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Abstract Breast and uterine cancer are the most frequent fe-
male gender related neoplasms whose growth is mostly estro-
gen dependent. Therefore, any EDC exhibiting estrogenic ef-
fects may increase the risk of these two malignancies. This
review focuses on the potential role of EDCs with estrogenic
potential on the risk of breast and uterine neoplasms but also
points to the possible role of the exposure to EDCs in the
pathogenesis of ovarian and cervical cancer. It also underlines
the necessity of informing the public about the presence of
EDCs in common consumer products, their detrimental health
effects and methods of reducing the exposure risk.
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1 Introduction

Endocrine disrupting chemicals (EDCs) are environmental
compounds (natural or synthetic), which impair the function
of the endocrine system leading to adverse health outcomes. A
group of chemicals with an endocrine disrupting potential is
very heterogeneous and includes many synthetic substances
used in agriculture, industry as well as many consumer prod-
ucts. The most common include polychlorinated biphenyls
(PCBs), polybrominated diethyl ethers (PBDEs), dioxins,
plasticizers [bisphenol A (BPA) and phthalates], pesticides

[methoxychlor, chlorpyrifos, dichlorodiphenyltrichloroethane
(DDT)], fungicides (vinclozolin) and herbicides [1, 2]. Also
several naturally occurring plant derived substances possess
an endocrine disrupting potential (phytoestrogens) [3, 4].
Although there are several different mechanisms through
which EDCs can impair the function of the endocrine system
[2, 5], most of the reported adverse effects of their action are
due to their interaction with estrogen receptors (ERs) or alter-
ation of estrogen signaling pathways [6].

Female gender related neoplasms include breast, uterine,
ovarian and cervical cancer. The first two are estrogen depen-
dent malignancies, therefore their development and growth is
usually due to the prolonged or exaggerated exposure to es-
trogens [7]. It is still debatable if ovarian cancer is estrogen
dependent, whereas cervical cancer is mostly due to infection
with oncogenic viruses [the human papilloma virus (HPV)]
[8].

1.1 BPA as the most abundant EDC exhibiting estrogenic
properties

BPAwas first developed in the 1890s as a synthetic estrogen
which in the 1930s has been shown to possess estrogenic
activity comparable to estrone in stimulating the female repro-
ductive system in rats [9]. Surprisingly, data on the estrogenic
properties of this compound have been forgotten and nowa-
days BPA is the most abundant chemical used in many con-
sumer products [10]. It is mostly used in the production of
polycarbonate plastics and epoxy resins, food packaging, den-
tal sealants, and thermal receipts. Therefore, BPA can migrate
into dust from laminate flooring, adhesives containing epoxy
resins, paints, toys and household electronic equipment [11].
BPA is also widely used as the inside coating of cans used for
food preservation and storage. Heating cans during steriliza-
tion or food preparation causes BPA to leak into the can
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content and therefore, BPA is also found in many food prod-
ucts [12]. Consequently, we are now exposed to this chemical
not only via inhalation of household dust but mostly by eating
foods stored in plastic containers or cans [10]. Due to the
phenolic structure, BPA has been shown to interact with es-
trogen receptors (ERs) and estrogen signaling pathways [13].
The binding affinity of BPAwith both ERs has been estimated
to be 0.1–0.01 % of the affinity of 17β-estradiol (E2) [14] but
data from the in vitro experiments on ER positive human
MCF-7 breast cancer cells show that although it competes
more effectively for binding with the ERα it induces the
ERα- and ERβ-mediated gene expression with comparable
efficacy [15]. BPA has also been shown to activate the expres-
sion of the target genes by signaling via so-called membrane
estrogen receptors [G-protein coupled ERs (GPER)] with the
potency comparable to the E2 or through related signal-
transduction cascades [16]. Although BPA is generally con-
sidered to be an ER agonist in some tissues it has been shown
to have antagonistic effects (i.e., brain and uterus) [17]. In
addition to binding to ERs, BPA has also been shown to have
an influence on their expression. Data from in vitro as well as
in vivo experiments showed that exposure to this phenolic
compound leads to the upregulation of ERα gene expression
in different cell types and tissues [18–21]. Apart from the
apparent affinity of this chemical to the ERs, BPA has also
been shown to bind androgen receptors (AR) [22, 23], thyroid
hormone receptors (TR) [24] and peroxisome proliferator ac-
tivated receptors gamma (PPARγ) [25]. Therefore, BPA may
not only cause adverse effects in the reproductive tissues but
may also greatly influence metabolic aspects of human health
(reviewed in ref. [26, 27]).

1.2 Carcinogenesis of estrogen dependent female cancer

Breast and uterine cancer are the most frequent female gender
related neoplasms whose growth is mostly estrogen dependent
[7]. Therefore, any EDC exhibiting estrogenic effects may
increase the risk of these two estrogen dependent malignan-
cies. The results of a vast number of experiments conducted in
rodents stress the importance of fetal as well as pre-pubertal
exposure to EDCs in the pathogenesis of breast and uterine
cancer [28, 29]. Altering the hormonal milieu in utero as well
as before puberty can have detrimental effects on breast and
uterine morphology and function in adult life (reviewed in ref.
[30]). Carcinogenesis is a process, which is usually looked
upon as a consequence of DNA mutations in the genes that
control cell proliferation, differentiation and maturation – the
so called somatic mutation theory (SMT) [31]. However, re-
cent data from several studies point to the role of cell to cell
communication and cell-matrix interactions which when gone
awry result in disruption at the tissue-level that give rise to
malignancy – the so called tissue organization field theory
(TOFT) [32]. Breast tissue morphogenesis involves many

reciprocal interactions between the stroma and the epithelium,
thus the TOFT is more likely to explain the pathogenesis of
breast cancer [33]. Fetal expression of the two ER isoforms
(ERα and ERβ) is exclusively detected in the stroma of de-
veloping mammary gland [34, 35] which points to the role of
this tissue compartment in proper breast development.
Therefore, any imbalance in the exposure to hormonal and
growth factors, which govern the proper development of the
stromal and epithelial tissue of the developing mammary
gland may lead to the formation of neoplasia later in adult-
hood. Experimental data from developing breast tissue inmice
and rats, clearly point to such a relationship [33].

1.3 Direct effects of EDCs on the development of estrogen
dependent cancer

Mammary gland and the uterus are the main estrogen target
organs therefore studies on the carcinogenic effects of EDCs
mostly concentrate on those exhibiting estrogenic potential.
Most data stem from the studies on BPA since it is the most
prevalent estrogenic EDC found in many consumer products
[10, 36, 37]. Growth promoting effects of BPA in different cell
lines expressing ERs (i.e., MCF-7) only proof its estrogenic
properties and do not necessary point to the carcinogenic
potential of this compound [37]. However, data from a great
number of studies conducted on animal models of breast can-
cer show that BPA may actually promote the growth of this
malignancy also via non-estrogen dependent pathways
(reviewed in ref. [37, 38]). It has been also stressed that the
time of exposure to this compound has a great impact on
breast cancer risk [39]. Interactions with the peri-ductal stro-
mal breast tissue during fetal mammary gland development
seem to have a tremendous impact on the development of this
malignancy (reviewed in ref. [40]). Clinical data on the risk of
breast cancer development due to the exposure to estrogenic
EDCs are limited and inconclusive [41–44]. Recently howev-
er in a very interesting and a unique case–control study con-
ducted by Cohn et al. [45] it has been found that in utero
exposure to the estrogenic pesticide DDT is associated with
an increased risk of breast cancer later in life.

Surprisingly, data on the role of EDCs in the pathogenesis
of uterine hyperplasia and cancer is very limited. The first
study evaluating the effects of EDCs on endometrial morphol-
ogy in women was conducted by Hiroi et al. [46]. These au-
thors demonstrated a possible association between the expo-
sure to BPA and estrogen dependent endometrial disorders.
However, no association between endometrial cancer and
PCB congeners, DDT-related and organochlorine compounds
was found in a study conducted by Sturgeon et al. [47].
Surprisingly, the results from the studies on dietary
isoflavones show a decreased risk of endometrial cancer in
women [48, 49], whereas data from animal experiments point
to the uterotrophic potential of plant derived substances and
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their estrogenic metabolites. For example equol – a metabolite
of daidzein present in soy, has been shown to cause endome-
trial growth and hyperplasia in ovariectomized rats [50].
These results were consistent with a study of Unfer et al.
[51] where women taking soy extracts to alleviate menopausal
symptoms had a higher incidence of endometrial hyperplasia
compared to those who were taking placebo. Therefore, stud-
ies on the association between the exposure to estrogenic
EDCs and the risk on endometrial hyperplasia and cancer
are still warranted.

1.4 Indirect effects of EDCs on the risk of estrogen
dependent cancer

Apart form the direct actions of estrogenic EDCs on the estro-
gen target organs, they may also indirectly affect the risk of
cancer development by influencing other risk factors. For in-
stance, early menarche and late menopause prolong women’s
lifetime exposure to estrogens thus increasing also the risk of
estrogen dependent malignancies [52]. Therefore, any EDCs
having an influence on these two events in women’s life, may
also significantly impact the risk of breast and uterine cancer
development [7, 53]. Data from studies conducted in humans
linking the exposure to EDCs and age at menarche are very
limited and inconclusive. In a study conducted byVasiliu et al.
[54] in utero exposure to dichlorophenyldichloroethylene
(DDE) reduced age at menarche by 1 year. However, when
controlling for estimated body size at menarche this associa-
tion was no longer significant. Similarly, cross-sectional data
from the National Health and Nutrition Examination Survey
(NHANES) showed that adolescent girls with moderate urine
BPA concentrations appeared to be less likely to have early
onset of menarche then those with the lowest. Yet, while the
magnitude of the studied association remained unchanged
when likely confounders were taken into the consideration,
the results were no longer statistically significant.
Additionally, overweight status strongly modified the associ-
ation between the urinary BPA concentrations and the age of
menarche [55]. Clinical data on the influence of exposure to
EDCs and the timing of menopause are still lacking.

EDCs that interact with ERs or estrogen signaling path-
ways may also indirectly influence the risk of estrogen depen-
dent cancer via the action on the hypothalamic-pituitary-
gonadal axis. EDCs exhibiting anti-estrogenic actions in the
hypothalamus increase the secretion of gonadotropins and thus
the production of the ovarian steroids, which in turn increases
the exposure to unopposed high estrogen concentrations.
Paradoxically, EDCs exhibiting estrogenic actions may also
lead to the sustained elevation of LH (Bpositive^ feed-back
loop), which leads to an exaggerated androgen production in
the theca cells - a common feature observed in women with
PCOS [56]. Data from several clinical studies are consistent
with this hypothesis. Women with PCOS develop unovulatory

infertility and also have a higher risk of uterine cancer [57].
Clinical data on the risk of breast cancer risk in these patients
are however still inconsistent [58].

Obesity is another factor that has a great impact on breast
and uterine cancer risk [59, 60]. This association is due to the
aromatase overexpression in dysfunctional adipose tissue
which converts androstenedione of adrenal origin into estrone
which can be further converted into E2 by the activity of 17β-
hydroxysteroid dehydrogenase, leading to unopposed
hyperestrogenemia [61]. Therefore, factors that cause or in-
duce obesity can also have a great impact on the breast and
uterine cancer risk, especially in postmenopausal women.
Data from recent studies proof that prenatal exposure to
EDCs is associated with the development of obesity later in
life [62]. Also it has been shown that dietary ingestion of
persistent organic pollutants (POPs) promote the development
of obesity, which in turn influences breast cancer risk [63].
Data from studies on the metabolic effects of BPA also point
to the obesogenic potential of this EDC (reviewed in ref. [64]).

Breast tissue is also a target organ for the action of prolactin
(PRL), which is responsible for the initiation of lactation post-
partum. The production of PRL by the pituitary lactotrophic
cells is mostly via the action of estrogens and their signaling
pathway. Therefore, any EDC exhibiting estrogenic activity
may stimulate PRL secretion. This has been actually proven in
animal experiments [4, 65]. Whereas exposure to high PRL
levels is a risk factor for breast cancer development is still
debatable [66]. Nevertheless, such an association is justifiable
since the breast tissue is the main target organ for the PRL
action where it stimulates its growth and maturation not only
postpartum but also during puberty [67]. Clinical data on the
effects of human exposure to EDCs on PRL secretion are,
however, still lacking.

1.5 Ovarian cancer and EDCs

Although ovarian cancer is not an estrogen dependent malig-
nancy [68] there have been some studies conducted in vitro on
the effects of selected EDC on the proliferation of ovarian
cancer cells. Data from experiments conducted in vitro
showed that BPA, nonylphenol, octylphenol, methoxychlor,
benzophenone-1 stimulated the proliferation of ER positive
BG-1 ovarian cancer cells via estrogen signaling pathway
[69, 70]. Benzophenone-1 is a commonly used UV-filter,
which has also been shown to possess immunomodulating
properties, which resemble those of E2 [71]. Data from the
experiments conducted by Hall and Korach [72] also pointed
to the mitogenic potential of BPA, genistein and 2,2-bis(p-
hydroxyphenyl)-1,1,1-trichloroethane (HPTE) in ovarian can-
cer cells, which was regulated via ER-mediated expression of
the chemokine CXCL12 (stromal cell-derived factor-1). The
results of these studies, however, do not point to the potential
association between exposure to these substances and ovarian
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cancer risk. We might speculate on the potential role of the
indirect actions of EDCs on ovarian cancer risk, especially
those possessing anti-estrogenic effects in the hypothalamus
leading to an increased production of gonadotropins, which
directly stimulate the gonads and therefore may also impact
the risk of ovarian cancer development [73]. Clinical data on
the exposure to environmental EDCs and the risk of ovarian
cancer is, however, still lacking.

1.6 EDCs and cervical cancer

Although cervical cancer is also not an estrogen dependent
neoplasm the first data on the deleterious effects of exposure
to EDCs actually come from the observations that women
exposed in utero to diethylstilbestrol (a synthetic estrogen
which was prescribed until 1971 to pregnant women to pre-
vent miscarriages) developed vaginal clear cell adenocarcino-
ma [74]. These observations have stressed the role of time of
exposure to EDC during the stages of fetal development and
its consequences later in adult life. Nowadays, infection with
human papilloma virus is the main culprit of cervical cancer
[8]. Nevertheless, a recent study conducted in vitro by Ma et
al. [75] showed that nanomolar concentrations of BPA pro-
moted migration and invasion of cervical cancer HeLa, SiHa,
and C-33A cells. Further studies on the potential role of ex-
posure to other estrogenic EDCs on the risk of cervical cancer
are however still warranted.

1.7 Informing the patients on EDCs and the risk of female
gender related cancer

It is now apparent that EDCs that interact with ERs or estrogen
signaling pathways may have detrimental effects on women’s
reproductive health. Amultidisciplinary approach is needed to
reduce the exposure to these chemicals where not only gyne-
cologists [76] and endocrinologists, but mostly family doctors
should be involved in the process of widening the knowledge
and the awareness about the consequences of exposure to
these environmental substances [77]. Although, there is vast
information available from the governmental (http://edkb.fda.
gov, http://www.epa.gov/endo) as well as private
organizations (http://www.ourstolenfuture.org, http://www.
silentspring.org, http://www.nrdc.org, http://www.
healthandenvironment.org) on the detrimental health effects
due to exposure to EDCs, recommendations in an easily
accessible format on methods of minimizing the exposure to
these substances are still lacking [30].

1.8 Summary

Although more clinical studies are warranted on the associa-
tion between exposure to EDCs and the development of fe-
male gender related malignancies, it is already clear that both

the level and timing of exposure are crucial. Also, apart form
the direct actions of estrogenic EDCs on the estrogen target
organs, they may also indirectly affect the risk of cancer de-
velopment by influencing other risk factors. Therefore, in or-
der to reduce the risk of female gender related neoplasms, the
public should be informed about the presence of EDCs in
common consumer products and methods of limiting expo-
sure to these substances.
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