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Invariant natural killer T (iNKT) cells are a highly conserved subset of unconventional T 
lymphocytes that express a canonical, semi-invariant T cell receptor and surface markers 
shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous 
glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly respon-
sive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly 
coordinate signaling between innate and adaptive immune cells through the secretion 
of proinflammatory cytokines, leading to the maturation of antigen-presenting cells, and 
expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immuno-
regulatory properties, iNKT cells have been extensively studied and are known to play a 
pivotal role in mediating immune responses against microbial pathogens including viruses. 
Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT 
cell surveillance and establish lifelong latency in humans. Collectively, published findings 
suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could 
be harnessed therapeutically to limit viral infection and viral-associated disease.

Keywords: inKT cells, CD1d, herpesvirus, viral immunity, immunotherapy

introduction

Herpesviridae is a family of large DNA viruses that contain between 100 and 200 genes within an 
icosahedral capsid composed of viral proteins, mRNAs, and a lipid bilayer envelope (1). In humans, 
herpesviruses frequently infect both immunocompetent and immunocompromised hosts, with high-
prevalence rates ranging from 60 to 90% in the adult population (2, 3). Common human herpesviruses 
include herpes simplex type 1 (HSV-1) and type 2 (HSV-2), varicella zoster virus (VZV), human 
cytomegalovirus (HCMV), Epstein–Barr virus (EBV), human herpesvirus 6 (HHV-6), and Kaposi’s 
sarcoma-associated herpesvirus (KSHV). Primary infections with herpesviruses are frequently mild or 
asymptomatic and lead to lifelong viral latency within the host. However, reactivation of viral replication 
in immunocompromised individuals often leads to life-threatening infections and malignancies (4).

Host immune responses are critical for restraining and abrogating viral replication, controlling viral 
load, and limiting disease severity (5–10). For example, HSV and HCMV infections in immunocom-
petent individuals trigger a rapid expansion of natural killer (NK) cells and virus-specific cytotoxic T 
lymphocytes (CTL) that are important for eliminating infected cells (3, 11, 12). In response, herpesviruses 
have evolved sophisticated strategies to evade NK cell and CTL recognition that allow herpesviruses 
to achieve lifelong survival. In the case of CTL, whose T cell receptor (TCR) bind virus peptide–MHC 
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class I complexes on the infected cell surface, herpesviruses have 
been shown to disrupt many steps of MHC class I presentation, 
including the transfer of cytosolic peptides into the ER, the loading 
of peptides onto newly synthesized MHC complexes, and the traf-
ficking of MHC–peptide molecules from the cytosol to the plasma 
membrane (13, 14). In contrast to CTL, NK cells lack TCR and 
respond to reduced MHC class I expression induced by herpesvirus 
infection (13, 15). Inhibitory NK surface markers, such as killer cell 
immunoglobulin-like receptors (KIR), leukocyte immunoglobulin-
like receptors (LIR), and CD94/NKG2 (15, 16), monitor the expres-
sion of self-MHC class I and prevent the activation of NK cells. 
Herpesvirus infections that downregulate MHC class I surface 
expression in order to evade CTL are more susceptible to NK cells 
and hence, some herpesviruses also express viral homologs of MHC 
class I to escape NK cell detection (14, 17). The existence of these 
back and forth CTL and NK cell evasion strategies underscores 
their presumed importance in controlling herpesvirus infection and 
provides a rationale for why multiple immune subsets are necessary 
to effectively combat herpesvirses.

Natural killer T (NKT) cells are a unique group of CD1d-restricted 
innate-like lymphocytes and patients deficient in NKT cells develop 
severe and fatal herpesvirus infections (18–24). These findings, in 
concert with observations showing that herpesviruses downregulate 
surface expression of CD1d (25, 26), suggest an important role for 
NKT cells in the immune response to herpesviruses. NKT cells are 
distinct from NK cells as they express TCR, but unlike CTL, NKT 
cells emigrate from the thymus primed to respond and aid in early 
anti-viral defenses. In this review, we focus on invariant natural 
killer T (iNKT) cells, a population of NKT cells, which recognize 
the exogenous lipid antigen, α-GalCer (27). We highlight the role of 
iNKT cells in herpesvirus infections and the significance of CD1d 
expression in controlling herpesvirus replication.

inKT Cells – Unconventional  
T Lymphocytes

Invariant natural killer T cells are a subset of T lymphocytes 
that express a canonical, semi-invariant TCR and surface 

markers typically found on NK cells and activated CTL 
(28–30). iNKT cells are positively selected in the thymus by 
the non-polymorphic glycoprotein, CD1d, and recognize 
CD1d-restricted glycolipid antigens presented by antigen-
presenting cells (APC) in the periphery. Human iNKT cells 
are CD4+, CD8+ or CD4−CD8− and bear a Vα24–Jα18 
TCR rearrangement that preferentially associates with Vβ11 
(31, 32). In mice, CD8+ iNKT cells are rare and the majority 
express a Vα14–Jα18 TCR α-chain paired with Vβ8, Vβ7, or 
Vβ2 (33, 34). Human and mouse iNKT cells both display an 
effector memory phenotype (CXCR3+, CXCR4+, CD44+, 
CD69+, CD161+ in humans, NK1.1+ in mice) (35, 36) and are 
strongly activated by α-GalCer, a non-mammalian glycosphin-
golipid originally isolated from a marine sea sponge (27). In 
contrast to iNKT cells (type I), variant NKT cells (diverse or 
type II) are unresponsive to α-GalCer, and react to sulfatide 
and phospholipid antigens (37). Type II NKT cells are largely 
excluded from this review as much less is known about their 
role in viral infection.

inKT Cell Activation in viral infection

In recent years, evidence from multiple clinical and animal studies 
suggest that iNKT cells enhance the control of herpesvirus replica-
tion (18–24, 35, 38–41) (Table 1). However, the identity of the lipid 
antigen(s) that presumably drive iNKT cell activation remains 
elusive. By contrast, several bacteria-derived lipid antigens con-
taining α-linked glycans similar to α-GalCer have been reported 
[α-glucuronosylceramide and α-galacturonosylceramide (42–44), 
α-galatcosydiacylglycerol (45), and α-glucosyldiaglyercerol (46) 
from Streptococcus pneumoniae, Sphingomonas paucimobilis, 
and Borrelia burgedorferi, respectively]. Unlike bacteria, her-
pesviruses do not express virus-specific lipids; therefore, in the 
absence of pathogen-derived antigens, iNKT cells likely recognize 
endogenous self-lipids presented by CD1d (47). Supporting this 
assumption are several lines of evidence showing that CD1d is 
required to activate iNKT cells following human herpesvirus 
infection (25, 48–53). Moreover, hepatitis B infection has been 

TAbLe 1 | effect of human herpesvirus infection on CD1d expression and inKT cells.

inKT cell deficiency

virus Human CD1d expression Mechanisms Mouse Human α-GalCer References

HSV-1 ↑ (Low-viral dose) Glycoprotein B (gB);  
serine–threonine kinase, US3

↑ Viral titer – – (48, 51, 55–59)
↓ (High-viral dose)

HSV-2 – – ↑ Viral titer – ↑ Protection (49, 60–65)
↑ Mortality

VZV – – ↑ Disease – (23, 40)
EBV ↓ ↓ CD1d transcription – ↑ Viral titer (18–21, 24, 53, 

66–71)↑ Disease
HHV-6A/B – – – – – –
HHV-7 – – – – – –
CMV ↓ glycoprotein US2 ↑ Viral titer ↓ Viral titer (52, 72–77)

↑ Mortality
KSHV ↓ Modulator of immune recognition-1  

and -2 (K3 and K5)
– – – (25, 78, 79)

HSV-1, herpes simplex virus-1; HSV-2, herpes simplex virus-2; VZV, varicella zoster virus; EBV, Epstein–Barr virus; HHV6A/B, human herpesvirus 6A/B; HHV-7, human 
herpesvirus-7; CMV, cytomegalovirus; KSHV, Kaposi’s sarcoma-associated herpesvirus; –, unknown.
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shown to induce the expression of endogenous lipid antigens 
(lysophospholipids) in human and mouse hepatocytes (54), sug-
gesting that herpesvirus infection may trigger the presentation of 
analogous self-lipids on CD1d.

Lysophospholipids were identified as endogenous iNKT cell 
antigens by screening the responsiveness of human iNKT cell clones 
to synthetic preparations of CD1d-bound ligands (80). Similar 
filtering procedures were used to identify the glycosphingolipid, β-d-
glucopyranosylceramide, as a physiologically relevant self-antigen for 
iNKT cells (81). Whether these self-antigens are presented by APC 
during herpesvirus infections is not yet known but the recognition 
of viral nucleic acids by Toll-like receptors (TLR)-3, -7, and -9 has 
been shown to induce the synthesis of β-d-glucopyranosylceramide 
(21), implying that glycosphingolipid antigens may be expressed 
in herpesvirus infections (81). APC treated with TLR-3, -7, -8, 
and -9 agonists also enhance transcription of enzymes involved 
in glycosphinolipid synthesis and the inhibition of these pathways 
abolishes the reactivity of iNKT cells to TLR-stimulated APC (82, 
83). Together, these findings suggest that herpesvirus may activate 
early iNKT cell responses during infection by inducing the presenta-
tion of endogenous lipids antigens on CD1d.

In addition to antigen activation, iNKT cells can react to her-
pesvirus replication in a CD1d/TCR-independent manner through 
the actions of proinflammatory cytokines and costimulatory 
molecules on APC (47). iNKT cells express high levels of IL-12R 
and are sensitive to IL-12, as well as IL-2, IL-18, and type I IFN 
released following bacterial (84, 85) and murine cytomegalovirus 
(MCMV) infection (72, 86). iNKT cells also respond to IL-23 and 
IL-25 (87, 88), and stimulation by these cytokines induces IL-17 
production and amplify inflammatory anti-viral responses (89, 
90). Thus, the activation of iNKT cells during herpesvirus infec-
tions may involve two pathways; TCR signaling provided by the 
recognition of lipid antigen(s) and antigen-independent stimuli 
supplied via cytokines and co-stimulation molecules.

T cell receptor-dependent and -independent activation of 
iNKT cells can both elicit the substantial release of cytokines and 
chemokines, including IFN-γ, TNF-α, TNF-β, GM-CSF, IL-2, IL-4, 
IL-5, IL-6, IL-10, IL-13, IL-17, IL-21, CCL3/MIP-1α, CCL4/MIP-
1β, CCL5/RANTES, and eotaxins (91, 92). IFN-γ, TNF-α, and 
TNF- β are known to have direct inhibitory effects on viral replica-
tion and GM-CSF, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, IL-21, 
CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES activate APC, NK 
cells, CD4+, and CD8+ T lymphocytes, and promote iNKT cells 
to migrate to sites of inflammation (36, 92). The early production 
of cytokines and chemokines by iNKT cells may boost the regula-
tion of anti-herpesvirus defenses by triggering the activation of 
innate and adaptive immune responses. Further work is necessary 
to substantiate the production and effect of these cytokines and 
chemokines in vivo as the majority of these molecules are secreted 
by iNKT cells only after powerful TCR stimulation by α-GalCer 
and have not been directly assessed during herpesvirus infections.

Along with their potent cytokine abilities, activated iNKT 
cells can also kill target cells through their expression of perforin/
granzyme, TRAIL, and FasL (91). Additional assessment is also 
required to fully delineate the importance of iNKT cell cytotoxic-
ity in herpesvirus infections but B cells transformed by EBV are 
susceptible to iNKT-mediated cytolysis in vitro (53), suggesting 

that iNKT cells may directly prevent the proliferation of virus-
transformed cells.

Herpes Simplex virus-1
Herpes simplex virus-1 is an α-herpesvirus that infects mucocu-
taneous epithelium and establishes latency in sensory ganglia 
(2). HSV-1 is commonly associated with oral and ocular lesions. 
However, genital HSV-1 infections now account for over half of 
genital herpes episodes in North American and European coun-
tries (93–96). Studies in HSV-1 murine models support a role 
for iNKT cells in controlling herpesvirus infection: CD1d- and 
Jα18-deficient mice infected with HSV-1 experience higher viral 
loads and morbidity compared to wild-type littermates (48). iNKT 
cells may be dispensable in some strains of HSV-1 infection (55) 
but help control HSV-1 strains that persist in sensory neurons 
indicating that iNKT cells may be important for restricting the 
reactivation of HSV-1 (56).

A role for iNKT cells in HSV-1 infection is also supported by 
observations that HSV-1 alters CD1d presentation, which implies that 
HSV-1 may modulate CD1d expression to evade iNKT cell recogni-
tion. While low-dose HSV-1 infection in human myeloid dendritic 
cells (DC) increases surface CD1d expression (51, 57), infection with 
high-viral titers triggers the rapid re-distribution of surface CD1d 
molecules to the limiting membrane of lysosomes and the trans-Golgi 
network (Figure 1), an action mediated by HSV-1 glycoprotein B 
(gB) and the viral serine–threonine kinase, US3, which inhibits 
the activation of iNKT cells (26, 58). HSV-1 may also suppress the 

FiGURe 1 | CD1d presentation is disrupted by human herpesviruses. 
Lipids are loaded onto newly synthesized CD1d heavy chains and arranged 
with β2-microglobulin (β2M) in the endoplasmic reticulum. CD1d–lipid 
complexes are transported to the cell surface through the Golgi network by 
exocytosis. CD1d–lipid molecules are recycled from the cell surface by 
endocytosis and CD1d ligands are exchanged in the late endosome. 
Herpesviruses inhibit CD1d presentation to iNKT cells in several ways: HCMV 
glycoprotein US2 interacts with CD1d in the endoplasmic reticulum reducing 
iNKT cell activity, HSV-1 glycoprotein B, and serine–threonine kinase US3 
remove CD1d from the cell surface and prevent its return to the surface, 
KSHV modulator of immune recognition-1 and -2 (also known as K3 and K5) 
downregulate surface CD1d by sequestering its expression to the late 
endosomes, and EBV transformation of B cells suppresses CD1d 
transcription.
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stimulation of iNKT cells in a CD1d-independent manner as HSV-1 
infection in keratinocytes has no effect on CD1d but still impairs 
iNKT cell activation through an undetermined contact-dependent 
mechanism (59). These findings support the participation of iNKT 
cells in anti-HSV-1 responses as HSV-1 appears to have evolved 
specific mechanisms that suppress iNKT cell function.

Herpes Simplex virus-2
Herpes simplex virus-2, also an α-herpesvirus, shares significant 
DNA sequence homology with HSV-1 (97) but is more often 
linked with genital mucocutaneous infections and persistence in 
innervating sensory neurons than mucocutaneous epithelium (98). 
Vertical transmission of HSV-2 by infected mothers to newborns 
results in neonatal herpes, a serious disease with high rates of 
neurological complications and mortality (99, 100).

In mice, iNKT cells appear to strongly influence HSV-2 replica-
tion as CD1d-deficient animals are 10-fold more susceptible to 
severe infection compared to wild-type controls (49). iNKT cells are 
early producers of IFN-γ in HSV-2 infection (49) and can also secrete 
large quantities of IL-21 that can trigger NK cell and CTL function 
(60), reduce infection severity and improve host survival (61). IL-21 
production by iNKT cells may be particularly critical in limiting 
HSV-2 replication at the site of infection as the IL-21R expression is 
upregulated on vaginal epithelia 1–3 days post-infection, and similar 
to CD1d-deficient mice, IL-21R-deficient animals have increased 
viral loads and higher mortality to HSV-2 (61).

Severely reduced iNKT cell numbers and a complete lack of NK 
cells are also observed in IL-15-deficient mice (62) providing further 
evidence that iNKT cells play a role in controlling HSV-2 as IL-15-
deficient mice display a heightened sensitivity to HSV-2 infection 
(100-fold) compared to CD1d-deficient mice (49). This finding sup-
ports the notion that iNKT cells are important in anti-HSV-2 defenses 
and that they may act synergistically with NK cells to augment host 
responses to HSV-2. It must be noted, however, that IL-15 can mediate 
innate immunity against HSV-2 independently of iNKT cells and 
NK cells (63), and that IL-15 is released by human peripheral blood 
mononuclear cells (PBMC) upon HSV-2 infection (64).

iNKT cells could be an effective immunotherapy against HSV-2 
as intranasal and intravaginal immunization with α-GalCer 
and HSV-2 glycoprotein (gD) elicits robust innate immunity, 
the development of systemic gD-specific antibodies and strong 
secondary responses to HSV-2 proteins in mice (65). Intravaginal 
immunization provides complete protection against lethal vaginal 
HSV-2 infection, which supports further evaluation of α-GalCer 
as an adjuvant for HSV-2 vaccines.

varicella Zoster virus
Varicella zoster virus is a neurotropic α-herpesvirus that commonly 
causes varicella (chicken pox) and subsequently herpes zoster in 
humans (101). Since its introduction in 1974 (102), live attenu-
ated varicella vaccine has been routinely used worldwide with a 
wide-safety profile in healthy children although a small number of 
apparently normal children have been described to develop severe 
complications such as pneumonitis (23, 40, 103, 104). Immune 
phenotyping in two of these patients revealed a profound reduction 
of peripheral blood iNKT cells (23, 40). In the first case, an 11-year-
old girl developed a papulovesicular rash and adverse respiratory 

illness several weeks after receiving varicella vaccine (23). Analysis 
of her peripheral lymphocytes at 2 and 4 months after her recovery 
showed a striking lack of iNKT cells and a complete absence of 
IFN-γ production by her PBMC following α-GalCer stimulation. 
The second report describes a 6-year-old boy that presented with 
vesicular rash and life-threatening pneumonitis 3 weeks after vari-
cella vaccination (40). He too had a reduced number of peripheral 
iNKT cells, but unlike the first patient, α-GalCer elicited an IFN-γ 
response from his PBMC, albeit approximately two-fold less than 
controls. IFN-γ production by his conventional T cells was also 
decreased upon stimulation with a low concentration of the poly-
colonal T cell mitogen, PHA, suggesting that the patient may have 
had a global IFN-γ defect in addition to low iNKT cell numbers. 
CD1d expression on the surface of his APC was undetectable and 
CD1d RNA levels were approximately two-fold lower compared 
to controls. This observation raises the interesting possibility 
that circulating iNKT cell numbers in this patient may have been 
affected by the absence of CD1d on his APC. These case reports 
suggest that iNKT cells may be activated during VZV infection and 
future studies quantifying their activation and expansion following 
VZV vaccination would help delineate the contribution of iNKT 
cells to anti-VZV defenses.

epstein–barr virus
Epstein–Barr virus is a γ-herpesvirus and primary infection in 
childhood is generally asymptomatic whereas exposure in adoles-
cence or young adulthood often presents as infectious mononu-
cleosis (IM) (66). EBV is strongly associated with several cancers 
including nasopharyngeal carcinoma in immunocompetent 
adults, and a variety of B cell and other malignancies in immu-
nocompromised individuals with AIDS or following transplant 
immunosuppression (105).

There is extensive evidence that iNKT cells are a critical com-
ponent of immune responses to EBV, but much of the data are 
inconclusive or circumstantial because it originates from humans 
with rare monogenic disorders and clinical case reports. Boys with 
mutations in the SH2D1A gene, which encodes SLAM-associated 
protein (SAP), have a complete absence of iNKT cells (18–20) 
and develop X-linked lymphoproliferative disease (XLP) (67, 68), 
a form of severe and often fatal IM typically triggered by EBV 
infection (66). It is difficult to ascribe the symptoms of XLP to 
iNKT cell defects alone because SAP mutations impair iNKT cell 
development and also disrupt the function of NK cells, CD4+, 
and CD8+ T cells (69).

Patients with defects in X-linked inhibitor of apoptosis (XIAP) 
also present with an XLP-like syndrome and have reduced iNKT 
cell numbers (21). However, the link between iNKT cells and XIAP 
is unclear given that XIAP-deficient mice have normal numbers 
of iNKT cells, whereas SAP-deficient mice closely mimic the 
phenotype of XLP patients and share an impaired development 
of iNKT cells (70). These findings suggest that patients lacking SAP 
or XIAP may be susceptible to EBV because of different signaling 
defects despite exhibiting a similar absence of iNKT cells.

A case report on two sisters who died from an EBV-associated 
lymphoproliferative disorder resembling XLP strengthens the argu-
ment that iNKT cells are involved in the normal control of EBV rep-
lication (24). Genetic studies on the two siblings revealed that both 
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sisters had inherited a homozygous mutation in IL-2-inducible T cell 
kinase (ITK) and immune phenotyping revealed a total absence of 
iNKT cells, a finding that is recapitulated in ITK-deficient mice (71). 
This study, along with the previous reports in XLP patients, implies 
genetic mutations that impair iNKT cell development (SH2D1A, 
XIAP, ITK) may be critical risk factors in determining susceptible to 
EBV-associated diseases. Additional studies are warranted to clearly 
elucidate the contribution of iNKT cells in anti-EBV responses and 
determine if iNKT cells can be targeted for use in EBV vaccines.

iNKT cells may also be involved in the control of EBV-associated 
cancers. We have shown that the transformation of human B cells 
into lymphoblastoid cell lines (LCL) rapidly triggers the loss of 
CD1d transcription and surface expression due to the increased 
binding of lymphoid enhancer-binding factor 1 (LEF-1) to the 
CD1d promoter region (53) (Figure 1). LEF-1 is a nuclear protein 
and dimerizes with β-catenin to suppress CD1d promoter activity 
(73, 106). Treatment of LCL with the retinoic acid receptor agonist, 
AM580, prevents the accumulation of LEF-1 at the CD1d pro-
moter, restores the transcription and surface expression of CD1d, 
and activates human iNKT cell lines to recognize LCL even in the 
absence of α-GalCer. These findings suggest that EBV transforma-
tion may induce the expression of endogenous lipid antigens and 
that the modulation of the retinoic acid pathway could improve 
iNKT cell regulation of EBV malignancies.

Human Cytomegalovirus
Human cytomegalovirus is a polytropic β-herpesvirus and the 
largest member of the herpesvirus family (100). Infection by 
HCMV is usually asymptomatic but primary and reactivated 
disease in immunocompromised individuals is associated with 
significant morbidity and mortality (7, 74). HCMV appears to 
evade iNKT cell surveillance by expressing the HCMV glyco-
protein, US2, which interacts with CD1d (75) and facilitates its 
proteasomal degradation in  vitro (76) (Figure  1). The precise 
contribution of iNKT cells during HCMV infection in vivo is 
less conclusive but murine cytomegalovirus (MCMV) has been 
widely used as an experimental model for HCMV and in this 
model, iNKT cells appear to assist early immune responses against 
MCMV (52, 72, 77) despite an earlier report to the contrary (107). 
As expected, iNKT cells produce substantial levels of IFN-γ and 
perforin shortly after MCMV challenge but the addition of TCR 
blockers or CD1d antibody prior to infection had minimal effect 
on iNKT cell function (72) indicating that iNKT cell activation by 
MCMV may be CD1d-independent and could be a consequence 
of IL-12 production by TLR-9-stimulated APC (86, 108). The 
relevance of iNKT cells in anti-HCMV defenses requires future 
clarification as Jα18-deficient mice (specifically lack iNKT cells) 
show similar mortality rates as wild-type controls after high dose 
MCMV infection (72, 107). By contrast, CD1d-deficient mice 
(lack both iNKT cells and type II NKT cells) show an increased 
MCMV susceptibility (72) suggesting that type II NKT cells may 
play a larger role than iNKT cells in the regulation of HCMV.

Kaposi’s Sarcoma-Associated Herpesvirus
KSHV is a γ-herpesvirus that can cause malignancies including 
Kaposi’s sarcoma, primary effusion lymphoma, and multicentric 

Castleman’s disease (1, 78, 79). A putative role for iNKT cells in 
anti-KSV responses was inferred by the finding that KSHV infec-
tion of B cells leads to the sequestering of CD1d to the endocytic 
pathway and a subsequent loss of iNKT recognition (25). CD1d 
is directed away from the cell surface by the KSHV-encoded 
ubiquitin ligases, modulator of immune recognition (MIR)-1, 
and MIR-2 (also known as K3 and K5), which ubiquitinate 
the cytosolic lysine residues of CD1d and prevent CD1d from 
recycling to the plasma membrane (25) (Figure 1). MIR-2 also 
downregulates the expression of the NKG2D ligands, MHC class 
I-related chain A (MICA), and MICB (109). NKG2D signaling 
is known to activate iNKT cell function in the absence of TCR 
stimulation (110); therefore, the loss of NKG2D signaling may 
represent another mechanism by which KSHV can control iNKT 
cell activation during infection.

Conclusion

Mounting evidence supports a significant role for iNKT cells in 
bridging innate and adaptive immune defenses during herpesvirus 
infection. Clinical case reports and animal studies demonstrate 
that iNKT cells may prevent severe and fatal herpesvirus infections 
(Table 1). Given that herpesviruses interfere with CD1d–iNKT 
recognition empirically suggests that virus survival and persistence 
may benefit from the evasion of iNKT cell surveillance.

Significant progress over the last decade has greatly improved 
our understanding of iNKT cell biology but the precise nature of 
the CD1d-restricted antigens that activate iNKT cells in herpes-
virus infections is still unknown. Discovering the identity of these 
virus-induced lipid antigens is a priority that will greatly improve 
the understanding of anti-viral iNKT cell responses in vivo and 
would provide stronger evidence that iNKT cells contribute to 
anti-herpesvirus defenses. These findings could also assist the 
development of iNKT cell-based therapies that specifically target 
pathways that induce the expression of lipid antigens.

Published studies have shown that herpesviruses target the 
transcription (53) and surface expression of CD1d (26, 58) as a gen-
eral mechanism for impeding iNKT cell recognition. Thus, future 
work focused on accurately quantifying the expression of CD1d 
during herpesvirus infection may yield important insights into 
the kinetics of iNKT cell recognition and lead to the identification 
of the lipid antigens(s) that are possibly triggered by herpesvirus 
infections. Such findings would support the involvement of iNKT 
cells in the control of herpesvirus infections and the hypothesis 
that herpesviruses downregulate the surface expression of CD1d 
to evade recognition by iNKT cells.

Lastly, we have shown EBV transformation suppresses the 
expression of CD1d and that the activation of the retinoic acid 
receptor pathway using AM580 re-establishes CD1d surface 
expression on LCL (53). This finding suggests that maintaining 
or restoring CD1d expression could improve anti-herpesvirus 
defenses and this approach could boost anti-viral defenses when 
combined with the concurrent administration of α-GalCer, or 
other iNKT cell agonists. Such strategies may enhance the prim-
ing of innate and adaptive immune responses to herpesviruses 
and promote the overall development of iNKT cell immuno-
therapies (111).
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