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Abstract

Identification of risk factors in patients with a particular disease can be analyzed in clinical data sets by using feature
selection procedures of pattern recognition and data mining methods. The applicability of the relaxed linear separability
(RLS) method of feature subset selection was checked for high-dimensional and mixed type (genetic and phenotypic)
clinical data of patients with end-stage renal disease. The RLS method allowed for substantial reduction of the
dimensionality through omitting redundant features while maintaining the linear separability of data sets of patients with
high and low levels of an inflammatory biomarker. The synergy between genetic and phenotypic features in differentiation
between these two subgroups was demonstrated.
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Introduction

Statistical models for analysis of risk factors for a disease or

clinical complications, a main focus of medical research, require

that the number of patients is larger than the number of variables

(factors) to ensure that the statistical significance of the results can

be appropriately established. In practice, most studies assess only

the influence of each variable separately rather than the combined

importance of a set of variables; the former oversimplistic but yet

prevailing approach ignores the possibility of interactions between

variables or between groups of variables [1]. The obvious need of

developing new statistical tools that take into account the extensive

interactions between the very large numbers of variables

determining biological processes and hence clinical outcomes is

increasingly emphasized in modern medical and bioinformatics

research.

Medical data sets collected today often have a large number of

variables for a relatively low number of patients. This may happen

for genetic data sets, where the number of variables (genetic

variability, as single nucleotide polymorphism, or gene expression

data) can be thousand times greater than the number of patients.

Statistical methods are not fully justified in this situation [1]. In

such a case, data mining methods can be used instead of, or in

addition, to statistical methods [2]. The methods of feature subset

selection developed in the scope of data mining play an

increasingly important role in the exploratory analysis of multi-

dimensional data sets.

Feature selection methods are used to reduce feature space

dimensionality by neglecting features (factors, measurements) that

are irrelevant or redundant for the considered problem. Feature

selection is a basic step in the complex processes of pattern

recognition, data mining and decision making [3,4]. Interesting

examples of applications of feature selection procedures can be

found, among others, in bioinformatics [5]. A survey of

noteworthy methods of feature selection in the field of pattern

recognition is provided in [6].

The feature subset resulting from feature selection procedure

should allow building a model on the basis of available learning

data sets that can be applied for new problems. In the context of

designing such prognostic models, the feature subset selection

procedures are expected to produce high prediction accuracy.

We apply here the relaxed linear separability (RLS) method of

feature selection for the analysis of data on clinical and genetic

factors related to inflammation. These data were obtained from the

so called malnutrition, inflammation and atherosclerosis (MIA) cohort of

incident dialysis patients with end-stage renal disease [7] in whom
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extensive and detailed phenotyping and genotyping have been

performed [8,9]. The cohort was split into two groups: inflamed

patients (as defined by blood levels of C-reactive protein, CRP,

above median) and non-inflamed patients (as defined by a CRP

below median). Then, genetic and phenotypic (anthropometric,

clinical, biochemical) risk factors that may be associated with the

plasma CRP levels were identified by exploring the linear

separability of the high and low CRP patient groups. Particular

attention was paid in this work to study the complementary role of

genetic and phenotypic feature subsets in differentiation between

inflamed and non-inflamed patients.

Four benchmarking feature selection algorithms were selected

for the comparisons with RLS method on the given clinical data set:

1) ReliefF, based on feature ranking procedure proposed by

Kononenko [10] as an extension of the Relief algorithm [11], 2)

Correlation-based Feature Subset Selection - Sequential Forward algorithm

(CFS-SF) [12], 3) Multiple Support Vector Machine Recursive Feature

Elimination (mSVM-RFE) [13] and 4) Minimum Redundancy Maximum

Relevance (MRMR) algorithm [14]. The CPL method and four

other frequently used classification methods (RF (Random Forests)

[15], KNN (K - Nearest Neighbors, with K = 5) [3], SVM (Support

Vector Machines) [16], NBC (Naive Bayes Classifier) [3]) were

applied for classification of patients on the basis of the selected

features.

Methods

Relaxed Linear Separability Method
A detailed description of the relaxed linear separability (RLS)

method as applied in the present study is provided in Appendix S1

together with all the definitions. A brief summary of the method is

presented below.

The RLS method of feature subset selection is linked to the basic

concept of linear separability. The linear separability means

possibility of two learning sets separationby a hyperplane [17,18].

The linear separability notion originated from the perceptron

model linked to the beginning of neural networks [19]. Detection

and evaluation of linear separability can be carried out efficiently

by minimizing the perceptron criterion function [3]. This function

belongs to the more general class of the convex and piecewise-linear

(CPL) criterion functions [20].

The perceptron criterion function was modified by adding a

regularization component for the purpose of the feature subset

selection task [20]. The regularization component has similar

structure to those used in the Lasso regression [21]. The main

difference between the Lasso and the RLS methods is in the types of

the basic criterion functions. The basic criterion function used in

the Lasso method is that of the least squared method, whereas the

perceptron criterion function and the modified criterion function

are used in the RLS method. This difference effects the

computational techniques used to minimize the criterion functions.

The modified criterion function, similarly to the perceptron

criterion function, is convex and piecewise-linear (CPL). The basis

exchange algorithms allow the identification of the minimum of

each of these CPL criterion functions [22]. The basis exchange

algorithms are similar to linear programming and allow to find the

optimal solution efficiently even in the case of large, high

dimensional learning sets.

The (RLS) method of feature subset selection is based on

minimization of the modified perceptron criterion function and

allows for successive reduction of unnecessary features while

preserving the linear separability of the learning sets by increasing

the cost parameter in the modified criterion function. The stop

criterion for discarding the unnecessary features was based on the

cross-validation error (CVE) rate (defined as the average fraction

of wrongly classified elements) estimated by the leave-one-out

method.

The evaluation of the RLS approach was previously carried out

with good results both when applied on simulated high dimen-

sional and numerous data sets as well as on benchmarking genetic

data sets [18]. For example, the RLS method were used for

processing the Breast cancer data set [23]. The number of features

(genes) in this set is equal to 24481. The RLS method allowed to

select from this set the optimal subset of 12 genes and such linear

combination of these genes (linear key), which allows to correctly

distinguish with 100% accuracy two leaning sets composed of 46

cancer and 51 non-cancer patients.

Alternative Methods for Feature Selection and
Classification

The RLS method of feature subset selection involves generation

of the sequence of the reduced feature subspaces Fk (see Appendix

S1, equation 7). The sequence is generated in the deterministic

manner through a gradual increase of the cost level l in the

minimized criterion function Yl(w,h) (see Appendix S1, equation

5). In order to determine the best (final) subspace Fk0 in the

sequence an evaluation of the quality of individual subspaces Fk is

needed. Traditionally, the quality of the feature subspaces Fk is

evaluated through the quality evaluation of the classifiers built in

this subspace. Statistical methods for evaluation and comparison of

classifiers can be found in [24]. This section presents a few other

previous methods of feature selection and classification that were

applied for the analysis of the MIA data sets, for comparison of the

results, see Results.

Four benchmarking feature selection algorithms were chosen for

an experimental comparison with the RLS method. One of the

selected algorithms, ReliefF, is based on feature ranking procedure

proposed by Kononenko [10] as an extension of the Relief

algorithm [11]. The ReliefF searches for the nearest objects from

different classes and weighs features according to how well they

differentiate these objects. The second one is a subset search

algorithm denoted as CFS-SF (Correlation-based Feature Subset Selection

- Sequential Forward) [12]. The CFS-SF algorithm is based on a

correlation measure which evaluates the goodness of a given

feature subset by assessing the predictive ability of each feature in

the subset and a low degree of correlation between features in the

subset. These two feature selection algorithms are considered as

‘‘the state of the art’’ tools for feature selection [4]. The third

algorithm, mSVM-RFE, is a relatively new idea. It is an extension

of the SVM-RFE algorithm (Support Vector Machine Recursive Feature

Elimination). The SVM-RFE is an iterative procedure that works

backward from an initial set of features. At each round it fits a

simple linear SVM, ranks the features based on their weights in

the SVM solution, and eliminates the feature with the lowest

weight [25]. Multiple SVM-RFE (mSVM-RFE) extends this idea by

using resampling techniques at each iteration to stabilize the

feature rankings [13]. The fourth algorithm MRMR (Minimum

Redundancy - Maximum Relevance) [14] is also a relatively new idea. It

bases on feature ranking procedure with special ranking criterion.

The position of single feature in the list depends both on its

correlation with class and dissimilarity to each feature above it in

the ranking.

To compare feature selection algorithms and to evaluate the

selected feature subspaces, four frequently used classification

methods, beside the CPL method, were applied:

RLS Selection of Genetic and Phenotypic Features

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e86630



1: RF (Random Forests) ½15�
2: KNN (K{Nearest Neighbors, with K~5) ½3�
3: SVM (Support Vector Machines) ½16�
4: NBC (Naive Bayes Classifier) ½3�
5: CPL (Convexand Piecewise{Linear criterion functions) ½20�

ð1Þ

The four first classifiers (1) were designed by using Weka’s

implementation [26]. The Weka’s implementation of ReliefF and

CFS-SF was used also for the feature selection and cross validation

evaluation of designed classifiers. The R implementation of mSVM-

RFE was used (SVM-RFE package) [27]. The results of MRMR was

obtained with the help of the code provided by its author [28].

The CPL classifiers based on the search for optimal separating

hyperplane H(w�,h�) (see Appendix S1, equation 1) through

minimization of the CPL criterion functions W(w½n�,h) (see

Appendix S1, equation 4) was applied using our own implemen-

tation. Our own implementation was also used for the RLS method

of feature selection [18].

Clinical Data Sets
Two learning sets Gz and G{ were selected from a cohort of

patients with chronic kidney disease, the MIA cohort [7]. The set

Gz contained mz~112 patients Oj with a high CRP levels (above

the median value) and the set G{ contained m{~113 patients Oj

with a low plasma CRP levels (below the median value). Each

patient Oj from the learning sets Gz and G{ was characterized

by numerical results xi (xi[R) of 57 anthropometric or biochem-

ical measurements and by 79 sites of genetic polymorphism (single

nucleotide polymorphisms (SNPs) or deletions/insertions). The 79
polymorphisms were selected from 45 different candidate genes

each harboring one to four of these variations. Each site of the

genetic polymorphism was characterized by (usually three) binary

features xi (xi[f0,1g), i~1,2,3, that described three possible

genotypes at this site (for example A=A, C=C, A=C). The value

one (xi~1) of the binary feature xi represented the appearance of

a particular genotype at the polymorphic site. Thus, each patient

Oj was represented by the n-dimensional feature vector

xj~½xj1,:::,xjn�T , where n~228 is the total number of features

and j[f1,:::,225g represents the order number (index) of a patient

Oj in the cohort of 225 patients. The number of genetic features,

n~228, is lower than the expected value of 237~3|79 because

several genes appeared in the studied population as only one or

two genotype forms, i.e., the polymorphism in these genes was not

found or was reduced - such cases were coded with less than three

binary features. There was also one gene with three alleles and it

was coded with five binary features.

These cohort and feature sets were selected from a larger data

set and included only those patients for whom at least 85% of

features were available and those features that were measured for

at least 65% of the patients. In the selected cohort there were still

missing data; therefore, for each missing datum, its value for the

nearest neighbor in the respective learning set (Gz or G{) was

assigned. The phenotypic and genetic features were considered

separately in the procedure of allocating the missing data. In the

case of a missing phenotypic feature value, the nearest neighbour

was the patient that had the most similar phenotype, whereas for a

missing genetic feature value, the nearest neighbour was the

patient that had the most similar genotype. The ce.impute

procedure of dprep package of the R programming language was

used for the substitution of missing values.

During exploration of this database, the computations were

performed in feature subspaces Fk (Fk5F ) divided in two learning

sets Gz
k and G{

k . The vectors xj from the set Gz
k described

patients Oj with high plasma CRP levels in the feature subspaces

Fk. Similarly, the vectors xj from the set G{
k described the patients

with low plasma CRP levels.

Three basic feature spaces Fk were distinguished as follows:

I : FI {phenotypic space

(nI~57 standardized features xi (xi[R1))

II : FII {genetic space

(nII~228 binary features xi (xi[f0,1g))

III : FIII {phenotypic and genetic space

(nIII~285 standardized or binary features xi)

ð2Þ

The RLS procedure of feature selection was carried out in each

of the basic feature spaces (2) separately.

Results

The apparent error rate AE~ea(w�k,h�k) (see Appendix S1,

equation 9) and the crossvalidation error rate CVE~eCVE (see

Appendix S1, equation 10) of the optimal linear classifier

LCk(w�k,h�k) (see Appendix S1, equation 8) as a function of the

dimension k of feature subspaces Fk in the sequence (see Appendix

S1, equation 7) of the feature spaces FI , FII and FIII , definition (2),

are presented in Figures 1–3.

The apparent error rate (AE) and the cross-validation error

(CVE) in feature subspaces Fk of the phenotypic space FI are shown

in Figure 1. The lowest value of (CVE) equal to 13,8% appeared in

the feature subspace Fk0 of the dimension k~21. The features that

define this subspace Fk0 are presented in Table 1. The features

listed in Table 1 were ordered according to the absolute values

jw�i j (factors) of the components of the optimal weight vector

w�k~½w�k1,:::,w�kn�
T

.

The features listed in Table 1 was identified as the one subset Fk

of the feature subspace FI . This subset was not composed from the

best single features xi. It includes the features that are correlated to

CRP plasma levels as well as those that are not. Most of the

phenotypic features listed in Table 1 are in fact expected by medical

experts to be related to inflammation but their relative importance

is less clear.

Whereas the list of phenotypic features in general appears to be

biologically plausible, the ranking of the strength of the association

as expressed by the value of the factor coefficient w�ki provides

novel and potentially important insights into the links between the

investigated features and the biomarker selected to represent

inflammation, i.e. CRP. Thus, some of the identified phenotypic

features in Table 1 (i.e., serum fibrinogen, (low) plasma iron,

serum ferritin, serum interleukin-6, and white blood cells count)

are well established biomarkers of inflammation, whereas others are

linked to cardiovascular disease (plasma troponin T and systolic blood

pressure) which is in turn linked to inflammation [29]. However,

the negative value for the factor coefficient for systolic blood

pressure is an intriguing finding which might reflect that a low

blood pressure could be associated with cardiac dysfunction and

heart failure, conditions which are known to be associated with

inflammation [30]. Other phenotypic features in Table 1 (height,

serum creatinine, plasma insulin, plasma calcium, bone mineral

density, hand grip strength, S-triiodothyronine T3, plasma uric

RLS Selection of Genetic and Phenotypic Features
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acid, plasma fetuin, truncal fat mass, body mass index, glycated

hemoglobin) are linked to nutrition (height, serum creatinine, bone

mineral density, hand grip strength, truncal fat mass and body

mass index). It is well established that an abnormal nutritional

status with protein-energy wasting in this patient population is

strongly linked to inflammation [31]. Several features were linked

to hormonal status or metabolism (plasma insulin, plasma calcium, S-

triiodothyronine T3, plasma uric acid, plasma fetuin, glycated

hemoglobin); in general, relations between these features and

inflammation have been described previously, but the relation with

plasma calcium is not expected. Finally, high age and smoking are

factors which are associated with inflammation.

Feature selection from the genetic space FII is illustrated in

Figure 2. The learning sets Gz and G{ of the space FII are

linearly separable, i.e., the apparent error AE is equal to zero.

Moreover, the linear separability was preserved during feature

reduction from k~228 to k~55. In contrast, the lowest value of

the average cross-validation error rate CVE&16,9% appeared for

k~81. It should be stressed, that the cross-validation procedure

does not separate fully those feature subspaces that are linearly

separable (Figure 2).

The process of feature selection from the combined phenotypic

and genetic space FIII yielded interesting results shown in Figure 3.

The linear separability in the combined space FIII was found in a

Figure 1. AE and CVE - phenotypic space. The apparent error rate (AE) and the cross-validation error (CVE) in different feature subspaces Fk of the
phenotypic space FI .
doi:10.1371/journal.pone.0086630.g001

Figure 2. AE and CVE - genetic space. The apparent error rate (AE) and the cross-validation error (CVE) in different feature subspaces Fk of the
genetic space FII .
doi:10.1371/journal.pone.0086630.g002

RLS Selection of Genetic and Phenotypic Features
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large range of subspace dimensions from k~285 till k~29. The

minimal feature subspace Fk with the linear separability of the

learning sets for k~29 is composed from both phenotypic (i.e.,

clinical, anthropometric and laboratory) features and genotypes. The

minimal value of the average cross-validation error rate was low:

CVE~1,8%. This minimum value appeared at the dimension

k~60 inside the linear separability zone. The optimal feature

subspace Fk with k~60 was composed from 29 phenotypic

features and 31 genotypes.

The minimal cross validation error rate in the phenotypic space FI

was CVE~25,8% (Figure 1), and the genetic space FII it was

CVE~22,7% (Figure 2). Combining the phenotypic and genetic

factors (features) resulted in a marked reduction of the CVE error

rate to 1,8%. These results indicate that the phenotypic and genetic

factors are not independent and play complementary roles in

describing the inflammatory status of the patients in the MIA

cohort.

The confusion matrices Tk(w�k,h�k) with the mean values obtained

by the leave-one-out procedure for the phenotypic and genetic features

are presented in Table 2 for a few selected feature subspaces. The

lowest error was found for the subspace with dimension k~60 in

agreement with the RLS method of feature selection.

The optimal parameters w�k and h�k may be used to define the

linear (affine) transformation of the feature vectors x (x[F�k ) on the

one dimensional space R1:

y~(w�k)T x{h�k ð3Þ

The above transformation described by equation (3) was applied

in designing the scatter diagram (diagnostic map) showed in Figure 4.

The horizontal axis (called phenotypic fraction) was obtained by

transformation (3) applied for 29 phenotypic features that constitute

the optimal feature subspaces F�60 of the phenotypic and genetic space

FIII . Similarly, the vertical axis (called genetic fraction) of the diagram

Figure 3. AE and CVE - phenotypic and genetic space. The apparent error rate (AE) and the cross-validation error (CVE) in different feature
subspaces Fk of the phenotypic and genetic space FIII .
doi:10.1371/journal.pone.0086630.g003

Table 1. Features that define the optimal phenotypic
subspace Fk characterized by the lowest cross-validation error
(CVE), their factor coefficients w�ki in the minimal value of the
criterion function Yl(w,h) (see Appendix S1, equation 5) and
their correlation coefficients with CRP plasma concentrations.

Feature Factor
Pearson’s
correlation p-value

Serum fibrinogen 1,478 0,483 0,000

Plasma iron 1,066 20,389 0,000

Serum ferritin 1,023 0,238 0,000

Height 0,841 0,098 0,141

Serum interleukin-6 0,806 0,396 0,000

Serum creatinine 20,778 20,070 0,298

White blood cells count 0,758 0,351 0,000

Smoking 0,754 0,106 0,114

Plasma insulin 20,740 0,017 0,796

Plasma calcium 20,657 20,085 0,201

Bone mineral density 20,493 20,084 0,212

Plasma Troponin T 0,493 0,225 0,001

Systolic blood pressure 20,433 20,039 0,559

Handgrip strength 0,404 20,064 0,336

S-triiodothyronine T3 20,393 20,219 0,001

Plasma uric acid 0,301 0,093 0,165

Age 0,289 0,323 0,000

Plasma fetuin 20,278 20,120 0,071

Truncal fat mass 0,237 0,225 0,001

Body mass index 0,237 0,075 0,264

Glycated hemoglobin 20,153 20,088 0,189

doi:10.1371/journal.pone.0086630.t001

RLS Selection of Genetic and Phenotypic Features
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was obtained by transformation (3) applied for 31 genetic features xi

which constitute the optimal feature subspaces F�60.

The diagnostic map showed in Figure 4 can be used for diagnosis

support. A new patient represented by a feature vector x (x[F�k )

can be situated on the diagnostic map as the point y determined by

equation (3). If most of the K nearest neighbors yj of the point y (3)

on the map belong to the set Gz of the high CRP patients, then we

infer that the new patient is inflamed. If most of the K nearest

neighbors yj of the point y (3) on the map belong to the set G{ of

the low CRP patients, then we infer that the new patient is not

inflamed. Similar schemes of decision support are called the K-

nearest neighbours (KNN) in the pattern recognition or as the Case Based

Reasoning (CBR) scheme [18].

The transformation of the multidimensional feature vectors xj

(j~1,:::,m) from the learning sets Gz
k and G{

k and the feature

vector x of a currently diagnosed patient on a two-dimensional

diagnostic map are aimed at obtaining a similarity measure s(x,xj)

[20]. The measure s(x,xj) allows for the determination of the

similarity between the vector x, representing a newly diagnosed

patient, and the m precedents (cases, verified examples) from the learning

sets (clinical database). Such scheme of the decision support based

on the diagnostic maps has been used successfully in the medical

diagnosis support system Hepar [32].

The performance of RLS selection method and CPL classifier

applied in our study was compared to other selection methods and

classifiers (see Section ‘‘Alternative methods for feature selection

and classification’’) using the error rate (fraction of misclassified

objects from the test set), CVE, evaluated in the cross-validation (leave-

one-out) procedure [3]. The results are presented in Tables 3–5.

The methods CFS-FS and mSVM-RFE alongside with RLS select an

optimal subset of features and their prediction power can be

assessed using different classifiers. In contrast, ReliefF and MRMR

methods are ranking procedures and od not provide any intrinsic

criteria for selection of any optimal subset of features. Such

criterion need to be chosen separately. For the purpose of

comparison of all these methods, the optimal sets of features for

ReliefF and MRMR were determined for each classifier separately

as those with minimal CVE for the applied classifier. Thus, the

optimal set (and number) of features for these two methods can

vary with the choice of classifier (see Tables 3–5).

All the applied methods of feature selection were able to reduce

the initial number of features (Tables 3–5). The highest reduction

was obtained by CFS-FS method, which substantially outper-

formed in this respect four other methods. The features selected by

RLS method provided however the lowest average cross validation

error CVE for all three feature spaces. Especially low errors of

1{2% (with standard deviation of 10%) obtained for RLS method

in the combined phenotypic and genotypic feature space (Table 5)

demonstrate its good efficiency. The number of features was

reduced in this case five times. For the space of genetic features,

only RLS selection method combined with CPL classifier was able

to obtain the low average error around 10%, much lower that

values of around 30% or higher obtained by other selection

methods and classifiers (Table 4). In the case of phenotypic

features, the five selection methods had a similar performance, but

RLS method yielded slightly lower errors than the four other

methods (Table 3). MRMR provided in all three feature spaces

lower error values than other methods alternative to RLS,

especially for SVM and CPL classifiers; however, the optimal sets

of features defined according to the minimal CVE value for MRMR

depended on the selected classifier and this reasult would need

further attention and investigation of the scope of these different

optimal sets. It is also worth to notice that by allowing for higher

errors (similar to those obtained for CFS-FS method), one can

easily reduce further the number of features selected by RLS

method as it can be seen in Figures 1–3. Among classifiers, SVM

and/or CPL yielded the lowest errors when combined with RLS or

CFS-FS selection methods. ReliefF method worked also well with

RF and KNN classifiers. The errors related to the application of

mSVM-RFE were similar to those related to ReliefF and CFS-FS

methods (Tables 3 and 4).

The overlap between the features selected by different methods

was not high. For example, among the 15 features selected by CFS-

FS method from the combined phenotypic and genetic features

(Table 5), three were shared among all three methods and seven

with only one of the two other methods; five features were specific

for the CFS-FS method. However, the problem of overlapping

between features cannot be easily interpreted because many

features are more or less correlated and different methods may

select different features fromthose that are mutually correlated.

Therefore, an additional analysis would be necessary to investi-

gated this problem; however, this is outside the scope of this study.

Among the four applied feature selection methods, CFS-FS was

the fastest (computation time of the order of 1 sec). ReliefF and

MRMR (together with the selection of optimal set) needed between

a few and a few tens of minutes (depending on the applied

classifier). The computation time of the RLS method was of the

order of tens of minutes. The mSVM-RFE method had the

computation time of about 20 hours. It should be stressed that the

relatively long computation time of the RLS, mSVM-RFE, ReliefF

and MRMR methods was caused mainly by repeated computation

in the framework of the cross-validation procedure used by these

methods.

Discussion and Conclusions

Feature selection is an integral - but often implicit - component

in statistical analyses. An explicit systematic feature selection

process is of value for identifying features that are important for

prediction, and for analysis on how these features are related, and

furthermore it provides a framework for selecting a subset of

relevant features for use in model construction. The most common

approach for feature selection in clinical and epidemiological

research is based so far on evaluation of the impact of single

Table 2. The confusion matrices Tk(w�k,h�k) (see Appendix S1,
equation 11), for the combined phenotypic and genetic
subspaces FIII with dimensionalities k~285, 92, 60, and 25.

k~285 Gz
k G{

k

vz 89 23

v{ 24 89

k~92 Gz
k

G{
k

vz 104 8

v{ 8 105

k~60 Gz
k

G{
k

vz 110 2

v{ 2 111

k~25 Gz
k

G{
k

vz 95 17

v{ 20 93

doi:10.1371/journal.pone.0086630.t002
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features [4]. In this approach, the resulting feature subsets are

composed of such features (factors) which have the strongest

individual influence on the analyzed outcome (in this case

inflammation). Such approach is related to the assumption about

the independence of the factors. However, in a complex system,

such as the living organism, these factors are more often related

than not related. The role of particular factors in a living organism

depends among others on (time-dependent) environmental factors

and internal conditions, and on (permanent) genetic factors. An

advantage of the relaxed linear separability (RLS) method is that it

may identify directly and efficiently a subset of related features that

influences the outcome and that it assesses the combined effect of

these features as prognostic factors. This characteristic of the

approach presented here is clearly visible in the dataset of

phenotypic features with minimal cross validation error rate,

Table 1: this set contains also features that individually do not

Figure 4. The diagnostic map. Linear separation of the high CRP from the low CRP patients for the cohort of incident dialysis patients in the
optimal feature subspace F�60 of the phenotypic and genetic space FIII .
doi:10.1371/journal.pone.0086630.g004

Table 3. The cross validation error CVE (mean + SD) for different classifiers in the phenotypic space FI and their subspaces
obtained by using five features selection methods (RLS, ReliefF, CFS-FS, mSVM-RFE, MRMR) and five classifiers (RF, KNN, SVM, NBC,
CPL), see Section ‘‘Alternative methods for feature selection and classification’’.

Feature selection
method

Number of
features Classifier

RF KNN SVM NBC CPL

No selection 57 0,231 0,329 0,258 0,302 0,258

+0,422 +0,470 +0,437 +0,459 +0,437

ReliefF * 0,173 0,240 0,160 0,240 0,156

+0,379 +0,428 +0,367 +0,428 +0,362

(25) (28) (26) (3) (26)

CFS-FS 15 0,218 0,196 0,178 0,267 0,191

+0,413 +0,397 +0,382 +0,442 +0,393

mSVM-RFE 26 0,200 0,338 0,151 0,231 0,178

+0,400 +0,473 +0,358 +0,422 +0,382

MRMR * 0,182 0,182 0,169 0,240 0,173

+0,387 +0,387 +0,375 +0,427 +0,379

(30) (12) (11) (21) (8)

RLS 21 0,191 0,311 0,156 0,280 0,138

+0,393 +0,463 +0,362 +0,449 +0,345

*ReliefF and MRMR are ranking procedures. The optimal sets of features for these two methods were determined for each classifier separately; the number of features
(shown in parentheses) corresponds to the size of the subset of features characterized by the smallest cross validation error for the specific classifier.
doi:10.1371/journal.pone.0086630.t003
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correlate to the level of CRP in plasma, the clinical biomarker used

here for discrimination of inflamed and non-inflamed patients.

The RLS method of feature selection is based on the

minimization of the criterion function Yl(w,h) (see Appendix

S1, equation 5) for selected values of the cost level l and repeated

minimizations of the perceptron criterion function W(w,h) (see

Appendix S1, equation 4) in consecutive reduced feature subspaces

Fk (see Appendix S1, equation 7). The CPL criterion function

Yl(w,h) can be defined for different values of the cost level l
(lw0) in the same feature space F . Successive increasing of the

Table 4. The cross validation error CVE (mean + SD) for different classifiers in the genetic space FII and their subspaces obtained
by using five features selection methods (RLS, ReliefF, CFS-FS, mSVM-RFE, MRMR) and five classifiers (RF, KNN, SVM, NBC, CPL), see
Section ‘‘Alternative methods for feature selection and classification’’.

Feature selection
method

Number of
features Classifier

RF KNN SVM NBC CPL

No selection 228 0,502 0,436 0,444 0,493 0,462

+0,500 +0,496 +0,497 +0,500 +0,499

ReliefF * 0,338 0,293 0,347 0,369 0,369

+0,473 +0,455 +0,476 +0,483 +0,483

(22) (76) (82) (26) (39)

CFS-FS 3 0,458 0,427 0,427 0,422 0,427

+0,498 +0,495 +0,495 +0,494 +0,495

mSVM-RFE 140 0,48 0,342 0,356 0,458 0,378

+0,500 +0,474 +0,478 +0,498 +0,485

MRMR * 0,347 0,333 0,280 0,280 0,276

+0,476 +0,471 +0,449 +0,449 +0,447

(21) (70) (38) (21) (25)

RLS 81 0,489 0,418 0,338 0,418 0,169

+0,500 +0,483 +0,473 +0,493 +0,375

*ReliefF and MRMR are ranking procedures. The optimal sets of features for these two methods were determined for each classifier separately; the number of features
(shown in parentheses) corresponds to the size of the subset of features characterized by the smallest cross validation error for the specific classifier.
doi:10.1371/journal.pone.0086630.t004

Table 5. The cross validation error CVE (mean + SD) for different classifiers in the phenotypic and geneticspace FIII and their
subspaces obtained by using five features selection methods (RLS, ReliefF, CFS-FS, mSVM-RFE, MRMR) and five classifiers (RF, KNN,
SVM, NBC, CPL), see Section ‘‘Alternative methods for feature selection and classification’’.

Feature selection
method

Number of
features Classifier

RF KNN SVM NBC CPL

No selection 285 0,293 0,382 0,218 0,293 0,209

+0,455 +0,486 +0,413 +0,455 +0,407

ReliefF * 0,191 0,240 0,187 0,200 0,213

+0,393 +0,427 +0,390 +0,400 +0,410

(80) (2) (54) (16) (61)

CFS-FS 15 0,218 0,196 0,178 0,267 0,191

+0,413 +0,397 +0,382 +0,442 +0,393

mSVM-RFE 153 0,262 0,382 0,156 0,302 0,182

+0,440 +0,486 +0,362 +0,459 +0,386

MRMR * 0,160 0,267 0,129 0,213 0,156

+0,367 +0,442 +0,335 +0,410 +0,362

(25) (1) (44) (27) (39)

RLS 60 0,231 0,378 0,018 0,258 0,018

+0,422 +0,485 +0,132 +0,437 +0,132

*ReliefF and MRMR are ranking procedures. The optimal sets of features for these two methods were determined for each classifier separately; the number of features
(shown in parentheses) corresponds to the size of the subset of features characterized by the smallest cross validation error for the specific classifier.
doi:10.1371/journal.pone.0086630.t005
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parameter l in the function Yl(w,h) allows to reduce increasing

number of features and, as the result, the obtain the descended

sequence of feature subspaces Fk. A feasibility of feature subspaces

Fk can be evaluated on the basis of the cross validation experiment

with the optimal linear classifier LC(w�,h�) (see Appendix S1,

equation 8). The parameters w� and h� of the optimal classifier are

defined on the basis of repeated minimizations of the perceptron

criterion function Wk(w,h) on elements xj of the learning sets Gz
k

and G{
k in subspace Fk.

The application of this method for identifying genetic and

phenotypic (anthropometric, clinical and biochemical) risk factors

that are associated with inflammation was implemented using a

clinical database of patients with chronic kidney disease. A few

important properties of the computation results obtained from this

cohort can be pointed out. The results show, among others, the

scale of the bias of the apparent error (AE) estimator (see Appendix

S1, equation 9). The bias is illustrated as the difference between

the CVE curve and the AE curve (Figures 1–3). The optimal

feature subspace F�k characterized by the lowest CVE error rate

eCVE (see Appendix S1, equation 10) cannot be identified on the

basis of the apparent error AE curve because of this bias. The

minimum of the CVE rate is clear and narrow for the analysis of

genetic data (Figure 2), whereas it is less marked for phenotypic

and phenotypic-genetic data sets (Figures 1 and 3) with CVE curves

fluctuating for a wide range of feature numbers. These two cases

may need an analysis of not only the feature space with minimal

CVE but also the feature spaces with similar, albeit slightly higher

CVE values. It is also interesting to observe that the lowest values

of CVE occur for feature subspaces with zero apparent error rate, if

genetic and phenotypic-genetic feature spaces are analyzed

(Figures 2 and 3), whereas for phenotype feature space the

minimum is within the range of subspaces with non-zero apparent

error rate (Figure 1).

Working with large medical data bases one meets often the

problem of missing data, which was encountered also in our

database. The patients with too many features missing and

features that are measured for too low number of patients must be

excluded. However, with sufficiently many data one can restore

missing values by hypothetical values, and in our study this was

done by the value of the nearest neighbour, separately for the

phenotypic and genotypic features. Another practical problem is

the overfitting of the data that happens when many features are

studied for a relatively low number of patients, and this problem

occurs also in our database: the two sets of patients with different

inflammatory status can be linearly separated as indicated by zero

apparent error for all features in the case of genetic, phenotypic

and combined sets of features (Figures 1–3). Therefore, to provide

a more reliable method for identifying the most predictive subset

of features, the cross validation error was applied together with the

leave-one-out procedure. These two problems preclude actually any

statistical proof of the studied associations between features in our

patient populations and the study should be considered rather as

an example of exploratory analysis for associations that should be

further investigated. We hope that our approach can supplement

the current methods for analyses of such complex data which are

difficult to collect, and, at the same time, represent unique and

medically promising sets of data.

An important characteristic of feature selection methods is the

predictive power of the selected feature set, as assessed in the

present study by cross validation error (Tables 3–5). The RLS

method combined with CPL classifier was of similar effectiveness as

some other methods if applied for phenotypic features represented

mostly by continuous variables (Table 3), considerably better than

all other methods if applied for genetic features represented by

discrete (zero - one) variables, Table 4, and much better than all

other methods if applied for combined phenotypic and genetic

features represented by mixed type mathematical variables

(Table 5). Therefore, the RLS/CPL approach may be considered

as a viable and promising tool for analysis of the extent by which

the genetic pool, and, especially the combination of genetic

variability and phenotypic characteristics of the patient, may

associate with selected features in patient populations.

The computational time for our method depends on two

factors: 1) the number of cases and features, and 2) the repetition

of calculations for the cross-validation method. The actual

computing time for personal computer implementations was in

the order of tens of minutes, and was longer than for some

alternative methods (see Results), but all the computational times

were reasonably short for the current research purpose. However,

the computation time may be a limitation of the RLS method if

applied in the future for data bases with huge amount of data and

many patients, or both, and the parallelization of the code or the

application of main frame computers may be necessary. Our

results suggest that the considerably lower prediction errors

obtained for our approach compared to those yielded by faster

methods, especially for combined genetic and phenotypic data,

make such extensions of the code worthwhile.

The comparison between the optimal feature subspaces F�k of

the three feature spaces (phenotypic, genetic, combined) showed that the

combined phenotypic and genetic subspace can provide a very low

CVE error rate of 2% (Figure 3 and Table 5). Such a low error rate

opens the possibility for effective computer support of medical

diagnosis on the basis of optimal linear combination of selected

phenotypic and genetic features. Moreover, an individualization

ofdiagnosis and/or therapy can also be considered on the basis of

our methods, as, for example, the application of the diagnostic

map (Figure 4). Nevertheless, the results of the current study

should be considered as hypothesis generating and need to be

confirmed in separate evaluations, if possible in another larger

group of patients.

Supporting Information

Appendix S1 Mathematical foundations of the RLS
method of feature selection.

(PDF)
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