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Abstract: Targetable alterations in cancer offer novel opportunities to the drug discovery process.
However, pre-clinical testing often requires solubilization of these drugs in cosolvents like dimethyl
sulfoxide (DMSO). Using a panel of cell lines commonly used for in vitro drug screening and pre-
clinical testing, we explored the DMSO off-target effects on functional signaling networks, drug
targets, and downstream substrates. Eight Non-Small Cell Lung Cancer (NSCLC) cell lines were
incubated with three concentrations of DMSO (0.0008%, 0.002%, and 0.004% v/v) over time. Expres-
sion and activation levels of 187 proteins, of which 137 were kinases and downstream substrates,
were captured using the Reverse Phase Protein Array (RPPA). The DMSO effect was heterogeneous
across cell lines and varied based on concentration, exposure time, and cell line. Of the 187 proteins
measured, all were statistically different in at least one comparison at the highest DMSO concentra-
tion, followed by 99.5% and 98.9% at lower concentrations. Only 46% of the proteins were found to
be statistically different in more than 5 cell lines, indicating heterogeneous response across models.
These cell line specific alterations modulate response to in vitro drug screening. Ultra-low DMSO
concentrations have broad and heterogeneous effects on targetable signaling proteins. Off-target
effects need to be carefully evaluated in pre-clinical drug screening and testing.

Keywords: dimethyl sulfoxide effects; NSCLC cell lines; pathway activation; signal transduction;
drug targets

1. Introduction

The identification of targetable alterations in cancer continues to offer novel opportuni-
ties to the drug discovery process and to the development of compounds capable of directly
interacting with and modulating activation of malfunctioning proteins [1,2]. Because most
of these new therapeutic compounds are water insoluble hydrophobic molecules, solu-
bilization of these drugs for in vitro screening and cell-based assays often requires the
use of cosolvents, of which dimethyl sulfoxide (DMSO) represents the most widely used
example [3]. While DMSO increases a drug’s solubility and, through the interaction with
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phospholipids [4], eases a compound’s ability to cross the cellular membrane, it also un-
specifically binds to hydrophobic residues of drug targets and downstream substrates,
potentially affecting their activation and function [5]. Using commercially available models
commonly used for in vitro drug screening and pre-clinical testing, this work broadly
explores DMSO off-target effects on functional cellular signaling networks.

While genomic alterations initiate and promote tumorigenesis, phenotypically these
alterations manifest as aberrantly activated proteins and kinase-driven signal transduction
events [6,7]. Within these signaling networks, kinases and downstream substrates are
finely activated through post-translational modifications like phosphorylation and regulate
cellular processes and gene expression profiles [7,8]. In the last few decades, compounds
capable of binding altered and/or hyperactivated key nodes within these networks have
opened up novel opportunities for delivering precision medicine to cancer patients [7,9].
As such, exploration of these networks is of primary importance for identifying therapeutic
targets and exploring the compounds’ mechanisms of action. Given the plethora of effects
DMSO has on cellular activities and macromolecules [10], discriminating between DMSO-
related off-target effects and drug-specific mechanisms of action can be challenging.

To minimize DMSO-dependent cytotoxicity [11], its effect on cell growth and differen-
tiation rates, and altered cellular morphology, previous investigations have recommended
limiting the amount of DMSO for in vitro testing to concentration < 0.1% v/v [12,13].
However, recent data have indicated that concentrations ≤ 0.1% v/v still modulate gene
expression and large-scale miRNA profiles as well as tissue-specific genome-wide methyla-
tion patterns [14,15]. Thus, these data suggest that even at recommended concentrations,
DMSO still affects the overall molecular landscape of target cells. However, to our knowl-
edge the systematic and broad effects of DMSO on activation and function of therapeutically
targetable signaling proteins and downstream substrates has not been reported, thus far.
Given that network dynamics are an important mechanism of adaptation to cellular pertur-
bations and resistance to targeted compounds, understanding the DMSO effect on these
signaling events is of primary importance to accurately evaluate output data from in vitro
preclinical testing.

Using lung cancer as a model system, this work explored the effect of ultra-low DMSO
doses (8× 10−4 to 4× 10−3 % v/v) on the signaling network of eight commercially available
cell lines commonly used for in vitro drug testing and cell-based assays. Dose- and time-
dependent changes in signaling events were captured on a continuous scale using the
Reverse Phase Protein Microarray (RPPA), a high throughput antibody-based assay. To fully
capture off-target effects and functional deregulation of signaling networks associated with
DMSO, emphasis was placed on activation levels of kinases and downstream substrates
commonly targeted by FDA approved and investigational anti-cancer compounds.

2. Results
2.1. Ultra-Low DMSO Concentrations Broadly Affect the Signaling Network of NSCLC
In Vitro Models

To explore DMSO-dependent off-target effects in in vitro drug testing, a panel of 8
commercially available Non-Small Cell Lung Cancer (NSCLC) cell lines was selected for
molecular analysis. Cells were incubated with three different amounts of DMSO, namely
0.0008% (C1), 0.002% (C2), and 0.004% (C3) v/v, which were selected based on previously
conducted cell viability studies indicating that, at large, these DMSO concentrations do
not affect cells’ growth rates (Figure S1). Cell lines were incubated with the three DMSO
concentrations for 5 min, as well as 1, 6, and 24 h and longitudinal biological samples were
collected at each timepoint and processed by RPPA. Expression and activation levels of
187 proteins of which 137 were kinases and downstream substrates were captured at each
timepoint. A non-parametric, two-tailed Kruskal Wallis rank test was performed for each
cell line and within each concentration to capture changes in the expression and activation
levels of the 187 measured analytes. The null hypothesis was rejected for comparisons
where p < 0.05. A detailed list of all p-values that emerged from the analysis can be found
in Table S1.
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To explore the effect of DMSO on functional signaling networks and post-translationally
modified proteins, broad changes in phosphorylation levels of 125 kinases and downstream
substrates were first evaluated (Figure 1). Fold-change in the overall phosphorylation levels
ranged between 0.58 and 1.4. As expected, cell lines presented different patterns of response
to DMSO across timepoints. For example, DMSO induced an overall downregulation of
signaling activity in some cell lines (Calu3 p = 0.01, 0.04, and 0.03 for C1, C2, and C3,
respectively), while it promoted signal transduction events in others (e.g., H2122 p = 0.04,
0.03, and < 0.01 for C1, C2, and C3, respectively). The H2122 and H1734 lines were the most
affected cell lines and presented a nearly 40% increase in the overall phosphorylation levels;
however, the magnitude of change varied greatly across timepoints. On the other hand, the
H358 and H23 cell lines were the least affected models within and across concentrations
(p > 0.05). However, datapoints trended in similar directions across different concentrations
of DMSO, suggesting that DMSO induces similar biological effects regardless of its amount.

Figure 1. Dimethyl sulfoxide (DMSO) time- and dose-dependent changes of overall phosphorylation
levels in eight lung cancer in vitro models. Broad change in protein phosphorylation levels was
measured as aggregate changes of the Reverse Phase Protein Array (RPPA) intensity values across 125
post-translationally modified kinases and downstream substrates within each cell line. Tallied values
for each cell line were normalized to the baseline (T0) of the corresponding DMSO concentration
and expressed as fold change of the untreated values (C1 Panel A, C2 Panel B, and C3 Panel C,
respectively). For each timepoint and DMSO concentration, technical replicates were collected (n = 3)
and mean and standard error of the mean are shown. Adjusted pair-wise comparisons that retained
statistical significance (* p < 0.05; ** p < 0.01, respectively) are shown for each cell line.

In contrast, DMSO had an inhibitory effect on phosphorylation events in the H522
cells, especially 1 and 6 h after the administration of DMSO. Similarly, a 20% to almost
40% reduction in phosphorylation events was detected after 1 h of incubation in the
H1838. The ability of DMSO to change signaling network activities, especially at earlier
timepoints after incubation, may be of relevance when testing targeted compounds as these
changes may alter a compound’s activity, its ability to engage with its target(s), and its
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effect on downstream substrates. To further explore the effect of DMSO on the overall
signaling network, weighted Pearson’s correlation coefficients were calculated and their
distribution was represented as histograms and kernel density plots (Figure 2; Figure S2).
This approach allowed us to capture the degree distribution of pair-wise interconnections
between the measured analytes, thereby providing a broad overview on how the overall
signaling network adapted to DMSO. As expected, the degree of interconnection between
the analytes varies not only between cell lines, but also across timepoints and DMSO
concentrations. For example, network interactions in the A549 changed dramatically 5
and 60 min after incubation at the C1 DMSO concentration. However, at 24 h the overall
distribution of these interconnections was similar to the baseline values (Figure 2).

Figure 2. Histograms and kernel density plots representing weighted Pearson’s correlation coeffi-
cients for each DMSO dose across timepoints for A549 and H2122. Weighted Pearson’s correlation
coefficients were calculated for paired proteins across all measured analytes and the degree of
distribution of pair-wise interconnections between analytes is shown for each cell lines, DMSO
concentration, and timepoints.

In contrast, interconnection in the H358, H2122, and H522 never recovered baseline
levels within the 24 h period (Figure 2; Figure S2). However, interconnection showed a
similar distribution at 24 h across DMSO concentrations in some models (e.g., H2122, A549,
between C1 and C2, H522 between C2 and C3) (Figure 2; Figure S2). Overall, these data
suggest that DMSO affects post-translational modifications in a time and cell line dependent
manner. Given the ability of DMSO to modulate a cell’s overall signaling activities, the
selection of appropriate DMSO concentrations and controls in in vitro experiments should
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be carefully evaluated to minimize unwanted up- or down-regulation of drug targets and
downstream substrates.

2.2. Ultra-Low DMSO Concentrations Have Heterogeneous and Cell Line Dependent Effects on
Signaling Molecules in NSCLC Models

To evaluate the DMSO effect on individual proteins, a multiple-group comparison
across timepoints was calculated for each cell line. Of the 187 proteins measured, 185
(98.9%) were statistically different in at least one cell line for the DMSO concentration C1,
while the number of statistically different endpoints increased to 186 (99.5%) in C2, and
to 187 (100%) C3 (Figure S3). On a cell line-by-cell line basis, the magnitude of the DMSO
effect was highly heterogeneous and less than half of the analytes that reached significance
were shared across all three DMSO concentrations within one cell line (Figure 3A). The
H1734 cells were the least affected cell line and significant differences (Kruskal Wallis test
p < 0.05) were found in less than half of the measured analytes in C1 and C2 (43.9% and
48.7%, respectively). However, the proportion of significant endpoints reached 63.6% at the
highest DMSO concentration (Figure 3B, Table S1). Only 64 (34.2%) proteins were shared
between C1 and C2 and 56 (29.9%) of those were also found significantly altered in C3
(Figure 3A). The H2122 cell line emerged as the model most affected by DMSO with 135
(72.2%) proteins reaching statistical significance in the C3 condition followed by 134 (71.7%)
and 136 (72.7%) in C2 and C1, respectively (Figure 3B and Table S2). A total of 82 proteins
were shared across the three conditions (43.9%) (Figure 3A).

Figure 3. For each cell line and DMSO concentration (C1 = 0.0008%, C2 = 0.002% and C3 = 0.004%,
respectively), a two-tailed Kruskal Wallis rank test was performed to capture changes in protein ex-
pression/activation across timepoint. Technical replicates (n = 3) were collected for each observation.
Number and percentage of proteins that reached statistical significance in each DMSO concentration
are reported. Venn diagrams illustrate unique and shared proteins across DMSO concentrations that
reached statistical significance within each cell line (Panel A). Bar graphs show the percentage of
proteins and phosphoproteins that were statistically different in each cell line and at each DMSO
concentration (Panel B).
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Of the 187 proteins evaluated, 86 (46.0%) were significantly different in more than
5 cell lines in C1 followed by 120 (64.2%) in C2 and C3 (Figure 4; Figure S3). Amongst
post-translationally modified key signaling nodes, phosphorylated ERK 1/2 T202/Y204
was found statistically significant in 7 of the 8 lines in C1 and in all lines in C2 and C3
(Figure 4; Figure S3). However, trends and magnitude of changes in ERK 1/2 activation
varied significantly across cell lines and times (Figure 5A; Figure 6C). For example, in C1
ERK 1/2, activation was maintained in the H1838 across timepoints with the exception of a
drop at the 1-h mark. A significant increase in the phosphorylation of residues T202/Y204
was detected after 5 min incubation in the A549 and H522 cell lines with the greatest effect
on the A549 line that never recovered ERK 1/2 baseline activation levels afterward.

Figure 4. For each cell line and DMSO concentration (C1 = 0.0008%, C2 = 0.002%, and C3 = 0.004%,
respectively), a two-tailed Kruskal Wallis rank test was used to capture changes across timepoints
(n = 5). Proteins that emerged as statistically significant in five (orange), six (green), seven (blue),
or all eight (red) cell lines are shown in the matrix. A total of 150 proteins met the criteria and are
displayed.
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Figure 5. Heatmaps displaying dose- and time-dependent changes in ERK 1/2 activation measured
as phosphorylation of the T202/Y204 residues (Panel A) along with expression/activation levels
of proteins involved in the cell cycle regulation (Panel B). Heatmaps capture average values (n = 3)
across five timepoints for the three DMSO concentrations within each cell line using a red (highest)
to green (lowest) scale.

In the Calu-3 and H358 models, ERK 1/2 activation was significantly reduced through-
out the incubation period, while in the H1734 line, ERK 1/2 activation levels progressively
increased by 2 to 3 times and never recovered to baseline levels. Trends in ERK 1/2
activation in C2 and C3 followed activation patterns resembling those of C1 (Figure 5A).

Activation patterns across time also varied from cell line to cell line for AKT, another
key regulator of a complex signaling axis. DMSO induced downregulation of AKT S473
in six of the eight cell lines and only the H522 fully recovered after 24 h of incubation
(Figure 6D). Increased activation of AKT was detected across all timepoints in the H1838
model, while AKT was only marginally affected in the H2122 cell line (Figure 6D). While
changes in ERK 1/2 and AKT expression and phosphorylation levels were significant
across lines, the magnitude of these fluctuations across timepoints was less prominent for
the expression than for the activation levels. Thus, the effect of DMSO on ERK 1/2 and
AKT activity was most likely independent from changes in its overall level of expression
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(Figure 6C–E). Similar trends were also observed for ERK 1/2 upstream signaling molecules
including the receptor tyrosine kinase (RTK) EGFR and MEK1/2 (Figure 6A,B).

Figure 6. Low-dose DMSO effects on the expression and activation of selected proteins across
timepoints (n = 5). Line plots display the heterogeneous effects of the solvent on selected protein
across eight NSCLC cell lines at the DMSO C1 concentration. EGFR (Panel A), MEK 1/2 (Panel B),
ERK 1/2 (Panel C), and AKT (Panel D) are displayed. Mean and standard error of the mean for
the technical replicates (n = 3) are shown. Changes that emerged as statistically significant across
timepoints using the Kruskal-Wallis test are shown in (Panel E).

To further capture DMSO dependent effects on signaling networks, we evaluated
activation levels of ERK 1/2 and AKT downstream substrates across timepoints and
concentrations (Figure 7A,B). Activation levels of the ERK 1/2 cytosolic targets MARCKS
S152/156, p38MAPK T180/182, and RSK3 T365/S360 and its target transcription factors
Elk-1 S383 and CREB S133 were also found to be significantly altered across models and
DMSO concentrations (Figure 7A,B). For example, the two-tailed Kruskal Wallis rank
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test examining changes in the phosphorylation levels of CREB at the residue S133 was
statistically significant (p < 0.05) across timepoints for all eight cell lines in C1, seven cell
lines in C2, and five cell lines in C3 (Table S1), suggesting that changes in the activation
level of this transcription factor are highly affected by DMSO and of biological relevance.
However, while it is well-known that changes in ERK 1/2 activity vary across different
phases to the cell cycle, [16], in our models ERK 1/2 phosphorylation levels did not mimic
expression or activation patterns of cell cycle regulators (e.g., expression level of Cyclin
A, B1, and D1; phosphorylation levels of Rb, Histone H3, Aurora Kinase, etc.) (Figure 5B).
These observations suggest that most changes captured by this analysis do not merely
mirror physiological cellular activities.

Figure 7. Changes in AKT-mTOR signaling and in the activation of ERK 1/2 downstream substrates
induced by the DMSO. Heatmaps display average values (n = 3) for proteins belonging to the AKT-
mTOR signaling pathway across timepoints are shown using a red (highest) to green (lowest) scale
(Panel A). Matrixes illustrate the number of cell lines in which significant differences were detected
(dark blue) in ERK 1/2 cytosolic targets and regulated transcription factors across the three DMSO
concentrations. (Panel B).
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Similar trends were also observed for AKT downstream substrates across timepoints
and concentrations (Figure 7A). While patterns of AKT activation were slightly maintained
across DMSO concentrations, its downstream substrates presented with less predictable
behaviors. However, when multiple phosphorylation sites were measured for a given
protein, in most cases similar patterns were detected across phosphorylation sites (e.g.,
S6RP S235/236 and S240/244; p70S6 T389 and T412 kinase, etc.) (Figure 7A). Whether
DMSO concomitantly affects multiple members of these cascades or it modulates the activ-
ity of key nodes within these signaling networks that then aberrantly regulate downstream
activities, and consequently cellular functions and gene expression profiles, is outside the
scope of this work and needs to be evaluated in future investigations.

2.3. Ultra-Low DMSO Effects on Signal Transduction Cascades Are Time- and Model-Dependent

Pathway enrichment analysis, using the Reactome Knowledgebase software [17,18],
was then performed to evaluate DMSO associated network dynamics across the eight
models (Table S3). While by nature the RPPA analysis requires an a priori selection of
the target analytes, only proteins that reach statistical significance were imputed for this
analysis, which allowed us to identify pathways uniquely enriched in each cell line. As ex-
pected, the MAPK signal transduction cascade and the PI3K/AKT signaling pathway were
enriched across cell lines, however the degree of over-representation of these pathways,
and consequently their ranking and relevance, varied greatly across models (Figure S4). For
example, enrichment of the MAPK family cascade included a variable number of proteins
across cell lines, ranging from 19 to 25 nodes (Figure S4A). Only the A549 and Calu-3
models were enriched for multiple pathways involved in the vertical regulation of the ERK
1/2 signaling including RTKs like HER2, and regulatory signaling (e.g., Shc1 events in
HER2 signaling) along with RAF activity (e.g., RAF/MAP kinase cascade) (Figure S4A).
Half of the cell lines, namely the A549, Calu-3, H1838, and H2122, showed enrichment for
proteins involved in apoptosis (Table S3). Although pro-apoptotic signaling and changes
in post-translationally modified caspase levels were detected in different models after the
incubation with DMSO, these changes had a minimal impact on the overall cell viability.
A potential explanation for this observation may be given by the concomitant activation
of counterbalancing ERK-driven stress responses and AKT-driven pro-survival. Indeed,
enrichment for phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and AKT signaling was
found across cell lines. However, the number of proteins found in these enriched networks
varied greatly from 18 to 27 nodes across cell lines (Figure S4B). Of interest, enrichment
for the downstream mTOR signaling was identified only for the H522 and H2122 cell
lines, while the Calu-3, H1734, H1838, and H358 models were enriched for interconnected
proteins involved in the negative regulation of the PI3K/AKT network. Overall, these
data suggest that signaling molecules and networks are differentially affected by DMSO in
different cell lines suggesting that when conducting drug sensitivity studies, the effect of
DMSO should not be considered as an evenly distributed variable across models.

2.4. DMSO Effect on Signal Transduction Pathways May Affect Cell Lines’ Responses
to Treatment

Finally, using the Genomics of Drug Sensitivity in Cancer (GDSC) database (https:
//www.cancerrxgene.org, accessed on 1 February 2021), we evaluated broad responses
to targeted agents and standard chemotherapeutic compounds across our eight cell lines.
Drug susceptibility information was collected on average for 180 compounds with the ex-
ception of the H1838 and H1734 (101 and 29 compounds, respectively). For each compound
and cell line, the GDSC database provides IC50-based Z-scores. Cell lines with Z-scores >
+2 are considered resistant to treatment while those with Z-scores < −2 were defined as
sensitive. Of interest, H2122, the cell line most affected by DMSO in our analysis, showed
the greatest sensitivity across all compounds (12 or 7% of all tested compounds), followed
by H23 (2.8%) and Calu-3 (0.5%) (Figure 8A). The H2122 cells were resistant to none of the
180 compounds tested by GDSC program. Given the wide effect of DMSO on ERK 1/2
activation across the eight models analyzed, response to ERK inhibitors were then retrieved

https://www.cancerrxgene.org
https://www.cancerrxgene.org
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from the GDSC database. Of interest, cell lines where DMSO caused downregulation of
ERK 1/2′s activity were associated with increased sensitivity to the targeted compounds
(Figure 8B). In contrast, cells with unaltered or increased ERK 1/2 activation after incuba-
tion with DMSO had higher level of resistance to the compounds. For example, the H1838
line, the only model where ERK 1/2 activation did not emerge as significant across time in
the C1 concentration, presented with the highest level of resistance. On the other hand,
A549, H2122, and H358 cells, where significant reduction in ERK 1/2 was detected after
the administration of DMSO (p values < 0.01), were amongst the models with the highest
sensitivity to different anti-ERK compounds. The Calu-3 cells were the only exception
to this pattern. Taken together, these data indicated that the DMSO effects on signaling
events and drug targets is highly heterogeneous. Cell-dependent response to DMSO may
differentially affect activation levels of drug targets and downstream substrates across cell
lines and should be carefully evaluated in drug screening and in vitro testing.

Figure 8. Low-dose effects of DMSO on response to targeted compounds and chemotherapeutic
agents. Bar graphs capturing drug susceptibility across eight NSCLC cell lines using the IC50 Z-scores
provided by the GDSC project (Panel A). GDSC-derived data capturing responses to ERK inhibitors
across lines (Panel B).

3. Discussion

To our knowledge, this is the first report exploring broad off-target effects of DMSO on
protein signaling networks with a focus on biochemically interconnected, post-
translationally modified drug targets and downstream substrates. With a growing number
of targeted compounds entering the market every year, discerning the effects of experi-
mental variables from true drug-associated effects is of primary importance to improve
the drug discovery process and pre-clinical testing. While DMSO remains the most com-
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monly used cosolvent for water insoluble compounds in pharmacological and toxicological
studies, the concentration at which it is used is often unreported [19]. Subsequently, the
biological off-target effects and DMSO’s ability to modulate expression and activation of
drug targets and their downstream substrates, and consequently gene expression profiles,
can be overlooked from a biological perspective.

It has been previously documented that DMSO is a non-inert substance with sig-
nificant effect across macromolecules and subsequently cellular functions and molecular
profiles [13,14,20–22]. A few examples are DMSO’s ability to alter membrane phospho-
lipid composition [23–25], DNA conformation, and epigenetic profiles [3,10,26,27]. From a
protein perspective, previous analyses have indicated that DMSO can directly modulate
proteins’ functional and structural stability [28], reduce protein complexes’ binding affini-
ties, affect the stabilization of protein quaternary structure and noncovalent interactions
between protein and ligands, and promote proteins’ degradation [1,3,29]. However, these
alterations exhibit arbitrary behaviors and unpredictable patterns across models, tissue
types, and duration of the incubation [14,30].

In vitro studies and biochemical assays have previously reported that exposure to
DMSO can promote phosphorylation of kinases on multiple phospho-epitopes [31–33].
Earp and colleagues have also reported that treatment with DMSO, although at much
higher concentrations than the one used in this analysis (10% v/v ), selectively induces
phosphorylation of tyrosine residues on the EGF receptor in crude membrane fractions
of murine erythroleukemia cells [34]. In line with these results, our analysis showed that
DMSO strongly influences the post-translational state of druggable membrane and cytosolic
kinases and their signal transduction activity, even when DMSO is used at concentrations
which are significantly below previously recommended amounts. However, the trend
and magnitude of these activation patterns are highly heterogeneous across cell lines and
timepoints. Thus, DMSO directly affects baseline activation levels of many targets of
FDA-approved and investigational agents following unspecific behaviors.

Activation of ERK 1/2, a central node of the proliferative MAPK pathway and a
crossroads between signal transduction networks, is a good example of these diverse
adaptation mechanisms as each of the eight models analyzed in this work showed distinct
patterns of ERK 1/2 activation and recovery after 24 h of incubation with DMSO. These
trends appeared to be independent from expression and activation of cell cycle regulatory
molecules or changes in ERK 1/2 overall expression levels, suggesting that DMSO directly
affects ERK’s signaling activity. Similarly, Cataldi and colleagues have previously demon-
strated that incubation with DMSO for 24 h induces PI3K activation, while the overall
expression of the protein remains unaffected within this timeframe [35]. As expected,
pathway enrichment analysis identified the pro-survival PI3K/AKT signaling pathway as
one of the most frequently affected networks by DMSO. However, the level of activation
of this signal transduction cascade varied from model to model. Apoptosis, on the other
hand, was affected in only half of the analyzed models. Based on previous reports, DMSO
can induce apoptosis by directly modulating the activity of members of this signaling
pathway including cleavage of PARP-1 or promote mitochondrial-mediated, Caspase-3-
and 9-dependent apoptosis through the down-regulation of members of the Bcl-2 fam-
ily [19,36]. Taken together, these data indicate that DMSO alters druggable biochemically
linked signaling transduction molecules in a heterogeneous way. Thus, the effect of DMSO
on individual drug targets and downstream substrates should be carefully evaluated when
conducting drug screening and testing.

Although this work did not directly explore the effect of DMSO on response to
treatment(s), data from the “The Genomics of Drug Sensitivity in Cancer” (GDSC) database
have provided some insights on their potential interactions. The H2122 cell line, a model
whose signaling network was profoundly affected by DMSO, emerged as the most sensitive
model across compounds (IC50 Z-score <-2 for 12 of the 180 drugs). In addition, H2122
cells were not resistant to any of the 180 compounds tested. When emphasis was placed
on ERK inhibitors exclusively, similar trends were observed. Specifically, cell lines where
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DMSO induced significant ERK 1/2 downregulation were overall more sensitive to these
targeted compounds, while models where ERK 1/2 phosphorylation was unaltered or
increased by DMSO showed higher levels of resistance, with only one exception. Although
these observations are based on a small number of cell lines, and on a relative short time
frame (only up to 24 h), a clear trend was detected between overall drug susceptibility and
DMSO effect on cellular signaling networks. This data may have important implications
for drug screening and pre-clinical studies, as DMSO may affect drug targets baseline
activation levels and susceptibility to treatment.

While we specifically designed this analysis to capture short-term adaptation mecha-
nisms associated with DMSO, a few limitations of our work should be addressed. First,
this study analyzed in vitro models established from lung malignancies only. Whether
these observations hold true across tissue types should be validated in independent anal-
yses. Previous investigations have indicated that the magnitude of the DMSO effects
on phospholipids, DNA, RNA and proteins varies from cell type to cell type [3,26,27].
Thus, validating these results on a larger number of models and across tumor types may
offer a more comprehensive understanding of the unspecific effects of the solvent in drug
screening and in vitro testing. Second, our analysis only captured changes in drug targets’
activities within a 24 h timeframe. While these changes were significant and rarely did our
models recover baseline activation levels of specific targets and of interactions patterns, this
data do not provide direct insights on the long-term effects of DMSO. However, given that
most studies exploring drugs’ mechanisms of action often measure changes in molecular
profiles within a 24–72 h incubation period, our data provide valuable understandings on
how DMSO can unwittingly affect in vitro drug testing. Devising novel methods able to
account for these off-target effects may improve the drug sensitivity testing process and
lead to the selection of compounds with a higher potential of achieving clinical benefit. For
example, understanding if these changes are transitory and cells have the ability to recover
baseline activation levels after longer exposure to DMSO, may lead to the development of
protocols and standard procedures where cells are pre-sensitized with the solvent. As an
alternative, prescreening of in vitro models may also help identify cell lines where the drug
target(s) of interest and downstream substrates are only marginally affected by DMSO
and develop analytical tools to account for these unspecific effects. For example, this work
mostly captured broad changes across timepoints within each cell line. However, given the
large number of datapoints analyzed, adjusted pair-wise comparisons within a given con-
centration of DMSO were not examined. However, identifying timepoints in each model
that are most affected by DMSO may help optimize the experimental designs and minimize
the effect of DMSO on signaling transduction events. Lastly, cross-validating significant
findings with alternative solvents may also represent a possible solution for capturing the
true effect of a targeted compound on the target cells. Taken together, these results suggest
that DMSO, even in minuscule doses, can produce detrimental effects on proteins’ signal-
ing networks, drug targets, and downstream substrates’ activity. These heterogeneous,
unpredictable, and model-dependent effects should be carefully evaluated when designing
and implementing in vitro drug screenings for pre-clinical testing. Limiting the amount
of DMSO preventively, even to amounts that are below current recommendations, may
improve the accuracy and reliably of in vitro testing.

4. Materials and Methods
4.1. Cell Cultures

A panel of eight human non-small cell lung cancer cell lines including A549, H1734,
H1838, H2122, H21, H358, and H522 were used in this analysis. Calu-3 were purchased
from AddexBio (San Diego, CA, USA), and the remaining seven lines were obtained from
American Type Culture Collection (ATCC, Manassas, VA, USA). Cell lines were grown
following manufacturer’s recommendations. As suggested by the manufacturer, cell lines
were grown in media (F-12K for A549; RPMI-1640 for H1734, H1838, H2122, H21, H358 and
H522, and Eagle’s MEM medium for Calu-3; ATCC, Manassas, VA, USA) supplemented
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with 10% fetal bovine serum (FBS) (ATCC, Manassas, VA, USA) at 37 ◦C and 5% CO2
atmosphere. Cells were passaged using trypsin/EDTA (ATCC, Manassas, VA, USA) and
sub-cultured at a ratio ranging between 1:3 and 1:10 depending on each cell line’s growth
rate.

4.2. Cell lines Treatments for Functional Signaling Analysis

Cells were seeded in technical replicates (n = 3) in a 6-well plate and cultured to 80%
confluency. Each cell line was treated with three ultra-low DMSO concentrations (ATCC,
Manassas, VA, USA) 0.0008% (C1), 0.002% (C2) and 0.004% (C3) respectively for 5 min, 1 h,
6 h, and 24 h (5min, T1 h, T6 h, and T24 h, respectively). Baseline untreated control samples
were also collected along with the longitudinal samples. At the end of the incubation
period, cells were washed twice with PBS (Invitrogen Life Technologies, Carlsbad, CA,
USA) and lysed in TPER (Thermo Fisher Scientific, Waltham, MA) supplemented with
300 mM sodium chloride and a cocktail of protease and phosphatase inhibitors to prevent
protein degradation and dephosphorylation including: 1 mM sodium orthovanadate
(Sigma Aldrich, St. Louis, MO, USA); 200 mM PEFABLOC (Roche, Basel, Switzerland);
5 µg/mL Aprotonin (Sigma Aldrich, St. Louis, MO, USA), 5 µg/mL Pepstatin A (Sigma
Aldrich, St. Louis, MO, USA) (prepared at 1.0 mg/mL in a solution of 10% acetic acid
and 90% methanol) and 5 µg/mL Leupeptin (Sigma Aldrich, St. Louis, MO, USA) [37].
Protein concentrations were assessed using the Coomassie (Bradford) Protein Assay Kit
(Thermo Fisher Scientific Waltham, MA, USA) following the manufacturer’s instructions.
Lysates were first diluted to 1 µg/µL concentration in TPER and subsequently brought
to a final concentration of 0.5 µg/µL in 2X Tris-Glycine SDS Sample buffer (Invitrogen
Life Technologies, Carlsbad, CA, USA) supplemented with 5% 2-mercaptoethanol (Sigma
Aldrich, St. Louis, MO, USA). Samples were boiled for 8 min and stored at -80 ◦C prior to
array construction.

4.3. Reverse Phase Protein Microarray

Cell lysates were immobilized in technical triplicates onto nitrocellulose coated glass
slides (Grace Bio-labs, Bend, OR, USA) using an Aushon 2470 arrayer (Quanterix, Billerica,
MA, USA) equipped with 185 µm pins. Reference standard curves were printed along
with the experimental samples for internal quality control. Selected arrays were stained
with Sypro Ruby Protein Blot Stain (Molecular Probes, Eugene, OR, USA) following the
manufacturer’s directions to quantify the total protein amount for each microarray spot
and used for normalization purposes. Immunostaining was performed as previously
described [38]. In brief, each array was probed with one polyclonal or monoclonal primary
antibody targeting a protein of interest using an automated system (Dako Cytomation,
Carpinteria, CA, USA). Primary antibodies were validated for specificity by western blot-
ting on commercial cell lysates or human tissue lysates to test their specificity against
the target protein [39]. Arrays were probed with a total of 187 antibodies, of which 137
targeted post-translational modifications (Table S4). Primary antibodies were recognized
by a biotinylated anti-rabbit (Vector Laboratories, Inc.) or anti-mouse secondary antibody
(Dako Cytomation, Carpinteria, CA, USA). Signal amplification was achieved using a
commercially available tyramide-based avidin/biotin amplification system (Catalyzed
Signal Amplification System (CSA); Dako Cytomation, Carpinteria, CA, USA) coupled
with fluorescent detection using the streptavidin-conjugated IRDye680 dye (LI-COR Bio-
sciences, Lincoln, NE, USA) according to the manufacturer’s instructions. Selected arrays
were incubated with the secondary antibodies alone to capture background and unspecific
signal. Images were acquired using a laser scanner (TECAN PowerScanner, Mönnedorf,
Switzerland). Spot intensity was quantified using the commercially available software
(MicroVigene V5.1.0.0; Vigenetech, Carlisle, MA, USA) [40]. In brief, samples were normal-
ized to total protein values, the background and unspecific signal were subtracted, and
technical replicates (n = 3) were averaged so that a single output value was generated for
each sample. Coefficient of variations across technical replicates were <5%.
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4.4. Drug Susceptibility Analysis

The effect of DMSO on drug sensitivity was assessed using archived data retrieved
from the open-access Genomics of Drug Sensitivity in Cancer (GDSC) database (https:
//www.cancerrxgene.org, accessed on 1 February 2021). For the work, the GDSC2 dataset
released in 2019 was used. As per database instructions, this version of the database drug
sensitivity data was collected along with DMSO control data and used for normalization
purposes. For each cell line, normalized IC50 are provided for a large panel of targeted
compounds and chemotherapeutics. Cell lines were tested with an average of 180 drugs,
with the exception of the H1838 and H1734 which were treated with 101 and 29 compounds,
respectively. Normalized IC50 scores expressed as Z-scores were retrieved for each cell
line. Per database instructions, cell lines with Z-scores > +2 were considered resistant to
treatment while those with Z-scores < −2 were classified as sensitive.

4.5. Statistical Analysis

Kernel density plots and related histograms were created using R software version
3.4.3. In brief, for each treatment/time pair, replicate measurements were collected (n = 3)
and protein networks were displayed using a graphical presentation where vertices repre-
sent individual proteins.

Transformed correlations given by

wu,v = 0.5(1 + Corr(u, v)), (1)

were used to establish edge weights, where Corr(u, v) represents the Pearson correlation
between the expression or activations of the proteins/vertices u and v. This approach
forces the edge weights to take values between 0 and 1, with 1 indicating perfect correlation
and 0 representing a negative correlation as previously described [41]. After constructing
adjacency matrices for each cell/time pair, histograms and kernel density plots were built
for the resulting (weighted) degree distributions, where degree was defined as

deg(u) = ∑
u∼v

wu,v; (2)

(i.e., the degree of a vertex is the sum of its edge weights). Since the probability of having
any protein pair with a perfectly negative correlation is extremely low, the topological
structure for the untreated and DMSO networks are effectively the same. Thus, the different
edge weights define the changes in protein expression and activation across experimental
conditions.

The two-tailed Kruskal Wallis rank test, a non-parametric one-way analysis of vari-
ance method, was used to identify changes in protein expression/activation levels across
times and DMSO concentrations (C1: 0.0008%, C2: 0.002%, C3: 0.004%). Alpha level for
significance was set at 0.05. In order to correct for inflated Type-I error from multiple
group comparisons. For each cell line, RPPA values are shown using bar graphs created
in GraphPad version v.6.07. RPPA values were first normalized, within each cell line,
to baseline level; bar graphs visualize mean and standard error for each group. Venn
Diagrams were created in a Gene List Venn Diagram. Pathway enrichment analysis was
performed in Reactome Knowledgebase version 75 [17,18], and pathway visualization was
conducted in String version 11.0b [42].

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/6/2819/s1, Figure S1: Cell viability after 72 h of incubation with a wide range of DMSO
doses, Figure S2: Histograms and kernel density plots representing weighted Pearson’s correlation
coefficients for each DMSO dose across timepoints for six cell lines, Figure S3: Matrix capturing
proteins that were statistically different across timepoints in eight lung cancer in vitro models,
Figure S4: Enrichment analysis of selected pathways using the Reactome Knowledgebase software.
Table S1: List of proteins with the corresponding p value from the non-parametric, two-tailed Kruskal
Wallis rank test performed for each cell line and within each concentration, Table S2: Number of
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endpoints statistically different across cell lines for the three DMSO concentrations, Table S3: List
of pathways enriched for each cell line based on the Reactome Knowledgebase software analysis,
Table S4: List of antibodies used for the RPPA analysis including target proteins, vendors, catalogue
numbers, and dilutions.
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