
����������
�������

Citation: Xu, Z.; Dai, J.; Su, W.; Wu,

H.; Shah, K.; Xing, L.; Ma, J.; Zhang,

D.; Zhao, C. Selection and Validation

of Reliable Reference Genes for Gene

Expression Studies in Different

Genotypes and TRV-Infected Fruits

of Peach (Prunus persica L. Batsch)

during Ripening. Genes 2022, 13, 160.

https://doi.org/10.3390/

genes13010160

Academic Editor: Enriqueta

Moyano Cañete

Received: 14 December 2021

Accepted: 12 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

Selection and Validation of Reliable Reference Genes for Gene
Expression Studies in Different Genotypes and TRV-Infected
Fruits of Peach (Prunus persica L. Batsch) during Ripening
Ze Xu †, Jieyu Dai †, Weijing Su, Haixia Wu, Kamran Shah, Libo Xing , Juanjuan Ma, Dong Zhang and
Caiping Zhao *

College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China;
xuzeizi@163.com (Z.X.); jieyu204@163.com (J.D.); swj10162021@163.com (W.S.); zetianwu2021@163.com (H.W.);
kamranshah801@nwafu.edu.cn (K.S.); libo_xing@nwsuaf.edu.cn (L.X.); mjj@nwafu.edu.cn (J.M.);
afant@nwafu.edu.cn (D.Z.)
* Correspondence: zhcc@nwsuaf.edu.cn; Tel.: +86-15829692182
† These authors contributed equally to this work.

Abstract: Real-time quantitative PCR (RT-qPCR) is a powerful tool to detect and quantify transcrip-
tion abundance, and the stability of the reference gene determines its success. However, the most
suitable reference gene for different genotypes and tobacco rattle virus (TRV) infected fruits was
unclear in peach (Prunus persica L. Batsch). In this study, 10 reference genes were selected and gene
expression was characterized by RT-qPCR across all samples, including different genotypes and
TRV-infected fruits during ripening. Four statistical algorithms (geNorm, NormFinder, BestKeeper,
and RefFinder) were used to calculate the stability of 10 reference genes. The geNorm analysis
indicated that two suitable reference genes should be used for gene expression normalization. In
general, the best combination of reference genes was CYP2 and Tua5 for TRV-infected fruits and CYP2
and Tub1 for different genotypes. In 18S, GADPH, and TEF2, there is an unacceptable variability of
gene expression in all experimental conditions. Furthermore, to confirm the validity of the reference
genes, the expression levels of PpACO1, PpEIN2, and PpPL were normalized at different fruit storage
periods. In summary, our results provide guidelines for selecting reliable reference genes in different
genotypes and TRV-infected fruits and lay the foundation for accurate evaluation of gene expression
for RT-qPCR analysis in peach.

Keywords: data normalization; different genotypes; Prunus persica; reference gene; TRV-infected fruits

1. Introduction

Gene expression analysis is becoming increasingly important for understanding the
signaling and metabolic pathways during cell development and death [1,2]. Real-time
quantitative PCR (RT-qPCR) is one of the most widely used techniques to determine gene
expression because of its good repeatability, strong specificity, high sensitivity, and wide
application range compared with microarrays, semi-quantitative, and northern blots [3–5].
In RT-qPCR, using a reference gene to normalize gene expression is a simple, popular
method with wide application [6]. The reference gene, also known as the housekeeping
gene, is stably expressed in various tissues and experimental conditions and maintains
the minimal life function of cells [7,8]. Normalization can lead to incorrect results if there
are large fluctuations in the expression of reference genes [6]. Consequently, selecting an
optimal reference gene with a steady expression pattern is an essential pre-requisite before
normalization.

Many studies have reported the selection and validation of reference genes in plants [9–15].
However, these reference genes exhibit constant expression patterns under certain ex-
perimental conditions, but their expression levels vary widely under other experimental
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conditions. In longan, CYP2 was the best reference gene at the fruit development stages, but
the least stable gene under NAA treatment [16]. In mulberry, TIP41 was the preferred refer-
ence gene for normalizing gene expression under control, but not under drought stress [17].
In the case of peach, CYP2 was identified as a stable reference gene in fruit flesh samples,
but displayed unacceptably variable expression patterns in fruit peel [11]. Therefore, it is
completely necessary to select stably expressed reference genes under specific experimental
conditions to normalize the target gene, rather than using a reference gene previously
published under other experimental conditions.

Peach (Prunus persica L. Batsch) is one of the most economically important fruit crops
in China. Softening is a complex process of biochemistry and physiology, including cell
wall destruction, pectin hydrolysis, and content release [18]. According to the texture
characteristics, peaches are classified into melting flesh (MF), non-melting flesh (NMF),
and stony-hard (SH) types [19,20]. Significant differences exist in the softening rates of
peach fruits with different textures [21]. MF peach is rapidly softening, SH peach is hardly
softened on the tree and after harvest, and NMF peach is between MF and SH [22,23]. The
study of the softening of peach fruits with different genotypes is an important part of the
postharvest problem. Therefore, clarifying the expression patterns of key regulatory factors
during fruit ripening can help to better elucidate the complex regulatory mechanisms.

Virus-induced gene silencing (VIGS) is one of the most widely used and efficient tools
for gene function research [24–26]. VIGS technology requires a virus vector to achieve
silencing of endogenous genes. Tobacco rattle virus (TRV) vector has been successfully
used in most fruit trees. Bai et al. had succeeded in knocking down the PpCCD4 gene
with the TRV-VIGS approach in white flesh peaches [27]. In Li et al. study [28], PpSEP1
expression was inhibited by TRV-VIGS to determine PpSEP1 functions in peach during
ripening. Thus, VIGS is the most important molecular method to verify gene function
in peach. Finding the most suitable internal reference gene in TRV-infected fruits is an
indispensable and important part of the RT-qPCR experiment. Although Kou et al. found
the best reference genes under different tissue and different exogenous regulator treatments
in peach [11], the selected reference genes may not be suitable for TRV-injected peach fruits.

Reference genes are generally stable expressed genes that maintain minimal vital
functions of the cell, such as ubiquitin (UBQ) and RNA polymerase subunit (RP) [7]. In the
current study, actin protein, tublin and 18S ribosomal RNA (18S) are the most commonly
used as internal reference genes for gene expression analysis in peach [13,15,28]. Many
stably expressed reference genes reported in other species, such as glyceraldehyde-3-
phosphate dehydrogenase (GADPH), translation enlongation factor (TEF), and cyclophilin
(CYP), were also included as candidate genes for subsequent analysis [14,17]. In this study,
10 reference genes were selected according to reference genes often used and reported
in peach. Their expression level in peach was confirmed by RT-qPCR across all samples,
including different genotypes and TRV-infected fruits. The stability of the expression of
10 reference genes was analyzed by geNorm, NormFinder, BestKeeper, and RefFinder. In
addition, the expression profiles of PpACO1, PpEIN2, and PpPL were normalized by using
the unstable reference genes and the best combination of reference genes, respectively. Our
data provides validated reference genes for RT-qPCR analysis of peach fruit, which will be
conducive to future studies on the gene expression of peach.

2. Materials and Methods
2.1. Different Genetypes Fruits

Peach (P. persica L. Batsch) varieties ‘Rui Hong’ (RH, melting flesh), ‘Zao Feng Wang’
(ZFW, melting flesh), ‘Babygold 5’ (B5, non-melting flesh), and ‘Qin Wang’ (QW, stony-
hard) were used as experimental materials and planted in the Experimental Station of the
College of Horticulture at Northwest A&F University, Yangling, Shaanxi, China. During
the commercial harvest period, the fruit maintained relatively high hardness, the green
surface of the fruit faded slightly, and some skin turned red. The fruits were harvested at
the same maturity with a uniform size and no mechanical damage. The harvested fruit was
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soaked for 30 min in 2 g/L of carbendazim to kill worm eggs, and then stored at 24 ± 1 ◦C.
During storage, fruits were sampled every two days, frozen in liquid nitrogen, and stored at
−80 ◦C until the fruit was completely softened. Three biological repetitions were designed,
and each biological repetition was performed by mixing the pulp of five fruits. Table S1
lists the sample data used for this experiment.

2.2. TRV-Infected Fruits

The fruits of the peach varieties ‘Rui Hong’ and ‘Zao Feng Wang’ are used as TRV-
injected fruits. The empty plasmid pTRV1 and pTRV2 were transformed into Agrobac-
terium strain GV3101 by heat stimulation and grown on LB medium containing kanamycin
and rifampicin at 28 ◦C for 3 days. A single clone was picked and grown in LB medium
containing kanamycin and rifampicin for 14 h, and then the cells were collected and re-
suspended to an OD600 of 0.8 and stored at room temperature for 2 h as described by
Bai et al. [27]. According to the protocols reported by Li et al. [28], 200 intact RH fruits were
selected randomly for injection. The culture containing the recombinant plasmids pTRV1
and pTRV2 was mixed at a ratio of 1:1, and then 200 µL of the culture was infiltrated into
the peach fruit with a needle. One week after the injection, the fruits were harvested and
stored at 24 ± 1 ◦C. During storage, fruits were sampled every two days, frozen in liquid
nitrogen, and stored at −80 ◦C until the fruit was completely softened. Three biological
repetitions were designed, and each biological repetition was performed by mixing the
pulp of five fruits.

2.3. Design for RT-qPCR Primers

Primers of ten reference genes (18S, Actin, CYP2, TEF2, GAPDH, PLA2, RPII, Tua5, Tub1,
and UBQ10) had previously been designed in other studies [9,11,29–32], and the details are
listed in Table S2. The mRNA sequences of PpACO1, PpEIN2 and PpPL were obtained from
the peach genome database on the GDR website (https://www.rosaceae.org/, accessed on
15 July 2021). The primer was designed by Primer Premier 6, and the specificity was tested
by electrophoresis in a 1.0% agarose gel. Primer sequence of PpACO1, PpEIN2, and PpPL
was listed in Table S3.

2.4. RNA Isolation and cDNA Preparation

Total RNA was extracted using the RNAprep Pure Plant Kit (Polysaccharides &
Polyphenolics-rich) (Tiangen Biotech, Beijing, China). RNA quality and integrity were
tested by electrophoresis in 1% agarose gels and a microspectrophotometer (Thermo Nan-
oDrop 2000, Wilmington, NC, USA), respectively. Only RNA preparations having an
A260/A280 value of 1.8–2.0 and an A260/A230 value of >2.0 were used for subsequent
analysis. Reverse transcription was completed using the PrimeScript RT Reagent Kit with
gDNA Eraser (Takara, Beijing, China).

2.5. RT-qPCR with SYBR Green

RT-qPCR was performed with the Bio-Rad CFX system (Bio-Rad Laboratories, Her-
cules, CA, USA). Each reaction mix contains 2 µL of ddH2O, 1 µL of forward and reverse
primer mixture, 1 µL cDNA, and 5 µL of SYBR Premix ExTaq II (TaKaRa, Beijing, China)
to a final volume of 10 µL. The PCR amplification procedure was set to 95 ◦C for 1 min,
followed by 40 cycles of 95 ◦C for 15 s, 60 ◦C for 20 s, and 72 ◦C for 15 s, and constructed a
melting curve. Each RT-qPCR reaction was carried out in triplicate. A no-template control
(NTC) was also carried out.

2.6. Normalization of PpACO1, PpEIN2, and PpPL

PpACO1 (ethylene synthesis-related gene), PpEIN2 (ethylene signal transduction-
related gene), and PpPL (cell wall degradation-related gene) all play important roles in
peach ripening and have high expression levels during storage [18,28]. In this study,
to validate the reference genes, the expression levels of the three selected genes were

https://www.rosaceae.org/
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normalized using the best reference gene combination, the best reference gene and the
unstable gene in peach varieties ‘Rui Hong’ (RH), ‘Qin Wang’ (QW), and TRV-infected
‘Zao Feng Wang’ (ZFW) fruit during storage. The expression level of the three genes was
calculated by the 2-∆ ∆ Ct method [33].

2.7. Data Analysis

The geNorm algorithm program was used by qbase + software (Demo 3.2) [34].
The Normfinder [35] and BestKeeper [36] algorithm programs were Excel-based tools
to calculate the stability of 10 reference genes. RefFinder [37] is an online website (https:
//www.heartcure.com.au/reffinder/, accessed on 27 July 2021) to carry out comprehensive
stability analysis.

3. Result
3.1. Detection of Amplification Specificity of Reference Gene Primers

Based on previous studies [9,11,29–32], we selected 10 candidate reference genes to
re-evaluate gene expression stability in TRV-based VIGS-injected peach fruits in order to
identify the most suitable reference gene for RT-qPCR. The housekeeping genes were those
genes involved in encoding 18S ribosomal RNA (18S), actin protein (Actin), cyclophilin 2
(CYP2), translation elongation factor 2 (TEF2), glyceraldehyde-3-phosphate dehydrogenase
(GADPH), phospholipase A2 β (PLA2), RNA polymerase subunit (RPII), tublin α-5 (Tua5),
tublin β-1 (Tub1), and ubiquitin 10 (UBQ10). All the RNA samples were detected by
electrophoresis in 1% agarose gels, and the 28S rRNA and 18S rRNA bands were clear. The
result of electrophoresis showed a specific single band for all RT-qPCR products (Figure S1),
and the melting curve figures displayed a single peak for each RT-qPCR product (Figure S2),
demonstrating that the primers for the 10 reference genes used in this study have high
specificity.

3.2. Expression Level of Reference Genes

In order to further confirm the raw expression levels, a RT-qPCR was designed for the
10 reference genes for all samples, including different genotypes and TRV-infected fruits.
The Ct values of the 10 reference genes under all experimental conditions range from 9.28
for 18S to 29.69 for PLA2, which indicates that obvious differences exist in the expression
profile (Figure 1). The average Ct value of 18S is the lowest, indicating that it has the lowest
number of cycles to reach threshold fluorescence and it exhibits the highest expression
abundance. Except for 18S, CYP2, and PLA2, the mean Ct values of other genes varied
between 20 and 25, demonstrating that those genes were relatively highly expressed in
this study. The least expressed genes were CYP2 and PLA2, with Ct values of 26.03 and
28.37, respectively. Furthermore, 18S had a narrowest Ct range compared to other genes,
while TEF2 had the widest, and the majority of the reference genes had lower expression
variation.

3.3. Stability of Reference Genes

In our study, the stability of 10 reference genes were independently confirmed using
the geNorm, NormFinder, BestKeeper, and RefFinder across all samples, including different
genetypes and TRV-infected fruits.

3.3.1. geNorm Analysis

The geNorm was used to calculate the measurement (M) values of expression stability
for 10 reference genes based on the raw Ct value. As shown in Figure 2, reference genes
were ranked according to M values. A higher M value means lower stability, while a lower
M value implies more stable gene expression. In our study, 10 reference genes had M values
below 1.5, which is a threshold for assessing stability, indicating that all genes had a stable
expression profile across all these experimental sets. In the total sample, the most stably
expressed genes were CYP2 and GADPH, and the two least stably expressed genes were

https://www.heartcure.com.au/reffinder/
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18S and TEF2. The result was similar across the different genotypes. In the TRV-infected
fruits, CYP2 and Tua5 were the most stably expressed genes, whereas 18S and TEF2 were
the least.

Figure 1. Real-time quantitative PCR (RT-qPCR) raw Ct values for ten reference genes in all experi-
mental samples. The boxes represent the 25th and 75th percentiles. A line and a square in each box
indicate the median and mean Ct values, respectively. The black dots represent potential outliers.

Figure 2. The measurement (M) values of ten reference genes were calculated by geNorm and ranked
across all the samples (A), TRV-infected fruits (B), and different genotypes (C). A higher M value
means lower stability, while a lower M value implies more stable gene expression.

The appropriate number of reference genes was also evaluated based on the pairwise
variation value (Vn/n + 1 value) (Figure 3). The result showed that the V2/3 of all
experimental groups was lower than 0.15, indicating that two suitable reference genes were
required for normalization. The optimal combination of reference genes was CYP2 with
Tua5 for TRV-infected fruits and CYP2 with GADPH for different genotypes. In addition,
CYP2 with GADPH was selected as the best reference gene combination in all samples.
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Figure 3. The pairwise variation (Vn/Vn + 1) of ten reference genes by geNorm in all the samples
(A), TRV-infected fruits (B), and different genotypes (C). Cut-off value is 0.15.

3.3.2. NormFinder Analysis

The expression stability was further analyzed by NormFinder, in which intra- and
inter-group were considered to calculate normalization, and ANOVA was used to evaluate
expression stability. Unlike qbase + software, NormFinder cannot directly use the raw data,
which needs to be transformed into quantities for relative comparison. The variation value
for 10 reference genes were calculated by NormFinder, and a higher stable value meant
lower stability, whereas lower values indicated better stability. In this sense, all samples
with no subgroup and the two series were calculated. The result of the variation values
is shown in Table 1. Our data indicated that the definition of subgroup has a significant
effect on the outcome. However, it exhibited two common features with no subgroups
and two subgroups; CYP2, GADPH, and Tub1 were always classified among the top three
positions, meaning that they have higher expression stabilities, and 18S was the worst
reference gene. CYP2 and Tua5 were the most stable references in TRV-infected fruits, and
CYP2 and UBQ10 were the most stable genes among different genotypes. 18S and TEF2
had the lowest stability under all experimental conditions. 18S, GADPH, and TEF2 were
always included as unstable reference genes, showing an unstable expression profile.

Table 1. Ranking of variation value for ten reference genes calculated by Normfinder.

Rank
All Samples

TRV-Infected Fruits Different Genotypes
No Subgroups 2 Subgroups

1 CYP2 0.192 RP II 0.110 CYP2 0.125 CYP2 0.222
2 RP II 0.381 CYP2 0.133 Tua5 0.211 UBQ10 0.404
3 Tub1 0.407 Tub1 0.218 RP II 0.226 RP II 0.426
4 UBQ10 0.417 Tua5 0.227 Actin 0.252 Tub1 0.432
5 Tua5 0.437 UBQ10 0.240 Tub1 0.267 Tua5 0.470
6 Actin 0.478 PLA2 0.291 UBQ10 0.433 Actin 0.476
7 GADPH 0.625 Actin 0.312 PLA2 0.471 GADPH 0.544
8 PLA2 0.691 TEF2 0.343 GADPH 0.775 PLA2 0.739
9 TEF2 0.794 GADPH 0.350 TEF2 0.815 TEF2 0.785

10 18S 0.980 18S 0.444 18S 0.816 18S 0.969

3.3.3. BestKeeper Analysis

The expression stability of the 10 reference genes was further analyzed using Best-
Keeper, and the R value was also calculated for assessing the stability. The higher the R
value, the more it indicated stable expression of the reference gene (Table 2). Initial analysis
of the data using CV values (coefficient of variation) and SD values (standard deviation)
for 10 reference genes demonstrated that SD values of all reference genes were less than 1,
except for six genes (CYP2, Actin, Tub1, Tua5, TEF2, and GADPH) in TRV-infected fruits,
indicating that most were unstable expression under TRV infection in peach fruit. The most
stable expressed genes were CYP2 for 0.954, Tua5 for 0.954 in all samples; CYP2 for 0.999
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and Actin for 0.991 under TRV-infected conditions; Tua5 for 0.934 and CYP2 for 0.918 in
different genotypes. In addition, 18S was the least stable gene with the highest stability
in all samples, while GADPH and PLA2 were the most unstable reference genes in TRV-
infected fruits and different genotypes, respectively. It can be seen that CYP2 expression is
relatively stable and has been in the top two positions in all experimental conditions. The
most unstable is 18S, which has been in the last two places.

Table 2. The R values of ten reference genes were calculated by BestKepper.

Rank
All Samples TRV-Infected Fruits Different Genotypes

CV ± SD R CV ± SD R CV ± SD R

1 CYP2 3.10 ± 0.81 0.954 CYP2 3.97 ± 1.01 0.999 Tua5 3.24 ± 0.81 0.934
2 Tua5 4.02 ± 0.99 0.954 Actin 5.88 ± 1.20 0.991 CYP2 2.40 ± 0.63 0.918
3 TEF2 5.18 ± 1.16 0.928 Tub1 5.37 ± 1.20 0.989 Actin 4.05 ± 0.84 0.907
4 RP II 3.23 ± 0.79 0.916 Tua5 4.80 ± 1.15 0.984 RP II 2.71 ± 0.67 0.881
5 Actin 4.66 ± 0.97 0.915 TEF2 7.64 ± 1.65 0.978 TEF2 4.13 ± 0.94 0.867
6 Tub1 3.66 ± 0.84 0.896 RP II 3.99 ± 0.95 0.971 UBQ10 2.64 ± 0.59 0.835
7 UBQ10 3.51 ± 0.78 0.891 UBQ10 3.43 ± 0.73 0.969 GADPH 3.39 ± 0.73 0.815
8 GADPH 4.55 ± 0.96 0.848 PLA2 3.27 ± 0.90 0.966 Tub1 2.83 ± 0.65 0.803
9 PLA2 2.62 ± 0.74 0.741 18S 5.72 ± 0.59 0.957 18S 5.75 ± 0.60 0.437

10 18S 5.87 ± 0.61 0.554 GADPH 5.40 ± 1.09 0.145 PLA2 1.66 ± 0.47 0.435

3.3.4. RefFinder Analysis

For the final ranking of the reference genes, a further comprehensive stability analysis
was performed on all 10 reference genes according to RefFinder. RefFinder considers the
results from four different algorithms to provide comprehensive stable values of reference
genes. The recommended comprehensive ranking was: CYP2 and Tub1 for total samples; CYP2
and Tua5 for TRV-infected fruits; CYP2 and Tub1 for different genotypes (Table 3). Furthermore,
TEF2 always included unstable reference genes under all experimental conditions.

Table 3. Comprehensive ranking of ten reference genes were calculated by RefFinder.

Rank All Samples TRV-Infected Fruits Different Genotypes

1 CYP2 1.50 CYP2 2.11 CYP2 1.41
2 Tub1 2.45 Tua5 3.03 Tub1 2.51
3 RPII 3.13 Actin 3.22 UBQ10 2.63
4 UBQ10 4.12 Tub1 3.56 RPII 4.61
5 Actin 5.42 RPII 4.16 PLA2 4.76
6 18S 5.62 UBQ10 4.56 Actin 5.05
7 PLA2 5.66 18S 5.62 Tua5 6.16
8 Tua5 5.79 PLA2 5.66 GADPH 7.00
9 GADPH 7.00 GADPH 7.90 18S 7.40

10 TEF2 9.24 TEF2 8.71 TEF2 9.24

3.4. Validation of Reference Genes

To evaluate the stability of selected reference genes, the expression pattern of PpACO1,
PpEIN2, and PpPL was evaluated during peach fruit ripening with the best combination
of reference genes (CYP2 with Tua5 for TRV-infected fruits, CYP2 with Tub1 for different
genotypes), the most stable genes (CYP2) and unstable genes (TEF2) for normalization
(Figure 4).
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Figure 4. Relative expression levels of PpACO1, PpEIN2, and PpPL during peach fruit storage.
The expression pattern was normalized by the best combination of reference gene, the most stable
reference gene alone and the least stable reference gene. (A–C) gene expression levels in TRV-infected
‘Zao Feng Wang’ (ZFW) fruits during storage, (D–F) gene expression levels in ‘Rui Hong’ (RH) during
storage, and (H–G) gene expression levels in ‘Qin Wang’ (QW) during storage. MF: melting flesh; SH:
stony-hard. Data shown the means with standard error (n = 3).

In terms of the TRV-injected fruits, it can be found that the expression levels of PpACO1,
PpEIN2, and PpPL when normalized in combination with the stable reference gene and
the best reference gene alone were consistent, but their expression patterns were partially
similar to those of the others when normalized using the unstable reference gene TEF2. The
expression level of PpACO1 that was normalized by CYP2 alone and the combination of
CYP2 and Tua5, gradually increased and reached its peak at 6 DAH (days after harvest),
then decreased, whereas its expression level with TEF2 as reference gene reached its peak
at 4 DAH (Figure 4A).

During melting flesh peach fruit storage of ‘RH’, when the relative expression changes
of PpEIN2 were normalized by the combination of the stable reference gene and the best
reference gene alone, the expression level of PpEIN2 remained essentially unchanged.
However, when the most unstable reference gene TEF2 was used, the expression of PpEIN2
decreased from 2 DAH to 6 DAH, a significant change compared with the previous two
results (Figure 4E). In the stony hard flesh peach fruit of ‘QW’, no differences were observed
with different reference genes, indicating that the reference gene has different stability in
different varieties.
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4. Discussion

The reference gene should show minimal change and appropriate expression abun-
dance in different tissues and experimental conditions [7,38]. There is a literature for
screening reference genes in plants, such as peach [11], tomato [39,40], Arabidopsis [41],
potato [42], soybean [43,44], banana [45], and longan [16], finding that the expression level
of the internal reference is also unstable under every experimental condition. Therefore, the
selection of internal reference genes under specific experimental conditions is particularly
necessary. In this study, we aim to select reference genes that could be stably expressed
as internal controls for RT-qPCR studies of gene expression in peach fruit with different
genotypes and TRV-infected fruits.

We analyzed the expression profiles of 10 reference genes. The reference gene should
meet the appropriate Ct value range. In this study, the average Ct values of the 10 reference
genes showed that 18S had the narrowest Ct range, while TEF2 had the widest (Figure 1).
Taking 18S as an example, a small Ct value reflects a large expression accumulation,
indicating that the expression abundance of 18S is particularly high. The narrow Ct value
range can reflect the stability to a certain extent, indicating that the 18S has the best stability
(Figure 1). However, in this experiment, 18S was not the best choice for the internal
reference gene. The reason is as follows: because of its abundance, the 18S is recommended
only for target genes that are highly transcribed. When the target gene expression level is
low, the 18S is not suitable as a reference gene for accurate subtraction of baseline values in
RT-qPCR data analysis [9,46]. Furthermore, 18S was the most unstable reference gene in all
the samples from geNorm and RefFinder analysis (Figure 2; Table 3). The stability of 18S in
peach was also found to be poor [9,32]. It is precisely for this reason that the 18S failed to
replace the use of other housekeeping genes. This demonstrated that it needs to combine
the expression levels of the reference genes with stability analysis.

The stability of the gene expression was confirmed separately using geNorm,
NormFinder, BestKeeper, and RefFinder for ranking reference genes. The geNorm program
calculates the M value of the stability of each reference gene to screen out the more stable
reference genes [34]. NormFinder software obtains expression stability values based on the
intra- and inter-group variation coefficient of each reference gene between samples [35].
BestKeeper comprehensive analysis of the stability of reference genes based on the SD,
CV and R of Ct values of each reference gene under various experimental conditions [36].
Furthermore, RefFinder considers the results from four different algorithms, including
geNorm, NormFinder, BestKeeper, and ∆Ct method, to provide comprehensive stable
values of reference genes [37]. We use four most popular software packages to analyze
the stability of 10 reference genes. Among TRV-infected fruits, the geNorm, NormFinder,
BestKeeper, and RefFinder analyses showed almost identical top five stable reference genes,
although with a slightly change in rank order. Moreover, the ranking orders of reference
genes under different genotypes by the four programs are different, which is expected
because the algorithms of the software are different.

For RefFinder analysis, CYP2, Tua5, and Actin were ranked as the top three in TRV-
infected fruits, followed by CYP2, Tub1, and UBQ10 in different genotypes. In addition,
GADPH, TEF2, and PLA2 were ranked as the last three in TRV-infected fruits, with GADPH,
TEF2, and 18S in different genotypes (Table 3). Although most authors used only a single
reference gene as a standardized internal control, it has been suggested that RT-qPCR
studies using two or more reference genes may contribute to more reliable results [12,47–49].
According to pairwise variation, two reference genes were required for gene expression
level normalization in this study since the V2/3 was lower than 0.15 (Figure 3). Therefore,
the best reference gene combinations were CYP2 with Tua5 for TRV-infected fruits and
CYP2 with Tub1 for different genotypes. To further confirm the validated reference genes
in RT-qPCR, the combination of the most stable reference gene, the best reference gene
alone, and the least stable reference gene were used for normalization of PpACO1, PpEIN2,
and PpPL. The result shows that normalization by the unstable reference gene leads to
misinterpretation of the expression pattern of PpACO1, PpEIN2, and PpPL (Figure 4).
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Therefore, screening for stable reference genes is highly necessary for the correct processing
of RT-qPCR data.

In this study, CYP2, ranked in the top two by geNorm, NormFinder, and Bestkeeper
programs, proved to be the best reference gene for all experimental conditions (Figure 2;
Tables 1 and 2). CYP2 was the best choice for standardization in pulp samples at different
storage temperatures and fruit development stages in a pre-study of peach [11], similar
to our result. In geNorm analysis, CYP has maintained the top six positions of 19 genes
throughout the developmental stages and postharvest ripening of peel and pulp, indicating
CYP has better stability during banana fruit development and maturation [45]. CYP2
presents stable expression in different developmental stages and after 2,4-D treatment of
longan [16]. Furthermore, in cucumbers, CYP was best reference gene under cold and heat
treatment [50]. This suggests that the stability of CYP2 expression is reliable across species.

It has been reported in peach that TEF2 was found to be the most stable and reliable
reference gene, suggesting the use of TEF2 in combination with RPII for different tissues,
different storage times and different genotypes [9]. However, in this study, TEF2 was
the most unstable reference gene in different genotypes by RefFinder analysis (Table 3),
and the top three reference genes with high variability among all experimental conditions
by Normfinder analysis (Table 1). The expression level of PpACO1 normalized by TEF2
displayed differences in the expression level with the combination of the most stable
reference gene and the most stable reference gene alone in ‘RH’ during ripening (Figure 4D).
These results show that TEF2 is not the best normalization factor for different genotypes. It
is possible that the different varieties of peach and experimental conditions have led to the
discrepancy between the two assays [13]. The poor stability of TEF2 was also pointed out in
peach and other species. TEF2 exhibited a middle-rank order for flesh at different storage
temperatures and different tissues, and did not perform as well as other stable genes as a
normalization factor in peach [11]. The least appropriate reference gene was TEF2 for seed
development and the entire growth cycle in Plukenetia volubilis [51].

5. Conclusions

To our knowledge, this is the first report on the validation of a set of reference genes
in TRV-infected peach fruits for the standardization of gene expression analysis using
RT-qPCR. Our results suggest that it need to select the expression stability of reference
genes under specific experimental conditions. For TRV-infected fruits, CYP2 with Tua5 is
best gene combination for gene normalization. For different genotypes, CYP2 with Tub1 is
one of the best gene combinations. Our results provide a foundation for the further use of
RT-qPCR in the analysis of gene expression in peach.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13010160/s1, Figure S1: The amplification sizes and specificity
of primers of ten reference genes. M, DL 2000 maker. Figure S2: Melting curve of ten reference genes
by RT-qPCR. A single peak indicated the specificity of primers. Table S1: Sample sets in this study.
Table S2: Delineations of ten candidate reference genes. Table S3: The information of the primers
used for qRT-PCR validation.
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