa, IL1b and IL6 levels of pancreatic tissue in mice. All experiments
were performed at least three times. Data are presented as Mean ± SEM. n = 6 per group. Scale bar = 100 mm. *p < 0.05 versus NC, #p < 0.05
versus AP. Cae, caerulein; LPS, lipopolysaccharide; NC, normal control; 4-PBA, 4-phenylbutyrate.
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ER stress motivated CTSB maturation
and AP-1 activation via PKCa-JNK-
cJun pathway

The detailed mechanisms of ER stress mediating necroptosis

remains unclear. CTSB is well-known as a protease to activate
Frontiers in Immunology 08
intrapancreatic trypsinogen and initiate the onset of AP (21, 23).

Recent studies suggest that excessive CTSB released from

lysosomes into the cytosol can shift the cell death pathway

towards necroptosis (23). TNFa is a ligand binding to death

receptor to motivate necroptosis, and AP-1 is a transcription

factor encoding the expression of inflammatory factors, such as
A

B

D

E

C

FIGURE 4

ER stress inhibition alleviated necroptosis in L-arginine-induced AP model. In vivo, AP was induced by injection of L-arginine (10 mg·kg-1) in
Balb/C mice, and treated with 4-PBA (4mg per mouse, i.p., 0.5h before the first L-arginine injection). (A) Representative micrographs of H&E-
stained pancreatic sections (200 ×). (B) Histological scores were determined as described in Methods. (C) Change in serum activity of amylase
(up) and lipase (down). (D) Immunoblot analysis of GRP78, sXBP1 and CHOP levels of pancreatic tissue in mice. (E) Immunoblot analysis of RIP3,
MLKL and pMLKL levels of pancreatic tissue in mice. All experiments were performed at least three times. Data are presented as Mean ± SEM.
n = 6 per group. Scale bar = 100 mm. *p < 0.05 versus NC, #p < 0.05 versus AP. L-Arg, L-arginine; NC, normal control; 4-PBA, 4-
phenylbutyrate.
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TNFa (25, 26). To determine the detailed mechanisms of ER

stress mediating necroptosis, we investigated the role of CTSB

maturation and AP-1 activation during ER stress both in

pancreatic acinar cells in vitro and in pancreatic tissue of

experimental AP model in vivo. Firstly, western blotting

analysis showed that 4-PBA significantly reduced the

expression of mature CTSB in a dose-dependent manner in

CCK-stimulated acinar cells in vitro (Figure 5A). Secondly,

phosphorylation levels of PKCa, JNK and cJun were markedly

decreased by 4-PBA, while ERK and p38MAPK phosphorylation

levels showed no significant difference after 4-PBA treatment in

CCK-stimulated acinar cells in vitro (Figure 5B). Next, further
Frontiers in Immunology 09
experiments showed that 4-PBA then reduced AP-1 binding

activity in CCK-stimulated acinar cells (Figure 5C), as previous

studies have shown that PKC-MAPKs signaling pathway can

activate AP-1 (24). Lastly, we confirmed these results both in

caerulein and LPS-induced and L-Arg-induced AP models in

vivo. Consistent with the results in vitro, we also found that 4-

PBA significantly inhibited the phosphorylation levels of PKCa,
JNK and cJun, but not ERK and p38MAPK phosphorylation

levels both in two experimental AP models in vivo (Figure 5D,

E). To sum up, ER stress blockade by 4-PBA not only inhibited

CTSB maturation but also suppressed AP-1 activation via

PKCa-JNK-cJun pathway during AP both in vitro and in vivo.
A B

D E
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FIGURE 5

ER stress inhibition alleviated CTSB maturation and PKCa-JNK-cJun-mediated AP-1 activation in AP. (A-C) In vitro, Pancreatic acinar cells were
pre-treated with ER stress inhibitor 4-PBA (2.5 mM, 5 mM, 10 mM) for 30 min and then stimulated by 200 nM CCK for 6 h. (A) Immunoblot
analysis of CTSB levels in pancreatic acinar cells. (B) Immunoblot analysis of p-PKCa, p-JNK, p-ERK, p-p38-MAPK and p-cJun levels in
pancreatic acinar cells. (C) EMSA analysis of AP-1 binding ability in pancreatic acinar cells. (D) In vivo, AP was induced by injection of caerulein
(100 mg·kg-1) and LPS (5 mg·kg-1) in Balb/C mice, and treated with 4-PBA (4 mg per mouse, i.p., 0.5 h before the first caerulein injection).
Immunoblot analysis of p-PKCa, p-JNK, p-ERK, p-p38-MAPK and p-cJun levels of pancreatic tissue in mice. (E) In vivo, AP was induced by
injection of L-arginine (10 mg·kg-1) in Balb/C mice, and treated with 4-PBA (4 mg per mouse, i.p., 0.5 h before the first L-arginine injection).
Immunoblot analysis of p-PKCa, p-JNK, p-ERK, p-p38-MAPK and p-cJun levels of pancreatic tissue in mice. All experiments were performed at
least three times. Data are presented as Mean ± SEM. n = 6 per group. *p < 0.05 versus NC, #p < 0.05 versus CCK or AP. Cae, caerulein; CCK,
cholecystokinin; CTSB, cathepsin B; LPS, lipopolysaccharid; L-Arg, L-arginine; NC, normal control.
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CTSB induced AP-1 activation and
necroptosis via PKCa-JNK-cJun pathway
in AP independent of trypsin activation

Next, in order to clarify the relationship between CTSB and

AP-1, CTSB inhibitor CA074Me was administered to block

CTSB at 30 min before caerulein and LPS or CCK challenge,

and then AP-1 activation was determined. In vitro, blockade of

CTSB by CA074Me significantly inhibited the phosphorylation

levels of PKCa, JNK and cJun, AP-1 activation and TNFa levels

in CCK-stimulated pancreatic acinar cells (Figure 6A-C). It was

reported that CTSB can activate trypsinogen (21, 23). In order to

exclude the influence of trypsinogen activation, we used

benzamidine hydrochloride to inhibit trypsin activity and

observed changes of PKCa-JNK-cJun pathway, TNFa level

and necroptosis. Notably, our data showed that benzamidine

hydrochloride had no effect on phosphorylation levels of PKCa,
JNK and cJun, TNFa levels, or necroptosis markers including

RIP3 and pMLKL in CCK-stimulated acinar cells (Figure 6D, E),

although total ATP depletion and LDH release rate significantly

reduced after benzamidine hydrochloride treatment (Figure 6F,

G). In summary, CTSB participated in AP through two

pathways: one is to activate AP-1 via PKCa-JNK-cJun

signaling and induce necroptosis, which is independent of

trypsin activity; and the other way is to activate trypsinogen

and induce necrosis. Similarly, we observed the effect of

CA074Me on caerulein and LPS-induced AP model in vivo. As

expected, CA074Me led to a significant decrease of PKCa, JNK,
cJun phosphorylation levels and TNFa levels in pancreatic tissue

(Figure 6H, I). That is to say, CTSB enhanced AP-1 activation

and TNFa levels to induce necroptosis via PKCa-JNK-cJun
pathway in caerulein and LPS-induced AP model. In a word,

CTSB induced AP-1 activation and necroptosis via PKCa-JNK-
cJun pathway during AP, independent of trypsin activation.
AP-1 induced necroptosis of acinar cells
via TNFa autocrine secretion in AP

AP-1, as an important transcription factor, is related to the

transcription of TNFa (24, 26), which has been demonstrated to

trigger necroptosis in many cell types (6, 7). In order to

determine the role of AP-1 on necroptosis during AP, we used

SR11302 30 min in advance to inhibit AP-1 in CCK-stimulated

pancreatic acinar cells. We found that SR11302 significantly

lowered the TNFa, RIP3 and pMLKL levels (Figure 7A).

Furthermore, treatment with SR11302 also resulted in

reduction of CCK-induced pancreatic acinar cells necrosis,

manifested as ATP depletion and LDH release rate were

reduced markedly by SR11302 in CCK-stimulated pancreatic

acinar cells (Figure 7B, C). This phenomenon indicated that AP-
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1 caused acinar cell necroptosis by promoting TNFa autocrine

secretion. Taken together, all these results demonstrated that ER

stress promoted pancreatic acinar cell necroptosis through CTSB

maturation, thus induced AP-1 activation and TNFa autocrine

secretion via PKCa-JNK-cJun pathway during AP, not related

with trypsin activity (Figure 7D).
Discussion

The pathophysiological mechanisms of AP have not been

fully elucidated. Pancreas autodigestion caused by trypsinogen

activation is considered to be an important event of AP onset,

then leads to acinar cell death and inflammation (21). During

AP, CTSB can release into the cytosol and cleave trypsinogen to

mature trypsin and its NH2-terminal trypsinogen activating

peptide (TAP), leading to cell death through necrosis (23).

Necroptosis is a new type of programmed necrosis discovered

in recent years and dependent on RIP3-MLKL pathway (39).

Inhibition or gene knockout of RIP3 or MLKL ameliorates

experimental AP significantly (6, 7, 10). But the detailed

mechanisms of necroptosis regulation need further to

be clarified.

ER is responsible for the synthesis, maturation, fold and

transport of both secretory and transmembrane proteins, lipid

synthesis, carbohydrate metabolism, and calcium storage, which

is a dense dynamic, membrane-bounded tubular network

organelle (40). Many genetic or environmental factors such as

hypoxia, nutrition deficiency, and microbial infection impede

ER’s function and lead to the accumulation of misfolded

proteins in the ER, which condition is called ER stress or

unfolded protein response (UPR) (41). It is reported that ER

stress is closely related to apoptosis or necroptosis (19, 20, 40).

Imbalance of apoptosis and necrosis plays an important role in

AP severity (10, 19, 20). Studies also indicated that ER stress is a

contributor to the progression of AP (13); inhibition of ER stress

by 4-phenylbutyric acid prevented vital organ injury and

intestinal epithelial cell apoptosis in rats with AP, perhaps

these effects were involved in alleviating inflammatory

response and cell death (16, 17). Therefore, ER stress might

influence AP via necroptosis. ER changes took place very early in

the development of AP in several experimental models (42).

Firstly, our data also showed that in CCK-stimulated pancreatic

acinar cells, ER stress was initiated minutes after stimulation,

which was before necroptosis. Secondly, ER stress induced by Tg

in acinar cells increased RIP3 and pMLKL levels in a dose-

dependent manner. Lastly, the inhibition of ER stress by 4-PBA

can significantly alleviated AP severity via reducing necroptosis

of acinar cells both in CCK-stimulated pancreatic acinar cell in

vitro and in caerulein and LPS-induced and L-Arg-induced AP

models in vivo. These results indicated that ER stress promoted

pancreatic acinar cell necroptosis in AP.
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FIGURE 6

CTSB inhibitor CA074Me blocked PKCa-JNK-cJun-mediated AP-1 activation in AP, which had no concern with trypsin. (A-C) In vitro, pancreatic
acinar cells were pre-treated with ER stress inhibitor CA074Me (50 mM) for 30 min and then stimulated by 200 nM CCK for 30 min or 6 h. (A)
Immunoblot analysis of p-PKCa, p-JNK, and p-cJun levels in pancreatic acinar cells. (B) EMSA analysis of AP-1 binding ability in pancreatic
acinar cells. (C) Immunoblot analysis of TNFa levels of pancreatic acinar cells. (D-G) In vitro, pancreatic acinar cells were pre-treated with
trypsin inhibitor benzamidine hydrochloride (Ben; 1 mM) and stimulated by 200 nM CCK for 30 min or 6 h. (D) Immunoblot analysis of p-PKCa,
p-JNK, and p-cJun levels in pancreatic acinar cells. (E) Immunoblot analysis of TNFa, RIP3, MLKL and pMLKL levels in pancreatic acinar cells. (F)
Cell viability analysis of ATP levels in pancreatic acinar cells. (G) LDH release analysis of pancreatic acinar cells. (H, I) In vivo, AP was induced by
injection of caerulein (100 mg·kg-1) and LPS (5 mg·kg-1) in Balb/C mice, and treated with CA074Me (10 mg/kg, i.p., 0.5h before the first caerulein
injection. (H) Immunoblot analysis of p-PKCa, p-JNK and p-cJun levels of pancreatic tissue in mice. (I) Immunoblot analysis of TNFa levels of
pancreatic tissue in mice. All experiments were performed at least three times. Data are presented as Mean ± SEM. n = 6 per group. *p < 0.05
versus NC, #p < 0.05 versus CCK or AP. Ben, benzamidine hydrochloride; CA074Me, CA074 Methyl ester; Cae, caerulein; CCK, cholecystokinin;
LPS, lipopolysaccharid; NC, normal control.
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Based on relevant literature, CTSB acts as a bridge between

ER stress and necroptosis: ER stress activated CTSB in isolated

pancreatic acinar cells during AP (22); and excessive CTSB led to

necroptosis in tumor cells, by processing of Bid to attack

mitochondria (23). The MAPK signalling network is known to

regulate cell cycle progression and cell survival or death

responses following a variety of stresses; ER stress has been

shown to activate JNK and related with cell damage and death

(43). Our data also showed that ER stress inhibition significantly

reduced the expression of mature CTSB in a dose-dependent

manner in CCK-stimulated acinar cells, and ER stress inhibition

markedly decreased phosphorylation levels of PKCa, JNK and

cJun, rather than ERK and p38MAPK both in vitro and in vivo.

Previous studies have shown that PKC-MAPKs signaling

pathway can activate AP-1 (24). Then we used CTSB inhibitor

to clarify the relationship between CTSB and AP-1, and used

AP-1 inhibitor to indicate the mechanisms of AP-1 regulating

necroptosis. We found that CTSB promoted PKCa-JNK-cJun-
mediated AP-1 activation and TNFa autocrine, thus causing

necroptosis. As is well-known, CTSB is responsible for the

trypsinogen activation and AP onset. CTSB-/- significantly

reduced trypsin activity and improved the acinar cell necrosis

(21). Did CTSB affect necroptosis through trypsin? Our results
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showed that neither AP-1 nor necroptosis was affected by

trypsin inhibitor. Therefore, CTSB induced PKCa-JNK-cJun-
mediated AP-1 activation and necroptosis in AP, independent of

trypsin activity. Zhang et al. also discovered that CTSB leads to

necroptosis in tumor cells, by processing of Bid to attack

mitochondria (44); while in McComb’s study, CTSB limits

macrophage necroptosis, through cleavage of RIP1 (45).

Therefore, the mechanisms of necroptosis may vary slightly

among different cell types. In addition, our previous research

found that during AP, RIP1 is negatively related to acinar cell

necroptosis (10), but the detailed roles of RIP1 in AP and the

detailed regulatory mechanisms remain to be investigated.
Conclusion

In conclusion, our data showed the ability of ER stress to

stimulate acinar cell necroptosis via CTSB during AP. It is well-

known that CTSB can trigger trypsinogen activation and lead to

acinar cell necrosis on the one hand; and on the other hand, we

found that CTSB can activate AP-1 via PKCa-JNK-cJun

pathway and induce TNFa-mediated necroptosis of pancreatic
A B

D

C

FIGURE 7

AP-1 inhibitor SR11302 restrained necroptosis in CCK-stimulated pancreatic acinar cells. Acinar cells were pre-treated with AP-1 inhibitor
SR11302 (10 mM) for 30 min, and then stimulated by 200 nM cholecystokinin (CCK) 8 for 6 h. (A) Immunoblot analysis of RIP3, MLKL and pMLKL
levels in pancreatic acinar cells. (B) Cell viability analysis of ATP levels in pancreatic acinar cells. (C) LDH release analysis of pancreatic acinar
cells. (D) Schematic diagram summarizing the mechanisms by which ER stress influences necroptosis in experimental pancreatitis. Endoplasmic
reticulum stress promoted acinar cell necroptosis through cathepsin B -induced AP-1 activation and TNFa autocrine secretion in acute
pancreatitis. All experiments were performed at least three times. Data are presented as Mean ± SEM. *p < 0.05 versus NC, #p < 0.05 versus
CCK. CCK, cholecystokinin.
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acinar cells. Therefore, the finding that ER stress induced

necroptosis via CTSB may provide potential new targets and

treatment strategies of AP or other cell death-related diseases.
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