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The design of vesicle microsystems as artificial cells (bottom-up synthetic

biology) has traditionally relied on the incorporation of molecular com-

ponents to impart functionality. These cell mimics have reduced capabilities

compared with their engineered biological counterparts (top-down synthetic

biology), as they lack the powerful metabolic and regulatory pathways associ-

ated with living systems. There is increasing scope for using whole intact

cellular components as functional modules within artificial cells, as a route

to increase the capabilities of artificial cells. In this feasibility study, we

design and embed genetically engineered microbes (Escherichia coli) in a ves-

icle-based cell mimic and use them as biosensing modules for real-time

monitoring of lactate in the external environment. Using this conceptual

framework, the functionality of other microbial devices can be conferred

into vesicle microsystems in the future, bridging the gap between bottom-up

and top-down synthetic biology.
1. Introduction
In recent years, there has been an upsurge in interest surrounding the design

and construction of functional vesicle-based systems. The application drivers

for this area of research are numerous: from the use of vesicles for drug delivery

[1–3], sensing agents [1,4] and microreactors [5–7] to their employment as

chassis for artificial cells [8,9] and tissue mimics [10].

Vesicles are composed of a structural fabric of either phospholipids or fatty

acids [11]. However, the components responsible for their functionality are

more diverse. These include: ligands that decorate the membrane (e.g. DNA

sticky ends, antibodies, tethered small molecules, nanoparticles, polymerizable

amphiphiles) [7,12–15]; membrane-spanning structures (e.g. natural and engin-

eered protein pores, pumps and channels, DNA origami) [16–18]; and

biologically derived material encapsulated in the vesicle lumen (e.g. enzymes,

cytoskeleton components, polymerases and coupled transcription/translation

machinery) [6,19–22]. This varied repertoire of building blocks has allowed

investigators to engineer vesicles capable of mimicking an assortment of

cellular behaviours [23], and of successfully interfacing cell and vesicle

communities together [24].

Recently, a new front in the construction of vesicle-based microsystems has

opened up with the emergence of technologies allowing the encapsulation of

whole cells within vesicles [25,26] using emulsion transfer vesicle generation

methods [27]. Our previous work of encapsulating non-engineered cells in this

context [25,26] paves the way for the rich and mature world of synthetic biology

and genetic engineering to be tapped for the assembly of vesicles with

enhanced functionality, using encapsulated cells as embedded functional

modules. Encapsulated cells, for example, could be used in the design of com-

partmentalized systems capable of exhibiting sensor and bioreactor modalities,

of harvesting energy and of dynamically responding to environmental stimuli.
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Herein, we demonstrate this potential by designing geneti-

cally engineered microbes and using them as biosensing

modules that are encapsulated within a vesicle chassis. Increas-

ingly, synthetic biologists are exploiting the diverse array of

sensors and regulators in nature that aid in survival to create

devices that fill the growing need for low-cost diagnostic tools

in medical [28], environmental [29] and manufacturing [30]

applications. Demonstrating the validity of this conceptual fra-

mework shows that the functionality of other microbial devices

can be conferred into vesicle microsystems in the future.

Encapsulating engineered organisms in vesicles allows

them to be shielded from their external environment, which

can be useful in several applications. For example, when

using bacterial biosensors in co-cultures, encapsulation enables

the sensor cells and the main culture cells to be physically sep-

arated, preventing unwanted interference and allowing the two

species to exist in distinct optimized conditions. This is also true

of potential medicinal applications; for example, in cell-based

therapies, where encapsulation could shield the cell from the

host’s immune response. The potential for facile precision

engineering of an external membrane using biological and syn-

thetic components is also attractive for these applications; for

example, the incorporation of molecular recognition modules,

stimuli-responsive membranes, protein channels and functio-

nalized nanoparticles. In short, hybrid systems such as these

allow the advantages associated with both bottom-up and

top-down synthetic biology to be combined.

There have been efforts in encapsulating engineered cells

in droplets [31], gels [32], hydrogel microcapsules [33] and

liquid core/shell structures [34], but not within cell-mimetic

vesicles, which, owing to their biocompatibility, similarity to

cell membranes and the potential for bilayer functionalization,

are the most commonly used artificial cell chassis. We demon-

strate this feature by introducing transmembrane pores into

the vesicle membrane to facilitate the influx of analyte to the

vesicle interior.

As a proof of concept, we created a whole-cell Escherichia
coli lactate biosensor based on the transcriptional elements of

the lldPRD operon that produces green fluorescent protein

(GFP) in response to lactate. Lactate was chosen as an exemplar

system because it is of interest in a variety of different industrial

and biotechnological applications. For example, in bioprocessing,

lactate is the primary waste metabolite and can negatively

affect cell growth and productivity; therefore, it needs to be

monitored to help control the culture trajectory and ensure pro-

duct quality [30]. We show that the encapsulated biosensors

can sense the external lactate concentration by incorporating

membrane-spanning a-haemolysin (a-HL) pores embedded

in the vesicle membrane, allowing diffusion of the analyte to

the vesicle interior. Once the lactate diffuses across the cell

membrane, the LldR regulatory protein binds to it and induces

the lldPRD promoter, which then drives the expression of GFP

leading to measurable fluorescence. This feasibility study

demonstrates the potential of cellular bionics, where ‘living’

modules are fused with artificial cell microsystems for

enhanced functionality.
2. Material and methods
2.1. Biosensor construction
The lactate biosensor was modified from Goers et al. [35], where

the lldPRD promoter was modified to include the J23117
constitutive promoter within the O1 and O2 sites (electronic sup-

plementary material, table S1). Strains were maintained on

Luria–Bertani (LB) agar containing 100 mg ml21 ampicillin and

grown aerobically for 16 h at 378C.

2.2. Biosensor characterization in liquid medium
Single colonies of E. coli containing the biosensor plasmid or a

control plasmid (lacking the output module of the biosensor

(figure 1a)) were used to inoculate 2 ml of LB medium containing

100 mg ml21 ampicillin and grown at 378C with shaking at

250 rpm for approximately 6 h. The starter culture was diluted

1 : 100 into 5 ml of M9 minimal medium (1� M9 salts, 2 mM

MgSO4, 0.1 mM CaCl2, 0.34 g l21 thiamine hydrochloride,

1 g l21 NH4Cl and 0.4% glycerol) containing 100 mg ml21 ampi-

cillin and grown overnight at 378C with shaking. The optical

density of the overnight culture was adjusted to an OD600nm of

1.0 in M9 minimal medium. In a 96-well plate, 25 ml of adjusted

culture was added to a well containing 87.5 ml of M9 minimal

medium containing 100 mg ml21 ampicillin. The plate was cov-

ered with a Breathe-Easyw seal (Sigma Aldrich) and incubated

at 378C with shaking for 2 h for cells to reach exponential

growth phase. Lactate (12.5 ml) of varying concentrations dis-

solved in M9 minimal medium was added to each well. The

plate was covered with a Breathe-Easyw seal and incubated at

378C with shaking for 2 h. Samples (20 ml) were taken from

each well and mixed with 180 ml of filtered sterile water. Fluor-

escence in each well was measured using an Attunew Acoustic

Focusing Cytometer (ThermoFisher; excitation 485 nm, emission

528 nm). Data were analysed using FlowJo software (FlowJo

LLC, Ashland, OR).

2.3. Biosensor preparation for encapsulation
The biosensor was grown under the same conditions as for the

characterization studies (above). Following incubation for 2 h at

378C with shaking, 2 ml of E. coli cells in exponential phase con-

taining the biosensor were concentrated by centrifugation and

resuspended in 600 ml of medium, yielding a concentration of

approximately 5 � 108 cells ml21.

2.4. Vesicle formation and biosensor assay
All lipids were purchased from Avanti Polar Lipids (USA) and

were used without further purification. Lactate oxidase, horse-

radish peroxidase (HRP) and Amplex Red were purchased

from Life Technologies (USA). Lactate, a-HL and all other chemi-

cals were purchased from Sigma Aldrich (UK) unless otherwise

stated. Giant unilamellar vesicles (GUVs) were generated using

the phase transfer of individual droplets across a water–oil inter-

face by modifying a procedure described elsewhere [36]. Sodium

L-lactate, 99% purity, pH 7.4 in M9 minimal medium, was used.

A POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)

lipid film was first prepared by dissolving 2 mg of lipid in chloro-

form and removing the chloroform under a stream of nitrogen and

placing in a lyophilizer for 1 h. This was dissolved in mineral oil

(2 mg ml21) by placing the vial in a 608C oven for 1 h.

A 0.2 ml aliquot of POPC in mineral oil solution was then

deposited above 0.2 ml of 500 mM glucose in M9 minimal

medium in an Eppendorf tube to form a column. The ‘internal’

GUV solution was then prepared, which was composed of sucrose

(450 mM), lactate (0–50 mM) and engineered E. coli (1 : 9 dilution

of 5 � 108 cells ml21); 20 ml of this solution was added to 200 ml of

lipid in oil and an emulsion was made by vortexing for 30 s. This

emulsion was then layered above the water–oil column, and the

tube centrifuged to transform the emulsion drops into lipid ves-

icles. The non-encapsulated material was removed from the

surrounding solution by pelleting the GUVs three times (500g;

5 min), removing the supernatant and re-suspending in
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Figure 1. Lactate biosensor used in this study. (a) Diagram of the lactate biosensor in E. coli. (b) Characterization of lactate biosensor in bulk (non-encapsulated
form) using a flow cytometer. The whole-cell E. coli biosensor and control cells were spiked with different concentrations of L-lactate.
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medium. This process was repeated three times to remove the

majority of non-encapsulated bacteria. a-HL was added to the

GUVs at a 1 : 9 ratio to give a final a-HL concentration of

0.05 mg ml21. Lactate was then added to the external solution at

a 1 : 9 ratio to give final concentrations ranging from 0 to 50 mM.

The effectiveness of the biosensor/vesicle hybrid was character-

ized using a fluorimeter to monitor GFP production (excitation

485/20 nm; emission 528/20 nm; Synergy HT; BioTek Instru-

ments, Inc., Winooski, VT, USA) and five replicates were

measured for each condition.

2.5. Lactate enzymatic assay
For the lactate enzymatic assay, GUVs were formed as before,

but with different inner and outer solutions. All aqueous sol-

utions were prepared in phosphate-buffered saline. The

internal vesicle solution consisted of 1 U ml21 lactate oxidase

and 450 mM sucrose. The external solution was composed of

500 mM arabinose solution to form a column. This was then cen-

trifuged at 9000g for 30 min, allowing the water droplets in the

emulsions to transfer from the oil to water phase, thus forming

vesicles that aggregated into a pellet. The supernatant

was removed, the pellet resuspended in 500 ml arabinose, and

three more centrifugation rounds applied to remove any non-

encapsulated enzyme. The pellet was resuspended in 450 mM

sucrose solution. a-HL was then added at a 1 : 9 ratio to give a

final a-HL concentration of 0.05 mg ml21; 80 ml of this GUV sol-

ution was placed in a single well of a 96-well plate, followed by

addition of 5 ml HRP (10 U ml21), 5 ml Amplex Red (10 mM) and

10 ml lactate to give final lactate concentrations ranging from 0 to

1000 mM. Fluorescence was monitored using a fluorimeter (exci-

tation 485/20 nm; emission 528/20 nm; Synergy HT) and five

repeats were obtained for each condition.

2.6. Microfluidic encapsulation of bacteria
Polydimethylsiloxane (PDMS) microfluidic devices consist-

ing of a single flow-focusing junction were fabricated via soft
lithography as described elsewhere [37]. Briefly, negative

masters were produced using SU-8 (A-Gas Electronic Materials,

UK) photoresist and standard lithography. After development

using EC solvent (A-Gas Electronic Materials, UK), the negative

masters were exposed to trichloro(1H,1H,2H,2H-perfluorooctyl)si-

lane vapour to suppress permanent adhesion to moulded PDMS.

PDMS prepolymer and curing agent were then thoroughly mixed

in a 10 : 1 ratio, and the mixture was poured onto the master

wafer. The mixture was cured at 658C overnight, then peeled off

the master and bonded on PDMS-coated microscope glass slides

(75 � 25 mm; VWR, UK) via plasma oxidation (100 W, 1 min,

20 sccm O2 flow, 67 Pa pressure) using a Femto plasma cleaner

(Diener Electronic, Germany).

The microfluidic device was set up with the two fluid inlets

and one vesicle outlet. The internal aqueous phase consisted of

bacteria diluted at a 1 : 9 ratio with lactate (0–50 mM) present in

M9 medium solution containing 450 mM sucrose. The bacteria–

lactate solutions were mixed immediately before being inserted

into the microfluidic device. The external oil phase consisted of

FluorinertRTM FC-70 oil with 0.5% Pico-SurfTM (5% in FC-40) in

FC-70 (Dolomite Microfluidics, UK). The internal aqueous phase

and oil phase were injected using 1 ml plastic syringes linked to

1.09 mm polytetrafluoroethylene tubing (Adtech Polymer Engin-

eering Ltd, UK). Two syringe pumps (Chemyx Inc., UK) were

necessary to pump the reagents into the microfluidic system at

controlled flow rates (2 and 3 ml min21 for the water and oil

phase, respectively). Droplets were generated at the flow-focusing

junction and carried through the meander channel to the large

reservoir. To examine fluorescence from the droplets, both flows

were simultaneously stopped and the outlet was plugged to

immobilize further movement of the droplets.

2.7. Fluorescence microscopy
Fluorescence images of encapsulated bacteria were viewed with

an Olympus IX81 inverted microscope. Fluorescence exper-

iments used an illuminating mercury arc lamp and were

imaged with a fluorescein isothiocyanate filter, at an exposure
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time of 1000 ms. The lamp was turned off after each acquisition

event to minimize photobleaching. Images were taken with a

QICAM camera (QImaging).
Figure 3. Microfluidic encapsulation of E. coli biosensor in droplets. (a)
Microfluidic device design consisting of a flow-focusing junction and a
large reservoir. Channel depth is 20 mm. Micrograph of the reservoir contain-
ing water-in-oil droplets. Scale bar, 400 mm. (b) Fluorescence images of
bacteria encapsulated in water-in-oil droplets with 50 mM concentration
after 300 min of incubation. Scale bars, 40 mm.
3. Results and discussion
3.1. Lactate biosensor characterization
The lactate biosensor was constructed using a synthetic

lldPRD promoter (figure 1a) that combines the natural

lldPRD operator sites with a weak constitutive promoter.

We first assessed its ability to detect lactate in samples

spiked with different concentrations of L-lactate in M9

minimal medium containing glycerol as the carbon source.

The lactate biosensor containing the synthetic lldPRD promo-

ter exhibited higher fluorescence levels than a previous

version containing the natural lldPRD promoter [35], which

resulted in an increased limit of detection of lactate (electronic

supplementary material, figure S1). The biosensor displayed

a clear response to lactate with separation between different

concentrations ranging from 0.5 to 0.005 mM (figure 1b).

Control cells that lacked the output part of the biosensor

did not fluoresce in the presence of lactate.
3.2. Vesicle engineering
To encapsulate bacteria within giant vesicles, we took

advantage of emulsion phase transfer technologies [27,36].

Lipid-stabilized water-in-oil emulsion droplets containing

bacteria were transferred by gravity from an oil to an aqueous

solution of a water–oil column, with a lipid monolayer pre-

sent at the interface of the two phases. This process, driven

by the higher density of the sucrose-containing droplets, led

to the individual droplets being engulfed by a bilayer, resulting

in a vesicle (figure 2a). The number of bacteria encapsulated in

each GUV was controlled by adjusting the bacteria concen-

tration beforehand (5 � 108 cells ml21, yielding approx. 70

bacteria in a 25 nl GUV).

The system required the construction of GUVs that are

permeable to lactate, which otherwise cannot cross the

vesicle membrane due to its negative charge. To do this, we
decorated the GUVs composed of POPC lipid with trans-

membrane a-HL protein pores. This allowed lactate to

reach the vesicle lumen and activate the bacterial biosensor

(figure 2b) [38]. Protein monomers spontaneously insert

into bilayers and aggregate to form heptameric protein

pores of 1.4 nm diameter. In this way, the bacteria remain

spatially separated from their external environment, but still

retain their ability to sense and respond to the presence of

lactate.

To test successful influx of lactate, we used an enzymatic

assay based on the oxidation of lactate using lactate oxidase

[39]. This yields H2O2, which subsequently oxidizes the

non-fluorescent Amplex Red to the fluorescent molecule

resorufin in the presence of HRP. GUVs were formed with

lactate oxidase in the interior, a-HL embedded in the

membrane, and HRP and Amplex Red and varying concen-

trations of lactate in the exterior (electronic supplementary

material, figure S2a). The presence of a-HL allowed lactate

oxidase in the vesicle interior to be exposed to lactate, with
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the H2O2 product (membrane permeable) diffusing out of the

GUV to initiate subsequent steps of the cascade.

An increase in fluorescence was observed within

approximately 20 min, with the reaction completing after

approximately 120 min. This shows the successful flow of lac-

tate through the pore, allowing it to be oxidized by lactate

oxidase which is trapped in the GUV. With no a-HL, minimal

fluorescence increase was seen, demonstrating that lactate

oxidase was not present in significant amounts in the GUV

exterior (e.g. due to vesicle rupture) and confirming that

lactate cannot cross the vesicle membrane without a-HL

pores. Larger lactate concentration gave higher fluorescence

signals, with a linear relationship being present from 0 to

100 mM (electronic supplementary material, figure S2b).

Above this concentration, the signal began to plateau

(electronic supplementary material, figure S2c).
3.3. Response of GUVs functionalized with Escherichia
coli lactate biosensors

All biosensor experiments were conducted in M9 medium,

and with 450 mM sucrose, as this was used to provide the

density difference for vesicle generation via phase transfer.

We first tested the system in monodisperse water-in-oil dro-

plets on a microfluidic chip using bacteria that were

premixed with varying concentrations of lactate. This was

used to obtain the experimental conditions for subsequent

experiments, and was particularly useful given that droplets

are the precursors to the lipid vesicles themselves, and bac-

teria, therefore, exist in the same physiological environment.

A PDMS microfluidic device with one flow-focusing junction

was fabricated via standard soft lithography as described

elsewhere [37]. The microfluidic device contained an obser-

vation chamber to accumulate droplets and facilitate the

microscopy experiments (figure 3).
Bacteria were mixed with lactate (9 : 1) in M9 medium and

were immediately encapsulated in droplets. Droplet sizes

were monodisperse, with mean radii of 15 mm and the coeffi-

cient of variation less than 3%. Some droplets (less than 1%)

were found to fuse with adjacent ones. Prototyping exper-

iments revealed successful GFP production in the confined

environment, with lactate concentrations ranging from 0.5

to 50 mM, at room temperature, over a period of 5 h.

Following these experiments, we encapsulated bacteria in

GUVs with embedded a-HL pores in their lipid bilayers. The

GUVs were subsequently inserted into external solutions of

varying lactate concentrations: 0, 0.05, 0.5, 1.5, 5, 15 and

50 mM. Lactate diffused through the a-HL pores and

initiated a fluorescence signal increase. Figure 4a,b demon-

strates bright field and fluorescence images of the GUV

encapsulated biosensor at t ¼ 0 and after approximately 4 h

at 50 mM external lactate concentration. Microscopy images

revealed non-encapsulated bacteria, which is a limitation of

the system that can be improved upon in the future through

microfluidic encapsulation strategies which offer greater

encapsulation efficiencies [40,41], and through size-dependent

filtration approaches. Nevertheless, the vesicles that encapsu-

lated the microbes remained stable and the population of

bacteria increased inside the vesicle over 4 h, as shown in

figure 4a.

The response of the encapsulated biosensor under differ-

ent lactate conditions was monitored in a bulk GUV sample

using a fluorimeter. Bacteria in different concentrations of lac-

tate grew to a similar number over time and tripled over 3 h

in all conditions (electronic supplementary material, figure S3).

In all experiments, a plateau in fluorescence was eventually

reached, which was taken as the end-point. The higher the

lactate concentration, the larger the end-point fluorescence

produced by the biosensor (figure 4d ), with maximum inten-

sity being reached earlier for lower lactate concentrations

(approx. 1 h for 0.05 mM, approximately 12 h for 15 mM).
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The control case, which was identical apart from the absence

of lactate, showed no fluorescence increase over time, as

expected.

To test the effect of non-encapsulated bacteria, we ran the

same experiment with 15 mM lactate externally, but with no

a-HL pores present (figure 4e). In this scenario, only the non-

encapsulated bacteria would be exposed to lactate. Compared

with when a-HL was present, the fluorescence intensity

after 12 h was 54–60% lower, showing that, although non-

encapsulated bacteria are contributing to the signal, the

majority of the response is derived from bacteria that are

encapsulated in the vesicle.

Based on these experiments, we extrapolated a calibration

curve based on the response of the hybrid biosensor to dis-

tinct lactate concentrations (figure 4c), which showed an

increase in fluorescence signal up to 15 mM with lactate

concentration and a linear measurement range up to 5 mM.

The response range is, therefore, larger than the enzymatic-

based sensor (linear up to 0.2 mM) under the conditions

used in our experiments.
4. Conclusion
In conclusion, we show that engineered bacteria can be used

as functional modules within lipid vesicles. In our system, the

chosen functionality was lactate biosensing, although

this work paves the way for the wide array of capabilities

of synthetic biology systems to be incorporated in future.

Whole-cell biosensors have a number of advantages over

other types of sensors, including increased sensitivity,
reduced cost and robustness. The use of engineered organ-

isms encapsulated within vesicle compartments has several

potential benefits compared with their use in open con-

ditions, arising from the presence of a lipid vesicle barrier.

First, the vesicle can provide protection against surrounding

environments in instances where these are non-compatible.

Second, the chemical environments inside the vesicle can be

optimized for the performance of the bio-module, without

the need to change the composition of the bulk solution.

Third, the vesicle provides a two-dimensional surface that

can be easily engineered to give added functionality, e.g.

through the addition of molecular recognition modules, the

addition of light-, temperature- and pH-responsive modal-

ities, and responsive pores and channels [7,42–45]. These

features may be desirable in applications ranging from co-

culture (where the encapsulated ‘sensor’ cells are shielded

from the main culture solution) to targeted binding in

medicinal settings (e.g. by functionalizing the vesicle lipid

membrane with appropriate receptors).
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