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Abstract
Increased understanding of the molecular components involved in reproductionmay assist

in understanding the evolutionary adaptations used by animals, including hermaphrodites,

to produce offspring and retain a continuation of their lineage. In this study, we focus on the

Mediterranean snail, Theba pisana, a hermaphroditic land snail that has become a highly
invasive pest species within agricultural areas throughout the world. Our analysis of T.
pisanaCNS tissue has revealed gene transcripts encodingmolluscan reproduction-associ-
ated proteins including APGWamide, gonadotropin-releasing hormone (GnRH) and an

egg-laying hormone (ELH). ELH isoform 1 (ELH1) is known to be a potent reproductive pep-

tide hormone involved in ovulation and egg-laying in some aquatic molluscs. Two other

non-CNSELH isoformswere also present in T. pisana (Tpi-ELH2 and Tpi-ELH3) within the
snail dart sac and mucous glands. Bioactivity of a synthetic ELH1 on sexually mature T.
pisanawas confirmed through bioassay, with snails showing ELH1-induced egg-laying
behaviours, including soil burrowing and oviposition. In summary, this study presents a

detailedmolecular analysis of reproductive neuropeptide genes in a land snail and provides

a foundation for understandingELH function.

Introduction
Snail reproduction is controlled by a tetra neural central nervous system (CNS) [1,2] that coor-
dinates the timely release and action of potent neuropeptides. In molluscs, there are several
neuropeptides that have attracted particular research interest due to their conserved role in
reproductive processes, including Ala-Pro-Gly-Try-amide (APGWamide), egg-laying hor-
mone (ELH), and gonadotropin-releasing hormone (GnRH).

APGWamide, first described in a sea snail by Kuroki et al. [3], is encoded by a precursor
that possesses multiple lysine-arginine (KR) cleavage sites, giving rise to the N-terminal
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amidated bioactive APGW tetra peptide. In Lymnaea stagnalis, APGWamide is known to regu-
late male reproductive functions, such as controlling penis eversion and inhibition of spontane-
ous muscular contractions of smooth muscle in the vas deferens [4,5], as well as spermiation in
the Donkey’s ear abalone (Haliotis asinina) [6].

The ELH peptide has been identified in bothAplysia and Lymnaea (called caudodorsal cell
hormone, or CDCH, in Lymnaea), as well as two oyster species and a limpet [7,8,9,10,11,12],
while analogues have also been describedoutside of molluscs such as in the fruit fly (Drosophila;
ovulin) [13] and the leech (Theromyzon tessulatum) [14]. In Aplysia, ELH regulates functions of
the female reproductive system, namely those involved with ovulation and egg laying [1,15].Aply-
sia ELH that is released from the neural bag cells stimulates prolonged excitation of neurons in
the abdominal ganglion and at the same time diffuses into the hemolymph to act as an endocrine
neurohormone (Geraerts et al., 1988). When ELH reaches the animal’s ovotestis, it causes contrac-
tion of the smooth muscle follicles, thereby facilitating the expulsion of the egg string (Dudek and
Tobe, 1978). In addition, ELH suppresses feeding behaviour by acting on the buccal and cerebral
ganglia, and generates head waving by acting on the pedal and cerebral ganglia (Shyamala et al.,
1986). Injection of the CDCH into Lymnaea stimulates ovulation and egg mass formation [16].

For GnRH, functional roles have been documented throughout most animal phyla (reviewed
by Roch et al., [17]). In vertebrates, GnRH induces the release of gonadotropins whereas in the
invertebrates research is still ongoing to define its precise role in reproduction, or other physio-
logical processes. GnRH peptides have been identified in a number of aquatic molluscan species
and while their functionhas not beenwell characterised, synthetic GnRH induces steroidogenesis
and stimulation of spermatogonia proliferation in the octopus (Octopus vulgaris), Japanese scal-
lop (Patinopecten yessoensis) and Pacific oyster (Crassostrea gigas) [17,18]. In general, a distinct
feature of all GnRH precursor proteins is a well conservedGnRH peptide pQHWSX4PGamide
that is cleaved from the variable N-terminal GnRH associated peptide [17].

The transition onto terrestrial environments has meant that land snails have diversified
from other gastropods, and this has been accompanied by key changes to reproduction includ-
ing aspects of both courtship and egg-laying to accommodate the lack of water (e.g. placement
of eggs underground). One species that has evolved particularly effective adaptations for sur-
vival in dry habitats is the Mediterranean land snail Theba pisana (Müller, 1774). The ability of
this hermaphroditic species to survive long periodswith little or no water has also probably led
to its success as an introduced pest in many areas where it can multiply at prolific rates causing
widespread damage to agriculture [19,20]. Unfortunately, at present we have a limited under-
standing of the molecular components involved in hermaphrodite snail reproduction, particu-
larly since, unlike most dioecious animals, their anatomy involves more complex pathways to
regulate control over reproductive metabolism.

In this study, we performed de novo transcriptome sequencing of T. pisana CNS connective
sheath to find the ELH gene. Through bioinformatic analysis we also identified the target
reproduction-associated genes, ELH, APGWamide, and GnRH. We demonstrate that these
genes share significant amino acid sequence homology with other molluscs and further show
quantitative distribution of each within the CNS, dart sac and mucus glands. In vivo bioassays
using a synthetic ELH peptide confirms that ELH has a crucial role in land snail reproduction,
eliciting rapid changes by stimulation of egg laying.

Methods

Ethics Statement
All use of animals for this research was approved and carried out in accordance with the rec-
ommendations set by the Animal Ethics Committee, University of the Sunshine Coast.
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Animals
T. pisana were obtained from Warooka, South Australia (34.9900° S, 137.3990° E). The animals
were identified as T. pisana by the criteria described in the integrated snail management in
crops and pastures [19]. Once in the laboratory, snails were kept in terrarium-meshed pens at
19°C, 30 percent humidity and a 12:12h light:dark cycle. They were fed weekly with cucumber
and carrot. To determine snail maturity, they were classified into three groups based on visual
inspection of their reproductive systems upon dissection; juvenile (no reproductive system),
immature (underdeveloped reproductive system including small mucus and albumin glands),
and mature (fully developed reproductive system including presence of darts, large mucus and
albumen glands).

Protein Comparisonand Annotation
A T. pisana RNA-seq library was assembled from SRP056280, as described in Adamson et al.
(2015) [21]. Gene annotations corresponding to molluscan reproductive proteins were selected
for comparative analysis using the CLC main workbench v6.9 (CLCbio) and BLASTp search.
Matched nucleotide sequences were translated using ExPASy translate tool (http://web.expasy.
org/translate/) and returned protein sequences were processed with SignalP (http://www.cbs.
dtu.dk/services/SignalP/)[22] to determine secretion. NeuroPred (http://neuroproteomics.scs.
illinois.edu/cgi-bin/neuropred.py) [23] was used to predict cleavage sites, posttranslational
modifications, and the presence of putative bioactive peptides. Schematic diagrams of protein
domain structures were prepared using the Domain Graph (DOG, version 2.0) software [24].
Protein secondary structure predictions were made using PredictProtein (http://www.
predictprotein.org/), and protein 3D models were built using the Assisted Model Building with
Energy Refinement (AMBER) 14 [25], in which the molecular dynamic simulations were sam-
pled every picosecond for a total of 250 nanoseconds.

Protein sequences from T. pisana were aligned against the predicted protein sequences for
APGWamide, ELH and GnRH peptide that were obtained from NCBI and Veenstra [11].
Using the MEGA 6.0 platform and in-built programs ClustalW and the Gonnet protein weight
matrix [26], multiple sequence alignment schematics were generated and visualised through
LaTeX’s TeXShade package [27]. Phylogenetic trees for GNRH were constructed using
MEGA6.0 and the neighbour-joiningmethod [28] with 1000 bootstrap replicates.

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Gene
Cloning
Total RNA was isolated from nine different T. pisana tissues (CNS ganglia, bursa copulatrix,
bursa tract, dart sac, foot muscle, hepatopancreas, mucus glands, ovotestis and penis) collected
from both mature (n = 10) and immature animals (n = 15) using TRIzol (Invitrogen) extrac-
tion methods. Total RNA integrity was analysed using a 1.2% agarose gel with formaldehyde
and ethidium bromide staining. Total RNA was used as a template for complementary DNA
(cDNA) synthesis using a QuantiTect kit (QIAgen, Limburg, Netherlands) as per the supplier’s
instructions. PCR was carried out on template cDNA using REDTaq (Sigma-Aldrich,MO,
USA) as per supplier’s instructions and including gene specific primers (50 pmol each; S1
Table). Cycling parameters were 94°C for 1 min, 45°C for 2 min, and 72°C for 3 min for 30
cycles. PCR products were separated with a 2% agarose gel (0.6x Tris-Boric acid EDTA, TBE;
0.2% ethidium bromide) prior to visualisation (Syngene, Cambridge, England). Amplicons
obtained were purified from 2% agarose gels with a QIAquick spin PCR purification kit (QIA-
gen) as per supplier’s instructions. Purified PCR products were then ligated into a pGEM-T
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easy plasmid (Promega, WI, USA) and recombinant clones were sequenced at the Australian
Genome Research Facility (AGRF, Brisbane).

Wholemount in situ hybridisation (WMISH)
Digoxigenin (DIG)-labelled riboprobes designed against the 3ˊ untranslated region of the Tpi-
ELH1 gene (identified in the transcriptome) and actin positive control were prepared for
WMISH as previously described [29]. CNS, dart sac and mucous gland tissues were collected
from mature snails and fixed in 4% paraformaldehyde in 0.01M phosphate buffered saline
(Sigma; 138 mM NaCl, 2.7 mM KCl, pH 7.4) overnight, then stored in 70% ethanol at 4°C.
WMISH was then performed using DIG-labeled riboprobes with modifications according to
[29]. For documentation, specimens were dehydrated by stepwise ethanol changes, cleared in
benzyl benzoate: benzyl alcohol (2:1 v/v) and mounted in 70% glycerol. Tissues were then
examined with a Leica M205A stereoscope and images were captured with a Leica DFC550 dig-
ital camera.

LC-MS/MS Identificationof ELH
To confirm the production of ELH, protein was extracted from pooledCNS and pooled
mucous glands from both mature and immature T. pisana (n = 30). Tissues were homogenized
in 0.1% trifluro acetic acid (TFA) in H2O at a ratio of 1 ml per 200 mg of tissue. Homogenized
tissue was then sonicated with three pulses (15 s each) and centrifuged for 10 min at 5,000 xg at
4°C. Hydrophilic biomolecules were isolated using a C18 Sep-Pack Vac cartridge (5 g; Waters,
Rydalmere, NSW, Australia) following manufactures instructions. Samples were lyophilized
and then resuspended in 1 mL 0.1% TFA for RP-HPLC using a gradient of 0%-60% acetonitrile
over 60 min (Agilent Zorbax 300 SB-C18 column, 4.8 mm x 150 mm and particle size of 5μm).
Sample eluates were collected in 5 min fractions and biomolecules detected at wavelengths of
210 nm and 280 nm.

Fractions were analysed by LC-MS/MS on a Shimadzu Prominance Nano HPLC (Japan)
coupled to a Triple-ToF 5600 mass spectrometer (ABSCIEX, Canada) equipped with a nano
electrospray ion source. Approximately 6 μl of each extract was injected onto a 50 mm x
300 μm C18 trap column (Agilent Technologies, Australia) at 30 μl/min. The sample was de-
salted on the trap column for 5 minutes using 0.1% formic acid (aq) at 30 μl/min. The trap col-
umn was then placed in-line with the analytical nano HPLC column (150mm x 75μm
300SBC18, 3.5um; Agilent Technologies, Australia) for mass spectrometry analysis. Linear gra-
dients of 1–40% solvent B over 35 min at 300 nl/minute flow rate, followed by a steeper gradi-
ent from 40% to 80% solvent B in 5 min were used for peptide elution. Solvent B was held at
80% for 5 min for washing the column and returned to 1% solvent B for equilibration prior to
the next sample injection. Solvent A consisted of 0.1% formic acid (aq) and solvent B contained
90/10 acetonitrile/ 0.1% formic acid (aq). The ion spray voltage was set to 2400V, declustering
potential (DP) 100V, curtain gas flow 25, nebuliser gas 1 (GS1) 12 and interface heater at
150°C.

The mass spectrometer acquired 500 ms full scan TOF-MS data followed by 20 by 50 ms
full scan product ion data in an Information Dependant Acquisition, IDA, mode. Full scan
TOF-MS data was acquired over the mass range 350–1800 and for product ion ms/ms 100–
1800. Ions observed in the TOF-MS scan exceeding a threshold of 100 counts and a charge
state of +2 to +5 were set to trigger the acquisition of product ion, ms/ms spectra of the resul-
tant 20 most intense ions. The data was acquired and processed using Analyst TF 1.5.1 software
(ABSCIEX, Canada). Proteins were identified by database searching using PEAKS v6.0 (BSI,
Canada) against a database of protein sequences predicted from the T. pisana connective
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sheath transcriptome library and protein database composed of known neuropeptides from
molluscs [12].

ELH Bioassay
Mature snails (n = 78, 6 per treatment group; 1.85g ± SD 0.25 g body weight) were selected at
random and administered either 5 μl or 10 μl of synthetic ELH1 (China peptides; delivered via
a 50 μl Hamilton syringe) at one of five concentrations: 10−12 M, 10−9 M, 10−6 M, 1.15x10-4 M
or 10−3 M. All solutions were prepared in molluscan Ringer (30), and concentrations were
selected based on previous studies in A. californica, that indicated that ELH1 is effectivewithin
this range to stimulate egg-laying [10]. Following injection, all snails were placed into individ-
ual 500 ml specimen jars 1/4 filledwith damp loam. They were then held at ambient 18–21°C
with a 12:12 h light/dark cycle. Changes in behaviour including burrowing and egg-laying were
monitored every 10 min for up to 1 h post-injection and then every hour for 6 h, after which
they were monitored every 24 h for up to 6 days post-injection.Negative controls included
injection of 10 μl BSA (10μg/ml in Ringer) or molluscan Ringer solution [30]. Snails pierced
with a syringe were also assessed without injection of any solution.

Results

Reproduction-AssociatedGene Identificationand Analysis
A transcript for APGWamide (Tpi-APGW1) was identified that encodes a precursor contain-
ing a 27-residue signal sequence and multiple regions for cleavage and release of a suite of
APGWamide peptides (Fig 1). The Tpi-APGW precursor consists of 379 amino acids although
no terminal stop codon was present and so is presumed to be partial-length.One transcript for
ELH (Tpi-ELH) was identified that encodes for a single full-length protein precursor. The 212
amino acid Tpi-ELH precursor contains a 28-residue signal sequence and cleavage sites for the
release of a single amidated ELH peptide containing 44 amino acids (Fig 1). A single transcript
for a T. pisana GnRH precursor (Tpi-GnRH) was identified that encodes for a 116 amino acid
precursor. The precursor contains a 26-residue signal sequence and cleavage sites for the
release of an 11-residue GnRH peptide and 76-residue GnRH-associated peptide (Fig 1). The
Tpi-GnRH precursor shows high amino acid homology in the GnRH peptide region with other
molluscan sequences, especially to A. californica through conservation of Tyr at the N-termi-
nus of the GnRH peptide (S1 Fig). Tpi-GnRH also shows typical GnRH-like characteristics
suggesting an N-terminal pyroglutated Gln, and the presence of Ser, Gly and Trp which are
found in the majority of GnRH family peptides [17].

Tissue-specific expression of APGW, ELH and GnRH precursor genes was undertaken using
RT-PCR with gene-specific primers on RNA derived from tissues of mature and immature T.
pisana (Fig 2 and S2 Fig). Tpi-APGW gene transcripts were present only within CNS tissue, of
both mature and immature snails. The Tpi-GnRH gene was expressed in the CNS and ovotestis
tissue of mature snails, and only the CNS of immature snails. A Tpi-ELH amplicon of the
expected size was identified in the CNS and mucous gland of mature and immature snails
(ELH1), and in the dart sac of mature snails. In addition, two larger amplicons were also identi-
fied, one from the dart sac of mature snails (ELH2), and another from the mucous gland of
both immature and mature snails (ELH2).

Analysis of ELHGenes
All ELH amplicons were sequenced, showing that the CNS ELH1 amplicon corresponds to
Tpi-ELH identifiedwithin the CNS transcriptome (Ref-ELH), whereas the larger amplicons
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retrieved from mucous gland and dart sac amplicons, turned out to be show distinct variations
(ELH2 and ELH3) within the ELH peptide (Fig 3A). The Tpi-ELH precursor showed strong
homology to other mollusc ELH precursors within the ELH peptide, primarily near the N- and
C-termini. This conservationwas also apparent when Tpi-ELH was compared with other iden-
tified ELH (Fig 3B). A predicted 3D structure of the ELH peptide shows that it likely consists
of two short alpha helices (Fig 3C). The potential energy as a function of time during this
molecular dynamics simulation (MDS) and the root mean-square deviation of atomic positions
(RMSD) relative to this structure during the course of the MDS (S3 Fig), suggests it reached a

Fig 1. Molecular characterisationof T. pisanaAPGWamide, ELH andGnRHprecursor proteins.An amino acid sequence and schematic
representation is shown for each.

doi:10.1371/journal.pone.0162355.g001

Fig 2. RepresentativeRT-PCR gel showing tissue-specific expressionof APGWamide, ELH andGnRHprecursor genes in T. pisana.
Tissues were derived frommature (n = 10) and immature (n = 15) snails. Tissues used include the: bursa tract (B), CNS (whole central nervous
system ganglia), dart sac (DS), foot muscle (F), hepatopancreas (HP), mucous glands (MG), ovotestis (OT), penis (P). Tpi-actinwas used as a
positive control.

doi:10.1371/journal.pone.0162355.g002
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family of stable conformations (RMSD<2Å). The representative structure of Tpi-ELH
occurred at 106.60 ns into the MDS.

Whole mount in situ hybridisation with an antisense ELH1DIG-labeled riboprobe was used
to determine the spatial expression of Tpi-ELH1 in mature T. pisana CNS, dart sac and mucous
glands (Fig 4). In the CNS, Tpi-ELH1 expression was observed in regions of the connective
sheath, closest to the cerebral ganglia and procerebrum.Tpi-ELH1 expression was also
observed throughout the dart sac, whereas the mucous glands exhibited punctate expression
throughout the acini, which are known to contain clusters of mucus-secreting cells. Negative
controls displayed marginal background staining restricted to the outer proximity of the con-
nective tissue. No background staining was observed in the mucous glands or dart sac.

RP-HPLC was performed on CNS and mucous gland extracts to identify whether any of the
Tpi-ELH precursors could be identified. Representative RP-HPLC elution profiles for CNS and
mucous gland are shown in Fig 5A and 5B, respectively, where fractions between 20–40 min
elution were further analysed by LC-MS/MS. A single peptide segment matching to the Tpi-
ELH precursor was found in the CNS extract at 30–35 min, corresponding to the L21ALSS-
SAMPVPDEMKVP39 ([M+1H]1+ = 1610.83) (Fig 5A). Three different Tpi-ELH1 precursor
peptide segments were identified from the mucous gland extracts, which also eluted within 30–
35 min (Fig 5B), an example of which corresponds to Q43LEITGKQP51, ([M+2H]2+ = 507.28).

Bioassays
Mature T. pisana were also analysed for egg-laying following injection of snails with either syn-
thetic Tpi-ELH1 or control solutions (Table 1). In Assay 1, within 60 min post-injection 100%
of snails (n = 78) had recovered, as demonstrated by normal activity. No behaviour change,

Fig 3. Molecular identification of Theba pisana egg laying hormone (ELH). (A) Comparative amino acid sequence alignment of
the ELH region showing sheath ELH (Ref-ELH1) with ELH amplicons derived from the CNS, DS (ELH2) andMG (ELH3). Black
shading represents identical residues, grey shading represents similar residues. The ELH peptide domain is shown. (B) Amino acid
sequence and comparative amino acid sequence alignment of known ELH peptides. Sequence logo provides an overall view of
sequence conservation with the scale bar indicating the degree of amino acid conservation. (C) Predicted structureof T. pisanaELH1.
Purple represents alpha-helix, Thr8-Ile11,Lys38-Leu42; cyan turns,Gln1-Arg4,Ser12-Thr16, Thr19-Glu26, and Leu30-Arg34 white
random coil.

doi:10.1371/journal.pone.0162355.g003
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Fig 4. Whole-mount in situhybridisation localisation of Theba pisanaELH1withinmature and immature snail CNS, dart sac and
mucous gland.AntisenseDIG-labeled riboprobesshow the location of Tpi-ELH1 transcript. Open arrowheads, represent example
expression in the dart sac andmucous gland, as well as the cerebral ganglia sheath. Black arrows highlight expression of Tpi-ELH1 in the
parietal/pleural/visceral ganglia region; the red arrowheads show location of the pedal ganglia.

doi:10.1371/journal.pone.0162355.g004

Reproduction Genes in a Land Snail

PLOSONE | DOI:10.1371/journal.pone.0162355 October 5, 2016 8 / 16



including egg-laying, was observed in negative controls (snails injected with Ringer solution,
BSA, or injection with no solution) 24 h post-injection. By contrast, soil-burrowing behaviour
was observed in 40.7% of snails treated with Tpi-ELH1 (n = 22), including a single Tpi-ELH1--
treated snail (1.15x10-4M Tpi-ELH) that had produced an egg mass containing fertilised and
non-fertilised eggs. In subsequent observations at 48 h and 72 h post-injection, an additional 5
snails from treatment group ELH 1.15x10-4 M had laid egg cordons. No mortality was observed
in any of the treatment groups.

Fig 5. Proteomic evidence of ELH precursor peptides withinprotein extracts of T. pisana tissues.Representative RP-HPLCelution profiles, precursor
sequencewithmatching peptide shown andMS/MS spectra for (A) CNS and (B) mucous gland. Blue line in chromatograms indicates where Tpi-ELH
peptides eluted.

doi:10.1371/journal.pone.0162355.g005

Table 1. Egg-laying bioassay following injectionof syntheticTpi-ELH1 and or negative controls.

Stimulus n Negative BurrowingwithoutEgg-laying Burrowingwith Egg-laying Egg-laying only

Assay 1

Injection (no solution) 6 6 0 0 0

Ringer (10μl) 6 6 0 0 0

BSA (10μg/ml, 10μl) 6 6 0 0 0

ELH (10-3M, 5μl) 6 6 0 0 0

ELH (10-3M, 10μl) 6 6 0 0 0

ELH (1.15x-4M, 10μl) 6 0 0 6 0

ELH (10-6M, 5μl) 6 1 5 0 0

ELH (10-6M, 10μl) 6 4 2 0 0

ELH (10-9M, 5μl) 6 0 6 0 0

ELH (10-9M, 10μl) 6 2 4 0 0

ELH (10-12M, 5μl) 6 4 2 0 0

ELH (10-12M, 10μl) 6 3 3 0 0

Assay 2

Injection 6 6 0 0 0

ELH (1.15x-4M, 10μL) 30 11 0 16 3

doi:10.1371/journal.pone.0162355.t001
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Given that snails given 1.15x10-4M Tpi-ELH showed egg-laying, in Assay 2 snails (n = 30)
were injected with only 1.15x10-4 M ELH (Table 1). Again, no immediate egg-laying was
observed, but by 24 h post-injection, 3 snails had exhibited egg-laying behaviour (burrowed
into the soil), and 2 snails had laid eggs. After 48 h post-injection, another 13 snails had laid
eggs, while 2 more egg masses were present at 72 h post-injection. Some egg masses were found
above the top soil (n = 3). By day 6, 2 more snails produced egg masses before the experiment
was terminated. Negative control (injection without solution, n = 6) produced no eggs or and
snails did not exhibit burrowing or egg-laying behaviour.

Discussion
In this study, we analysed the CNS of T. pisana to assess the presence of molluscan-like repro-
ductive neuropeptide genes. Our T. pisana CNS RNA-seq data revealed the presence of two
partial-lengthTpi-APGW1 precursor isoforms (Tpi-APGW1 and Tpi-APGW2). At 379 amino
acids, and encoding twelve APGWamide peptides, Tpi-APGW1 was larger (by at least 72%)
than theHaliotis asinina APGWamide precursor [31], and is approximately 29% larger than
Tpi-APGW2. This variability was due to the inclusion of a single 111 amino acid insert in Tpi-
APGW1 compared with Tpi-APGW2, and comparative to other molluscs, this makes it the
largest known molluscan APGWamide precursor identified to date. Various analogues such as
the related GWamide peptides (TPGWa, KPGWa and RPGWa) have been identified in the
cuttlefish Sepia officinalis [32,33], the blue musselMytilus edulis [34], and the Pacific (C. gigas)
and Pearl (Pinctata fucata) oysters [12], but these were not present in T. pisana. However, we
did identify a single amidated peptide, AAEW, which is encoded in both Tpi-APGW isoforms.
The Tpi-APGW gene was exclusively expressed within the CNS, a location that is consistent
with other gastropods. Specifically, APGW has been reported to localise to the antero-medial
region of the cerebral ganglia, and in part of the pedal ganglia [35,36,37,38]. Further work will
be required to identify the full-length sequence of Tpi-APGW and characterise the role and
function of both AAEWamide and APGWamide in Theba.

In molluscs, genes encoding the GnRH have previously been identified in the CNS tissues of
O. vulgaris [39] and Aplysia [40]. Also, it was recently annotated from the draft genomes of the
oysters C. gigas, and P. fucata [12] and the limpet L. gigantea [11]. Furthermore, numerous
studies have also documented the presence (through immunolocalisation) and bioactivity of
GnRH in a variety of other molluscan species [41,42,43,44,45,46,47], thus confirming the evo-
lutionary conservation of GnRH amongst this diverse phylum. In this study, we identified a
transcript encoding a full-length precursor for Tpi-GnRH within the sheath transcriptome
with subsequent spatial expression analysis showing that it was also present in the ovotestis of
mature animals. This location is not uncommon in molluscs as demonstrated in S. officinalis
andH. asinina where the GnRH gene is also expressed in ovary [48,49]. Our study supports a
role for GnRH in reproduction, and further supports the idea that regardless of the evolution-
ary distance among animal phyla, GnRH is an ancient peptide that consistently shows a role in
the broad context of animal reproduction [17,48]. This contrasts with the diversity of GnRH-
like isoforms, including AKH, corazonin and RPCH that have been found among the ecdyso-
zoa, that have not yet been directly associated with reproductive processes [50,51].

The ELH gene is quite variable, making the bioactive peptide difficult to positively identify
through traditional molecular tools. More recently, due to the relative ease with which nucleic
acids can be sequenced, high-throughput transcriptome mining approaches have enabled
researchers to identify putative neuropeptides, even within non-model animal species [12,52].
Thus, transcriptome mining is now a valuable tool for gene discovery and has been used effec-
tively in a number of species, which is helpful for when a genome is unavailable [53]. For
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example, the oyster ELH genes were curated from in silico screening of the genomes of the
Pacific oyster (Crassostrea gigas) and Pearl oyster (Pinctata fucata) [12].

T. pisana ELH1 encodes a protein that shares the characteristic ELH preprohormone fea-
tures, including a hydrophobic signal sequence, followed by a number of cleavage sites that can
release a bioactive ELH peptide [54]. However, Tpi-ELH1 contains no homologous peptides
within its precursor that have similarity to the α or β peptides of ELH as describedwithin the
Aplysia ELH precursor. These additional bioactive precursor peptides are recognised for their
role in auto-excitation of Aplsyia ELH-containing neurons [55]. However, since the Tpi-ELH1
precursor contains predicted cleavage sites that could liberate at least 4 additional peptides, we
presume that these could play similar roles to those described in Aplysia. The C-terminal pep-
tide (SQNNAVVKADVSNRREQDFLSFLQAALGSSENV) is overall acidic, a feature that that
is consistent with the C-terminal peptide of the Aplysia ELH precursor, known as the acidic
peptide [56]. Comparing the primary structure of Tpi-ELH1 with other molluscan ELHs
reveals conserved regions within the N- and C-termini, including amidation, thought to play
an important role in receptor binding [9].

Accumulated genomic data have shown that the ELH gene is a member of a multigene fam-
ily consisting of a small number of highly homologous genes that are expressed in a tissue-spe-
cific fashion [12,57]. There are also reports of multiple ELH-like peptides in the same
precursor. For example, in the oysters P, fucata and C, gigas, the ELH gene precursor sequence
encodes precursors that include two ELH-like peptides [58]. We have found that although T.
pisana does not contain a precursor with multiple ELHs, it does have an additional two ELH
genes, the Tpi-ELH2 and Tpi-ELH3, which are expressed in non-neural tissues, as determined
by tissue-specificRT-PCR. This has interesting parallels with the Aplysia atrial gland ELH-like
peptide, the last major exocrine organ to make contact with eggs before they are laid [59]. It
has been proposed that, under normal physiological circumstances, the atrial gland cannot
secrete ELH into the hemocoel, and therefore does not play a direct role in egg deposition [60].
Instead, when the atrial gland peptides are injected into mature animals they can elicit egg
deposition due to the direct action of the ELH-related peptides [61,62]. This suggests that the
location of the atrial gland and its role may be more consistent with inducing stimulatory mat-
ing behaviour [63,64].

In our study, we found Tpi-ELH1-3 in the dart sac and mucous gland of mature T. pisana
(but only mucous gland of immature snails), thus implicating this hormone as a contributor to
the proposed transfer of allohormones during ‘love’ dart shooting in helicid snails. The love
dart acts as a syringe-like needle that facilitates the co-transference of a precoated mucous
gland substance(s) at mating that increases paternity success [65,66,67,68,69,70,71].No studies
to date have clearly defined the exact biochemical makeup of the helicid love dart allohormone,
although at least one component of the allohormone is known to stimulate contraction of the
recipient bursa duct diverticulum, thereby ensuring that an increased proportion of its donor
sperm are stored [72]. Therefore, the effect of Tpi-ELH1 and Tpi-ELH2 on bursa duct divertic-
ulum contraction should be explored. However, the present study has established that synthetic
Tpi-ELH1 could induce observable changes in egg laying behaviour in vivo. In Aplysia, ELH
can stimulate egg laying in approximately 45 min post-injection [7]. The time taken for Tpi-
ELH1-induced egg laying in T. pisana was much longer (180 mins to 24 h post-injection), and
those animals that did exhibit egg laying produced immature eggs. This result may be due to
isolation of individual snails during bioassays, or periods in which snails were in dormancy or
in periods of inactivity resulting in slower snail recovery and mobilisation.
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Conclusions
Reproductive neuropeptides encompass a diverse class of cell signalling molecules that are pro-
duced and released via an endocrine regulated secretory route. In this study, we analysed a
CNS transcriptome from the land snail T. pisana, and identified gene transcripts that encoded
for three ELH peptides, the ELH1-3. Based on functional analysis, we have implicated a role for
ELH1 in reproductive processes of T. pisana. Of significance, this is the first time that an ELH
has been characterised at both the gene and functional level in a land snail. We also report
other gene transcripts that have been implicated in reproductive processes in molluscs, includ-
ing APGW and GnRH. It is conceivable that this information could now be used to develop a
basis for understanding of reproduction in other terrestrial molluscs and develop ways for
managing pest land snail populations through modulation of these genes.

Supporting Information
S1 Fig. Comparison and phylogenetic analysis of GnRH.
(TIF)

S2 Fig. Complete RT-PCR gel showing tissue-specificexpression of APGWamide, ELH and
GnRH precursor genes in T. pisana. Representation shown in Fig 2. Tissues used include the:
bursa tract (B), CNS (whole central nervous system ganglia), dart sac (DS), foot muscle (F),
hepatopancreas (HP), mucous glands (MG), ovotestis (OT), penis (P). Tpi-actin was used as a
positive control.
(TIF)

S3 Fig. ELH1 model. (A) Potential energy of ELH1 as a function of time during MD. The solid
line is a running average over 50 ps. (B) Backbone RMSD during the same MD, compared to
the lowest-energy conformation (the representative structure). ELH1 sequence: [p-]
EAERDRRTWSISNALTVLTDMVVEHEQRRLAAEREALKQRLLELamide.
(TIF)

S1 Table. Primers used for RT-PCR.
(DOCX)
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