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ABSTRACT

Mammalian polynucleotide kinase (mPNK) is a
critical DNA repair enzyme whose 5’-kinase and
3’-phoshatase activities function with poorly
understood but striking specificity to restore 5’-
phosphate/3’-hydroxyl termini at sites of DNA
damage. Here we integrated site-directed mutagen-
esis and small-angle X-ray scattering (SAXS) com-
bined with advanced computational approaches to
characterize the conformational variability and
DNA-binding properties of mPNK. The flexible
attachment of the FHA domain to the catalytic seg-
ment, elucidated by SAXS, enables the interactions
of mPNK with diverse DNA substrates and protein
partners required for effective orchestration of DNA
end repair. Point mutations surrounding the kinase
active site identified two substrate recognition sur-
faces positioned to contact distinct regions on
either side of the phosphorylated 5’-hydroxyl. DNA
substrates bind across the kinase active site cleft to
position the double-stranded portion upstream of
the 5’-hydroxyl on one side, and the 3’-overhang
on the opposite side. The bipartite DNA-binding
surface of the mPNK kinase domain explains its
preference for recessed 5’-termini, structures that
would be encountered in the course of DNA strand
break repair.

INTRODUCTION

Mammalian polynucleotide kinase (mPNK) plays
key roles in repairing DNA backbone breaks that com-
monly result from both damage and repair processes and
that often do not contain the 50-phosphate/30-hydroxyl
termini required for completion of DNA repair.
50-hydroxyl and 30-phosphate DNA ends are frequently
encountered and can be generated by ionizing radiation,
chemical agents and enzymatic action. For instance,
endonucleases Neil1 and Neil2 excise abasic sites leaving
a 30-phosphate (1). DNase II cleaves double stranded
DNA, producing 30-phosphate and 50-hydroxyl termini
(2). DNA 30-phosphate ends also result from exposure
to neocarzinostatin or from cleavage of camptothecin-
trapped Topoisomerase I - DNA adducts by tyrosyl-
DNA phosphodiesterase 1 (Tdp1) (3). Another
common non-canonical terminus, 30-phosphoglycolate,
may be converted to 30-phosphate by Tdp1 (4). Accumu-
lating evidence suggests that mPNK is critical for the
repair of these non-ligatable ends. The essential role
of PNK in DNA damage repair and radio resistance
has been demonstrated both in vitro (5–7) and in vivo
(8–10).
mPNK is involved in the repair of both single strand

breaks (SSB), via the base excision repair (BER) pathway,
and double strand breaks (DSB), via non-homologous end
joining (NHEJ) (11,12). In the course of BER and NHEJ,
mPNK physically interacts with the scaffold proteins
XRCC1 and XRCC4, respectively, by binding to specific
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phosphothreonine sites on XRCC1 and XRCC4 via its
FHA domain (8,13,14).
The crystal structure of mouse mPNK revealed its over-

all architecture (13) including three functional domains:
50 DNA kinase and 30-phosphatase domains, closely asso-
ciated within the catalytic segment (PK) and an
N-terminal FHA (Forkhead-associated) domain. The
kinase and phosphatase possess distinct substrate specifi-
cities and have been shown to function independently of
one another, with the phosphatase having a faster cataly-
tic rate (15). The phosphatase has a minimal substrate
requirement of three nucleotides and will accept either
single-stranded, double stranded, nicked or gapped
DNA substrates (13). The kinase preferentially phospho-
rylates 50-hydroxyl groups within DNA nicks, gaps or at
50-recessed DSBs, discriminating against single stranded
or blunt double-stranded 50-termini (13,16). This kinase
substrate preference is consistent with roles in the repair
of nicks, as well as single nucleotide gaps generated by
Neil-family endonucleases (7,17). The unique mPNK sub-
strate preference also suggests a specific role for the kinase
in DSB repair by NHEJ. In NHEJ, mPNK may regener-
ate recessed 50-hydroxyl termini, while single stranded or
blunt double stranded 50-hydroxyl termini are processed
by the nuclease Artemis (18).
The mPNK FHA domain is a critical phosphopeptide-

binding module found in many DNA repair proteins. In
contrast to most currently characterized FHA domains,
which in addition to phosphothreonine (pT) have a sec-
ondary specificity site at pT+3, the mPNK FHA domain
requires a negatively charged sequence N-terminal to the
phosphothreonine, due to electrostatic complementarity
between the acidic peptide and a positively charged pep-
tide-binding surface of the FHA (13). The FHA domain is
attached to PK by a 33 amino-acid linker, which was
undefined in the crystal structure and was proposed to
act as a flexible tether between the FHA and PK domains
in the solution (13). This flexibility may be important in
facilitating interactions between mPNK and its diverse
protein partners and DNA substrates.
The effective orchestration of DNA end repair by

mPNK critically relies on the recognition of the correct
DNA termini for subsequent processing. Here we measure
the DNA binding and 50 kinase activities of a panel of
site-directed mutants surrounding the kinase active site.
This data, together with shape and structural information
for mPNK-DNA complexes from SAXS experiments,
characterize mPNK–kinase substrate interactions. The
bipartite DNA-binding surface surrounding the mPNK
kinase active site revealed by these studies explains
the preference of mPNK for the internal 50-hydroxyl ter-
mini, which it must recognize during DNA end repair
processes.

MATERIALS AND METHODS

Cloning, expression and purification of mPNK constructs

Mutants of mouse PNK were cloned with an N-terminal
His6 tag to facilitate purification. Mutations, described in
the text, were introduced by PCR mutagenesis or using the

QuikChange II kit (Stratagene). Proteins were overex-
pressed in E.coli BL21 Gold cells in a 2� YT medium,
induced with 0.1mM IPTG and grown for 18 h at 228C.
Cells were lysed by treatment at 08C with chicken egg
white lysozyme in a lysis buffer (250mM NaCl, 50mM
Tris pH 8.0, 1% BME) in the presence of proteinase inhib-
itors (0.1mg/mL PMSF, benzamidine and leupeptin),
followed by sonication (8� 2000). Cleared lysate was incu-
bated with NiNTA beads (Qiagen) for 2 h. PNK was
eluted by a gradient of imidazole (10–250mM). The
protein was further purified by size exclusion chromatog-
raphy on a Superdex 75 column (Amersham) in 150mM
KCl, 50mM Tris pH 8.3, 1mMDTT. The purified protein
was exchanged into 150mM KCl, 10mM Tris (pH 8.5),
1mM DTT.

Kinase activity assays

DNA oligonucleotides (IDT) were purified by ion
exchange on a Source Q column (Amersham) in 10mM
NaOH with a gradient of 1M NaCl, desalted using Sep-
Pak cartridges (Waters) and annealed by slow cooling
from 958C in 150mM NaCl and 10mM HEPES
(pH 7.5). Kinase activity was measured as previously
described (13). Briefly, 10 mL reactions containing 2 mM
gapped DNA substrate, 40 mM ATP, 5 mCi g32P-ATP,
80 mM succinate pH 5.5, 10mM MgCl2, 1mM DTT and
PNK (0.5, 1, 2 and 4 mM) were incubated 4min at 378C
and stopped by addition of a 10 mL urea loading buffer
(8M urea, 1� TBE, 20% glycerol, bromophenol blue)
and heating at 958C. The reactions were run on a 12%
denaturing polyacrylamide gel and quantitated by
autoradiography.

DNA-binding assays

DNA binding to mPNK (wild type and mutants) was
measured by steady-state fluorescence spectroscopy,
as described previously (13).

SAXS data collection and evaluation

Solution scattering data were collected at the SIBYLS
beamline BL 12.3.1 ALS Berkeley, California, and pro-
cessed as previously described (19). Tunable wavelength
(�) and the sample-to-detector distances were set to
1.0–1.5 Å and 1.5m, respectively, resulting in scattering
vectors (q) ranging from 0.008 Å�1 to 0.31 Å�1 for
q=4�sin(�)/�, where 2� is the scattering angle. SAXS
data at short and long time exposures (6 s, 60 s) were
merged to define the entire scattering profile. Different
protein concentrations were tested for aggregation and
examined by Guinier plots (20). The radius of gyration
(RG) was derived by the Guinier approximation
I(q)=I(0) exp(�q2RG

2/3) with the limits qRG< 1.3.
The curves measured for different protein concentrations
(1.9–7.7mg/ml) displayed a concentration dependence
arising from interparticle interaction and interference-
free scattering profiles were estimated by extrapolating
the measured scattering curves to infinite dilution.
Observed molecular weight for the PNK sample was esti-
mated by calculating the normalized scattering intensity
at zero angle [q=0; I(0)] relative to four standard
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proteins: lysozyme, xylanase, BSA and glucose isomerase
(21). GNOM (22) was used to calculate the pair-distance
distribution functions, P(r), and define the maximum
dimension of the macromolecule, Dmax.

Scattering data were collected for free DNA
substrates (H1 and H3, 33 mM each), for free proteins
(mPNK 1.9–7mg/ml and PK 1.9–7.7mg/ml) and for
protein:DNA complexes in 100mM KCl, 33mM Tris
pH 7.5, 0.7mM DTT, 0.7mM MgSO4. The DNA
sequences were TATGATACGCAGTATCATACCAAT
(H1) and TATGATAC GGCGCCTGGGGGCACCCC
AGGCGCCGTATCATACCAAT (H3) (single-stranded
loops and 30 tails are highlighted in bold). The relative
amounts of protein and DNA used in preparation of com-
plexes were determined by titration on a 10% native poly-
acrylamide gel at points where all the free DNA was
shifted into the protein:DNA band.

Envelope modeling

The SAXS envelopes were reconstructed from the experi-
mental data using DAMMIN (23). Twenty bead models
obtained for each SAXS experiment were averaged by
DAMAVER (24) to construct the average model repre-
senting general structural features of each reconstruction.
Bead models were converted to volumetric SITUS format
with the pdb2vol kernel convolution utility (25). To better
define regions of the envelopes associated with the DNA,
we calculated difference maps by first aligning the enve-
lope obtained from the free protein with those obtained
from the two complexes (PK/H1 or PK/H3). Subtraction
of the aligned maps was carried out to define regions of
difference density.

Rigid body modeling of macromolecular assemblies with
map objects (EMAP)

The EMAP docking approach was used to generate
PK–substrate complex models and to rank these
models based on their fit to the experimental data
using CHARMM (26) (http://www.charmm.org/html/
documentation/c34b1/emap.html). Both the protein and
DNA substrates were represented as rigid domains
with intact van der Waals and electrostatic properties
and were moved as independent objects. The grid-
threading Monte Carlo method was used to sample 1200
orientations of H1 over the PK surface, followed by
an energy-based docking search. This strategy produced
conformationally reasonable docked assemblies with a
minimum of steric clashes. The theoretical scattering
profile, RG and the corresponding fit to the experimental
scattering curve were calculated using the program
CRYSOL (27).

Applying molecular dynamics on domains as rigid bodies

We developed a rigid body modeling strategy
‘BILBOMD’, in which molecular dynamics (MD) simula-
tions were used to explore conformational space (28).
Typically, we performed the MD simulation on the
inter-domain linkers at high temperature, where the addi-
tional kinetic energy prevents regions from becoming
trapped in a local minimum. The MD simulations

provided an ensemble of molecular models from which
SAXS curves were calculated by CRYSOL (27) and com-
pared with the experimental curve. Using this method and
strategy, different conformations of the FHA in mPNK
were produced and validated against the experimental
data.
The mPNK crystal structure (PDB ID: 1yj5) was used

to construct the initial atomic models by connecting the
C-terminus of the FHA domain with the phosphatase
domain. This missing linker region (110–140), undefined
in the crystal structure, was modeled as a random coil.
CHARMM (26) with the all-atom force field version
27.0 (29) was used for molecular dynamics (MD) simula-
tion. The initial atomic model was taken as the starting
point of the simulations. Only the modeled linker atoms
were allowed to move, while the FHA module at the
extremity was treated as a rigid body, with no internal
motion. The simulations were performed as previously
described (30). A similar rigid body modeling strategy
was used in the exhaustive conformational search of
PK:DNA complexes with two distance restraints. The
DNA 30-overhang was allowed to be flexible and to be
in close proximity (5 Å) to Lys483. The 50-hydroxyl
group of the DNA substrate was restrained to be �2 Å
from OD1 of Asp396.

Minimal Ensemble Search (MES)

Considering the flexibility of the FHA domain or the
presence of uncomplexed PK in PK/DNA samples, the
coexistence of different conformations that contribute to
the experimental scattering curve was taken into account.
Based on the ensemble optimization method described by
Bernado et al. (31), we developed an algorithm that
searches for the minimal ensemble (MES) of the confor-
mations from the pool of all generated conformations in
previous MD simulations (28). The multiconformational
scattering I(q) from such a minimal ensemble was com-
puted by averaging the individual scattering profiles from
the conformers:

IðqÞ ¼
1

NðI1ðqÞ þ I2ðqÞ þ . . . : :þ INðqÞÞ
,

where I1,2,3, . . . ,N(q) were the scattering profiles from the
single conformers and the momentum transfer.
A genetic algorithm-based search was used to select an

appropriate ensemble from a pool of all generated confor-
mations. The scattering curves from all structures in the
pool were pre-computed and the selection was performed
using these curves. The final model achieved the best fit
to the experimental curve Iexp(q) by minimizing the dis-
crepancy w2 between the experimental and calculated
multi-conformational curve:

�2 ¼
1

K� 1

Xk
j¼1

�IðqjÞ � IexpðqjÞ

�ðqjÞ

� �2
,

where K was the number of experimental points, s(q) were
standard deviations and m was a scaling factor (31).
Comparison of the structural properties of the selected

models in the ensemble subset allowed us to distinguish
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the degree of flexibility of the experimental system.
As shown in Figure 3D, the spread of structural
parameters RG, CaRMSD for the MES-derived ensembles
relative to those determined for the entire pool, correlated
strongly with the level of disorder. We observed large dif-
ferences between structural parameters of the selected
ensemble models for flexible/disordered systems like the
FHA domain in mPNK.

RESULTS

PNK interaction with its kinase substrate

The kinase active site of mPNK is located in a deep cleft
(Figure 1A). Inspection of the electrostatic potential
surface of the active site reveals two positively charged
surfaces flanking the catalytic Asp396, which acts as a
general base to activate the substrate 50-hydroxyl group
for phosphorylation. ‘Surface 1’ contains Arg395,
Arg403 and Arg432 while ‘Surface 2’ consists of Arg482
and Lys483 (Figure 1A). Likewise, the mPNK DNA sub-
strate may also be viewed as a bipartite structure. The
preferred kinase substrate is a dsDNA with at least eight
base pairs, and a 30 overhang of four or more bases (13).
The substrate 50-hydroxyl is thus flanked on two sides. The
‘upstream’ side is the double-stranded portion, and the
‘downstream’ side is the 30-overhang, which can be
either single- or double-stranded (Figure 1C).

The effects of kinase domain mutations on substrate
binding and catalysis

To test the role of the structurally implied DNA binding
surfaces, we used site-directed mutagenesis to perturb
the two DNA-binding areas. One set of mutations was
designed to specifically disrupt interactions with ‘Surface
1’: R395A, W401A, R403A, R403E, T423A and R432A.
Although Thr423 and Trp401 are not basic, they were
proposed to have a role in DNA binding (13). Thr423 is
conserved in T4 PNK and interacts with a backbone phos-
phate. Trp401 binds a sulphate ion in the native mPNK
structure via the partially positively charged edge of its
indole ring. A second set of mutations was constructed
to target ‘Surface 2’: R482A, K483A, K482/R483AA
and K482/R483EE. Additionally, the catalytic Asp396
(D396N) was mutated.
To characterize the mutants’ affinity for a minimal

DNA substrate (H1), we initially employed a fluorescence
assay, where intrinsic mPNK tryptophan fluorescence
is quenched upon ligand binding (Figure 1B, Table S1).
Dissociation constants (Kd) were determined for all
mPNK mutants binding to H1, the model substrate with
a recessed 50-hydroxyl. Binding of mPNK and two
mutants (R432A and K482/R483EE) to DNA hairpin
H1, a blunt-ended analog of H1 was also measured. The
general trend observed was a decrease in binding affinity
for most mutants relative to wild type. The most notable
differences were found for R395A, D396N, R403A,
R403E, K482/R483AA and K482/R483EE binding to
H1. A comparison of binding affinities for recessed
versus blunt-ended 50-hydroxyl termini revealed that
both the wild type and R432A binding to the blunt-

ended substrate was weaker than to the recessed one.
R482/K483EE, however, exhibited the reverse pattern,
showing a binding preference for the blunt-ended DNA.

To more precisely analyze the mPNK mutants,
we assayed the kinase activity of all mutants on a model
substrate with two phosphorylatable 50-ends: a recessed
one within an internal 1-nucleotide gap and a blunt one
(Figure 1C–F). mPNK selectively phosphorylates the
internal 50-end much more readily than the blunt 50-end.
Reactions were carried out over a range of enzyme con-
centrations and phosphorylated products were visualized
by denaturing PAGE and autoradiography. Enzyme reac-
tivity levels were analyzed in two ways. First, the efficiency
of phosphorylation of the internal and the blunt 50-end for
each mutant was compared to the wild-type control
(Figure 1E). Second, we compared the efficiency of phos-
phorylation of the internal site relative to the blunt site,
normalized to the reactivity of the internal 50-hydroxyl
at the highest protein concentration for each mutant
(Figure 1F). In this way, we could detect changes in the
relative activity on two different substrate ends in a single
reaction and avoid the introduction of additional error
from the wild-type data.

This analysis revealed that all the mutants except
D396N retained activity on the recessed 50 terminus that
was comparable to wild-type PNK. In D396N, the cata-
lytic aspartate responsible for activation of the substrate
50-hydroxyl is replaced with an isosteric asparagine.
This mutant exhibited higher selectivity for the recessed
50-hydroxyl and a dramatic decrease in the overall kinase
activity to 23% of WT (Figure 1E and F). The significant
drop in catalytic activity in the D396N mutant is expected
due to the loss of the general base, and the residual activity
observed may be attributed to proximity and orientation
effects in the active site. The contribution of these factors
to catalysis varies in members of the adenylate kinase
family. For example, in 6-phosphofructo-2-kinase (PDB:
1bif) and in human UMP/CMP kinase (PDB: 1tev), the
residue corresponding to D396 is glycine, suggesting that a
general base at this position is not required in these
two enzymes (32,33). The complete absence of phosphor-
ylation of the blunt 50-hydroxyl by D396N PNK also sup-
ports the idea that Asp396 is required for substrate
binding, since the loss of this interaction demands
binding of the downstream portion of DNA. Moreover,
the binding affinity of D396N for the recessed 50-hydroxyl
substrate is significantly lower than for wild type, confirm-
ing Asp396 as a crucial binding determinant (Table S1).

While activity levels on the recessed terminus were
similar to wild type, there was a significant variation
among mutants in activity on the blunt terminus. In par-
ticular, mutation of residues Thr423, Arg432, Arg395 and
Trp401 resulted in markedly increased preference for
the recessed 50-hydroxyl relative to wild-type mPNK.
Mutation of Arg403 to alanine did not have a noticeable
effect, but a more radical substitution, R403E, increased
the selectivity for the recessed 50-hydroxyl. While mutation
of Arg482 did not affect the substrate specificity, mutants
involving Lys483 displayed enhanced preference for the
blunt 50-hydroxyl.
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Figure 1. Probing mPNK–DNA interactions by site-directed mutagenesis. (A) View of the mPNK kinase highlighting the residues mutated in this
study (left) and the positively charged surfaces surrounding the active site cleft (right). (B) Fluorescence titration of mPNK with hairpin substrates
(filled triangle: blunt and filled square: recessed). The inset figure shows a sample raw data plot for the recessed hairpin substrate. (C) Schematic
representation of the DNA substrate used in the kinase activity and binding assays. (D) Representative gels of kinase assays. The red arrow indicates
phosphorylated 20-mer oligonucleotide and the blue arrow indicates the 14-mer oligonucleotide of the model substrate (C), corresponding to the
recessed and blunt 50-hydroxyl termini, respectively. (E) Comparison of the overall kinase activity of PNK mutants on blunt (blue bars) and recessed
(red bars) 50-hydroxyl termini, relative to wild-type PNK. Overall activity is calculated as an average of ratios of mutant to wild-type activity,
weighted by band intensity for mutant activity at each point. (F) Results of the kinase activity assay of mPNK mutants on the model substrate.
Graphs depict relative phosphorylation level as a function of protein concentration, normalized to the activity of each mutant on the recessed 50OH
at the highest protein concentration. The red and blue curves correspond to the recessed and blunt 50-hydroxyl termini, respectively.
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A general trend was observed for the group of
‘upstream’ mutations where selectivity for the recessed
50-hydroxyl increased relative to wild-type mPNK.
Whereas wild-type mPNK lost its preference for the inter-
nal 50-hydroxyl at high enzyme concentrations, mutants
within ‘Surface 1’ (R395A, D396N, T423A, R432A and
W401A) remained selective for the internal 50 terminus
even at the highest enzyme concentrations tested.
Conversely, mutation of the residues in ‘Surface 2’,

Arg482 and Lys483, resulted in a different pattern of
reactivity. Mutation of Arg482 to alanine did not affect
substrate specificity, but replacing Lys483 with alanine or
glutamate (K483A, R482/K483AA, R482/K483EE)
resulted in a loss of specificity for the recessed 50-hydroxyl.
In fact, at the higher protein concentrations, the double
mutants showed a slight (�12%) preference for the blunt-
ended substrates (Figure 1E and F). Binding affinity for
the recessed 50-hydroxyl to R482A and K483A mutants
were only slightly lower than for the wild-type, but the
double mutants exhibited significantly weaker binding
(Table S1). Additionally, the binding preference of
the R482/K483EE mutant for blunt-ended over the
50-recessed DNA confirms the interaction of this area
with the downstream portion of the substrate.
Discrimination against the 50-recessed hydroxyl may be
due to electrostatic repulsion between the DNA backbone
and the glutamates in R482/K483EE.
We note that the sequences of the two phosphorylated

DNA strands differ (Figure S1). However, in control
experiments on substrates with the same sequence at
both 50 termini, the trend described above was observed
(data not shown), ruling out sequence specificity as
the reason for the enzyme’s preference for recessed
50 hydroxyl.

Structural analysis of mPNK binding to DNA in solution

To experimentally characterize solution structures for
mPNK complexes, we employed SAXS to define the
shapes and conformations of mPNK complexes including
their functional flexibility. The interactions of mPNK
complexes with DNA substrates have consistently eluded
crystallographic experiments and typify functionally flex-
ible systems that do not form ordered crystals, but are
suitable for SAXS analyses (19,34,35). To facilitate the
interpretation of the solution scattering data, we used
two DNA hairpins (H1 and H3) based on the minimal
preferred substrate, but differing in length of the double-
stranded portion (8 and 19 base-pairs, respectively). Based
on earlier work, the protein was suspected to possess
intrinsic domain flexibility (13), and this question was
addressed by SAXS analysis prior to determination of
the complex structure.

Domain flexibility in mammalian PNK

To test the domain flexibility of mPNK, we examined
X-ray scattering by mPNK constructs. SAXS experiments
indicate that the FHA domain of PNK is flexibly attached
to the catalytic (PK) segment. mPNK has an extended
maximal protein dimension (Dmax) and RG values (calcu-
lated based on Guinier plots, Figure 2B) of �150 Å

and 35.3� 0.2 Å, respectively. This is consistent with
hydrodynamic studies (36), but significantly larger than
values from the crystal structure (Dmax �105 Å and
RG=30.9 Å: PDB 1yj5) (Table 1). Furthermore, the
FHA domain shows large-scale conformational changes,
based upon the broadened P(r) function and elongation of
the P(r) tail, a characteristic of an extended conformation
(Figure 2C). To test if partial dimerization explains the
experimentally observed elongation, we performed two
independent experiments. First, measurement of intensi-
ties at zero angles and four reference proteins to estimate
the molecular weight of PNK (see Experimental Proce-
dures) showed mPNK to be a monomer in solution.
Second, the P(r) function for PK, derived from solution
scattering (Figure 2C), indicates a globular, less extended
particle with a smaller Dmax of �110 Å (Table 1). As
expected, the 14-residue, solvent-exposed N-terminal tail
resulted in some residual elongation in the P(r) function,
consistent with most of the extension of full-length mPNK
coming from the FHA domain.

To further test mPNK flexibility in solution, we
used rigid body modeling. In our strategy, a molecular
dynamics (MD) simulation was used to probe the
conformational distribution of FHA that best matched
the solution scattering data (see ‘Materials and methods’
section). Based on several thousand conformations of
mPNK and their calculated SAXS profiles, the SAXS-
validated best-fitting model (w2=2.1) had the FHA
linker in an extended conformation (Figure 3A and B).
Considering the extended and flexible nature of the
FHA linker, conformer combinations were selected using
a minimal ensemble search (MES) (28) approach and a
mixture of two conformers fit the data better (w2=1.8)
than the single model. Fits improved for mixtures of three,
four or five conformers (w2=1.5 for the assembly of five
conformers) (Figure 3A and C). Aside from the variation
of the selected conformers (Figure 3C), the broad range of
their calculated RMSD and RG values (Figure 3D) indi-
cated that in solution the FHA domain is not held in a
fixed orientation with respect to the rest of the protein. By
contrast, the atomic model of PK matched its experimen-
tal scattering curve (w2=2.0) (Figure 2A). For the PK
solution structure, the N-terminal extension (Figure 5C)
is important to match the data in the entire q range.
Removal of this extension significantly diminished the
goodness-of-fit to w2� 4.5, consistent with the extended
character of the FHA linker.

Visualization of the PK/DNA complex

To test the effect of DNA binding to mPNK, we examined
x-ray scattering results with the PK catalytic segment. We
reasoned that removal of the mobile FHA would facilitate
interpretation and comparison of SAXS parameters to
structural models. The properties of the free PK in solu-
tion were compared to complexes of PK with the short
(H1, 8 bp) and long (H3, 19 bp) DNA hairpins.

We examined differences between the PK and PK/DNA
complexes (Figure 2). The significant shoulder in the P(r)
function at r� 50 Å in the DNA-containing complexes
indicates binding of DNA to PK, with greater differences

6166 Nucleic Acids Research, 2009, Vol. 37, No. 18



for the longer DNA (H3) (Figure 2C and Table 1). To
visualize the three-dimensional shapes of the PK/DNA
complexes in solution, we calculated their SAXS envelopes
and compared them with those calculated for free PK.
Single envelopes showed only slight variations between
independent runs (Figure 4). The difference between the
envelopes occurs since fitting the scattering curve does not
suggest a single structure and averaging is needed to con-
struct an accurate model for the observed scattering.
The average envelopes for free PK match the shape of
the PK domain, with the knob-like protrusion at the top
corresponding to the solvent exposed N-terminal tail
(Figure 5C). Envelopes constructed for PK/H1 and PK/
H3 also displayed this N-terminal extension, with an

additional feature visible at the opposite extremity of the
model. This region is larger for the longer DNA
(Figure 4B), indicating that this part of the model corre-
sponds to the position of DNA. Based on the shape dif-
ferences in the SAXS envelopes, we conclude that both
DNA hairpins are bound to the kinase with one end
extending away from the protein into solvent.
To further test the position of DNA predicted from

SAXS envelopes, we performed a validation of the exhaus-
tive search of the protein–DNA interfaces by an EMAP
docking approach (see ‘Materials and Methods’ section).
In this procedure, the PK position was fixed and the H1
DNA was docked to PK by applying a grid-threading
Monte Carlo sampling approach. 1200 orientations of
H1 were sampled over the PK surface (Figure 5A), and
these were further refined by an energy-based docking
search. Theoretical scattering profiles of these models
were calculated and the models were scored based on
their fit with the experimental scattering profiles. The
best-fit model has w2=3.8 and superimposes well with
the SAXS envelopes. The DNA 50-end is located in close
proximity to the kinase domain while the hairpin loop at
the opposite end of the DNA points to the solvent
(Figures 5C, 6A and B). The two best-fit models show
similar positions of the H1 DNA relative to PK, however,
the DNAs are bound in opposite orientations (Figure 5C).
This comparison suggests that SAXS data alone are not
sufficiently sensitive to distinguish between DNA models
in either of these two orientations.

Figure 2. Solution structural information from X-ray scattering data. (A) Experimental SAXS curves of the mPNK and PK-assemblies (mPNK:
black, PK: blue, PK/H1: violet, PK/H3: green). Red line shows the theoretical scattering from the atomic models shown in Figure 3C: mPNK and
Figure 5C: PK and PK/DNA complexes. (B) Guinier plots for the experimental data with linear fit (orange line) in the limit qRG > 1.3. (C) Distance
distribution functions of the mPNK, PK and PK/DNA complexes computed from experimental SAXS data shown in the same color scheme as panel
A. The P(r) function for crystal structure of mPNK (PDB 1yj5) is shown in red. The P(r) functions are normalized to unity at their maxima.

Table 1. Global SAXS parameters for experimental and theoretical

data

Assembly RG (Å)a Dmax (Å)b w2 single
modelc

mPNK 35.3� 0.2 �150 2.1/1.5d

mPNK (crystal structure) 30.9 105 2.6
PK 28.1� 0.1 �110 2.0
PK/H1 31.0� 0.3 �130 2.5
PK/H3 35.4� 0.2 �140

aRG radius of gyration given by the Guinier approximation (20).
bDmax maximum protein distance estimated from P(r) function.
cThe goodness of fit w2 for the best-fit atomic model.
dMulticonformational fit w2 for MES models.
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To test the implications of the biochemical results for
mPNK solution conformations, we performed an exhaus-
tive conformational search applying two biochemically
based distance restraints. One restraint was applied to
keep the 50-hydroxyl within �2 Å from OD1 atom of the
general base, Asp396. The second restraint was applied to
maintain at least one phosphate of the flexible DNA 30

overhang to within �5 Å of Lys483. Two best-fit models
of PK/H1 complex gave an excellent fit to the experimen-
tal data (w2=2.5, Figure 2A) and also fit well into the
ab initio SAXS envelope (Figure 5C).

DISCUSSION

An accurate solution structural model for mPNK-DNA
recognition

Detailed insights into the catalytic mechanism of enzymes
such as mPNK that have functionally important flexibility
have been hindered by a lack of structural information for
enzyme–substrate complexes. For such systems, we devel-
oped and herein present and apply an approach that uses

structural information from small angle X-ray scattering
together with detailed functional data from a panel of
site-directed mPNK mutants to test and refine models of
mPNK–substrate recognition. Our analysis began with the
classification of mutants into two groups based on their
specificity for either blunt ended or internal/recessed
50-ends. The ‘Surface 1’ group showed enhanced selectivity
for the internal 50-end compared to wild type. We suggest
that this enhanced specificity may result from a deficiency
in recognition of the ‘upstream’ portion of the DNA, and
thereby conclude that the mutated residues play a role in
the recognition of this region. In contrast, mutation within
‘Surface 2’ led to a reduced selectivity for the recessed
50-end compared to a blunt-ended substrate, indicating
that this region may be critical for recognition of the
downstream portion of the substrate.

Our SAXS-based model of an mPNK–substrate com-
plex (Figure 6A) builds upon existing crystal structures
to explain the biochemical and mutational results. The
DNA-binding surface of the kinase in solution is structur-
ally complementary to the substrate. Thus, D396 interacts

Figure 3. FHA domain mobility in solution. (A) Comparison of discrepancy with experimental data (w2) values for 6000 mPNK models with their
RG values. The best fit model within the region of the experimental RG value (35� 0.2 Å) is indicated by the red circle. Green circles indicate MES-
selected models, shown in panel (C). Inset: 6000 models of mPNK conformers colored blue superimposed on PK shown in cartoon representation.
(B) Best fit structure for mPNK, obtained by conformational sampling, matching experimental data with w2=2.1. (C) Five MES-selected models,
representing the conformational space sampled by the FHA domain. The models were superimposed with their PK domains, shown in surface/ribbon
representation. In (B) and (C), the kinase domain is in yellow, phosphatase in blue and FHA in green. (D) Comparison of discrepancy (RG) values
for all 6000 mPNK models with their RMSD values referenced to the best fit structure shown in (B) (red circle). MES-selected models are indicated
by green circles.
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with the 50-OH, the ‘upstream’ portion of the substrate
binds to ‘Surface 1’, and the downstream structure con-
tacts ‘Surface 2’ (Figure 1A and 6A). The orientation of
the substrate was identified with the use of two DNA
hairpins of different lengths.

In the ‘Surface 1’–‘upstream’ interaction, R395 and the
partially positively charged edge of the W401 indole ring
are positioned to make electrostatic contacts with the
phosphodiester backbone of residues 2 nucleotides 30- to
the 50-hydroxyl terminus. A positively charged surface
patch formed by Arg403 and Arg432 is more distant
from the site of catalysis, interacting with the double-
stranded part of the substrate around base pairs 6–8
(Figure 6A and B). This provides an explanation for the
minimal substrate length requirement of eight base pairs
(13,16). Mutations of Arg432 to alanine and Arg403 to
glutamate resulted in substantially higher selectivity for
an internal 50-hydroxyl compared to a blunt-ended
substrate.

Disruption of the second positively charged patch,
‘Surface 2’ (Figure 1A), results in a significant reduction
in specificity for the internal 50-end compared to the blunt
end. The effect is most dramatic for mutation of Lys483.

Arg482 appears to be less important, possibly due to being
farther from the active site than Lys483.
We used the biochemical information that we derived

for mPNK to formulate distance restraints to guide the
docking of DNA and mPNK molecular models into the
SAXS data. We introduced two conservative restraints,
one which restricted the 50-hydroxyl of the DNA substrate
to be near Asp396 and one which restrained the 30 over-
hang to be near Lys483. These restraints not only helped
to ensure that the substrate was docked into the kinase
active site in a biochemically reasonable manner but also
gave models that fit the SAXS data significantly better
than models derived from unrestrained rigid body docking
(Figure 5).

Structural basis for the differential binding specificities
of mammalian and T4 PNK

Mammalian polynucleotide kinase and its bacterial
ortholog, T4 polynucleotide kinase, display strikingly dif-
ferent kinase substrate preferences. While the mammalian
enzyme prefers recessed and internal 50-hydroxyl groups
within double stranded substrates, the bacterial enzyme
strongly prefers single stranded 50-hydroxyl ends.

Figure 4. DNA binding to the catalytic component of mPNK. (A) Five representative DAMMIN models of PK, PK/H1 and PK/H3 assemblies are
shown in volumetric SITUS format. (B) Two views of the average SAXS envelopes rotated by 908 are shown. Bottom panel shows experimental
difference maps for PK/H1–PK or PK/H3–PK/H1, respectively. In the bottom left image, the PK/H1 envelope is shown in grey, while the PK
envelope is shown as yellow mesh. In the bottom right image, the PK/H3 envelope is in green while the PK/H1 is in yellow mesh. In both images the
difference between these two envelopes is displayed in purple.
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Crystallographic studies of the T4 kinase domain bound
to short oligonucleotide substrates reveal that three
nucleotides at the 50 terminus of the substrate bind
within a deep cleft leading to the active site (37). The
mPNK active site, however, is much more open than that
of T4, due to a structural difference in the a9-loop-a10
segment. In T4, this region protrudes over the active site
and forms a barrier that separates the DNA andATP bind-
ing grooves and precludes binding of a double-stranded
substrate. In mPNK, the truncated a9-loop-a10 region
can dock against the DNA major groove, allowing access
of the 50-hydroxyl to the kinase active site without distor-
tion of the double-stranded DNA (Figure 6B and C).

Implications for 5’DNA end repair

The preference of the mPNK kinase domain for internal
or recessed 50-ends matches the DNA substrates that the
enzyme will encounter in the repair of both single-strand
and double-strand breaks. The repair of certain single-
strand breaks is particularly interesting in that both the
kinase and phosphatase activities of mPNK may be
required. For example, camptothecin induces topoisom-
erase I-DNA adducts that are cleaved to 30-phosphate/
50-hydroxyl-containing DNA nicks by the phosphatase
TDP1 (3). The arrangement of the two active sites,
which are separated by �40 Å, could not simultaneously

Figure 5. Rigid body modeling of PK/DNA complexes. (A) Unrestrained rigid body modeling of the PK/H1 DNA complex. The 1200 PK/H1
models generated through the unrestrained EMAP procedure shown on the left with the H1 DNA in transparent red tube representation. PK is
shown as ribbons with the FHA linker: cyan, phosphatase: blue, kinase: yellow. A comparison of the w2 values for all modeled assemblies with their
RG values is plotted in the right panel. Two best-fit models within the region of the experimental RG value (31.0� 0.3 Å for PK/H1) are indicated by
red and cyan circles and shown in the panel (C). Two views (rotated by 908) of the first best-fit PK/H1 model are shown superimposed on its
envelope, with similar views of the free PK structure (C). (B) Molecular dynamics modeling of the PK/H1 complex restrained by SAXS data and
biochemical restraints. The superimposition of the 6000 PK/H1 complexes modeled through the restrained BILBOMD procedure is shown on the left
and the w2 vs. RG values for these complexes are plotted in the right panel. Two best-fit models are indicated by the red and cyan circles and shown
in panel (C). (C) Best fit models for PK and the PK/H1 complex from unrestrained and restrained refinements, superimposed on corresponding
average SAXS envelopes. Left panel shows comparison of two best-fit models from unrestrained and restrained refinements.
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interact with 30-phosphate and a 50-hydroxyl within a nick
or single-nucleotide gap. The phosphatase-active site
binds its substrates with much higher affinity than the
kinase domain, suggesting that engagement of the
phosphatase-active site may be the first step in the repair
of 30-phosphate/50-hydroxyl single-strand breaks (15).
Experiments monitoring the repair of these ends suggest
that the 30-phosphate end must be bound, dephosphory-
lated and released before the 50-hydroxyl end can be
bound by the kinase domain. Binding of substrate to the
phosphatase active site sterically inhibits binding of a
second substrate to the kinase active site (15), likely due
to the fact that the two active sites are located on the same
face of the mPNK catalytic domain. The orientation of the
mPNK kinase substrate suggests that the ‘downstream’
regions of the substrate would protrude over the phospha-
tase active site, offering a possible explanation for the inhi-
bition of the kinase domain by substrate binding at the
phosphatase active site. PNK recruitment to single strand
breaks in cells requires interactions with CK2-phosphory-
lated XRCC1 via the PNK FHA domain (8). Recent work
by Ali et al. suggests that two molecules of PNK can bind
to a single XRCC1, enabling one copy to act as the kinase,
and the other as a phosphatase (38). Whether PNK or
XRCC1 binds first to the strand break is controversial.
Experiments by Parsons et al. (39) indicated that bind-
ing to damaged DNA substrates precedes binding by
XRCC1, i.e. PNK binding to DNA does not require
XRCC1. After catalysis, the mPNK kinase domain retains
significant affinity for the 50-phosphorylated product,
releasing it only for subsequent processing by DNA
ligase III (40). On the other hand, Loizou and coworkers
showed that CK2-mediated phosphorylation of XRCC1
enhances recruitment of XRCC1 and PNK to DNA
strand breaks following exposure of cells to hydrogen per-
oxide (8).

While the preference of the mPNK kinase domain for
recessed or internal 50-hydroxyl ends is perfectly suited to
its role in SSB repair processes, this specificity presents a
potential problem for the repair of double strand breaks,

where blunt or single stranded 50-termini may be encoun-
tered. However, these ends could first be processed by the
DNA–PK-associated nuclease, Artemis (13). In response
to phosphorylation by DNA–PK, Artemis binds and
cleaves double strand breaks with 50 or 30 overhanging
ends (18). Large 30 overhangs are trimmed to leave an
�4 nucleotide 30 overhang, the minimal mPNK kinase
substrate. 50 overhangs are rapidly converted to blunt
ends and more slowly processed to remove further 50

and 30 nucleotides to yield a short �4 nucleotide 30 over-
hanging end (41). In this way, Artemis could convert 50

overhanging or blunt ends to 30 overhangs containing
50-phosphate groups. Double strand breaks with 30 over-
hangs and 50-hydroxyl termini would require the addi-
tional action of mPNK to produce the 50-phosphate
termini required for ligation.
Taken together, the combined solution results on

mPNK interactions presented here provide a detailed
understanding of how its structural biology helps to
orchestrate DNA end repair. Such an understanding for
mPNK is likely important as the specific recognition, pro-
cessing and control of such DNA ends appear to be a
critical repair protein function for base excision repair
(42,43), primer removal in DNA replication (44) and
double-strand break repair (45). Here the integrated solu-
tion structure of mPNK reveals a flexible overall architec-
ture coupled to a bipartite DNA-binding surface at the
mPNK kinase active site that is structurally complemen-
tary to its substrate. These experimentally characterized
features suggest how mPNK may interact with diverse
DNA substrates and protein partners while maintaining
a preference for internal 50-hydroxyl termini, which it must
recognize during DNA end repair. As our results on
mPNK establish that SAXS can be readily combined
with biochemical information to define flexible complexes
that furthermore can be robustly combined with other
structural methods, the approach employed here may be
generally applicable to enhancing recent high-throughput
SAXS characterizations of pathways involving flexible
components (34).
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Figure 6. DNA binding to the kinase active site. (A) Optimized SAXS model of DNA hairpin H1 (green) bound to the kinase domain of mPNK
(cyan). The residues mutated in this study are highlighted by orange spheres at Ca. (B) DNA H1 bound to mPNK, colored according to surface
electrostatic potential. (C) T4 PNK (purple), structurally superimposed onto the mPNK:DNA hairpin complex. DNA is in green and mPNK is
omitted for clarity. Steric interference between the DNA and the a9-loop-a10 region of T4 PNK (yellow) may account for the requirement of single
stranded substrates for the T4 kinase.
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