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Abstract: Cytolytic protein (Cyt) is a member of insecticidal proteins produced by Bacillus thuringiensis.
Cyt protein has activity against insect cells and mammalian cells, which differ in lipid and cholesterol
composition. This study presents the lipid binding behavior of Cyt2Aa2 protein on model membranes
containing different levels of cholesterol content by combining Quartz Crystal Microbalance with
Dissipation (QCM-D) and Atomic Force Microscopy (AFM). QCM-D results revealed that cholesterol
enhances the binding rate of Cyt2Aa2 protein onto lipid bilayers. In addition, the thicker lipid
bilayer was observed for the highest cholesterol content. These results were confirmed by AFM.
The analysis of protein surface coverage as a function of time showed a slower process for 5:0 and 5:0.2
(POPC:Chol) ratios than for 5:1 and 5:2 (POPC:Chol) ratios. Significantly, the Cyt2Aa2-lipid binding
behavior and the protein–lipid layer were different for the 5:3 (POPC:Chol) ratio. Furthermore,
AFM images revealed a transformation of Cyt2Aa2/lipid layer structure from strip pattern to ring
shape structures (which showed a strong repulsion with AFM tip). In summary, cholesterol increases
the binding rate and alters the lipid binding behavior of Cyt2Aa2 protein, although it is not required
for Cyt2Aa2 protein binding onto lipid bilayers.
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1. Introduction

Bacillus thuringiensis (Bt) is a soil Gramm-negative bacterium. Bt is wildly known because of its
insecticidal property [1]. Insecticidal toxins are produced at different stages of cell growth. A vegetative
protein (Vip) is initially produced at the vegetative phase, whereas crystal protein (Cry) and cytolytic
protein (Cyt) are subsequently found at sporulation phase. Although the toxins have insecticidal
properties, their amino acid sequences are dissimilar [2–4]. To improve the efficiency of insecticidal
activity, it has been necessary to investigate lipid–protein binding mechanisms.

Cyt protein shows in vitro activity against a variety of cell types: insect cells, mammalian cells,
and bacteria [5,6]. For in vivo activity, Cyt protein exerts its activity especially against insect vectors
such as mosquitoes and black flies [7,8]. Cyt protein is classified into three classes: Cyt1, Cyt2, and Cyt3,
based on their amino acid sequences identity [9]. A single domain structure of β-sheet core sandwiched
by α-helix is conserved among the Cyt protein family [3,10–12]. Unlike Cry toxin, a protein receptor is
not required for a Cyt toxin to bind on a target cell. As shown in previous studies, the phospholipid
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and sphingomyelin containing unsaturated acyl chains are necessary for lipid membrane binding of
Cyt toxin [13–16]. As mention above, Cyt toxin can disrupt many cell types whose lipid composition
of cell membranes is different.

Cholesterol is a fundamental component of the cell membrane, and its amount in lipid membranes
varies among organisms and cell organelles [17]. The interaction between cholesterol and phospholipid
molecules has been extensively studied in order to determine the importance of cholesterol on
lipid raft formation [18]. In this work, we are interested in the importance of cholesterol in the
interaction between Cyt2Aa2 (from B. thuringiensis subsp. darmstadiensis) and lipid bilayer, including
the protein–lipid binding behavior and the final structure of the hybrid layer. The use of artificial
lipid membranes as model systems (i.e., lipid vesicles, black lipid membranes, lipid monolayers,
and supported lipid bilayers) reinforces current research on protein–lipid interactions, providing
new evidence about the mechanism of the biological process involved. In addition, such model
systems can be also utilized for biosensor technology [19]. Thus, supporting lipid bilayers (SLBs) are a
suitable system to study Cyt protein–lipid interactions. In our investigation, the cholesterol content
has been varied in the SLB model to mimic cell membranes that have shown activity in response to
Cyt protein [5]. In particular, the lipid bilayer models were built with phosphatidylcholine (POPC),
mono-unsaturated lipids, and cholesterol by mixing a fixed amount of POPC with different levels of
cholesterol content. In this system, the lower ratio of POPC:Chol (5:0 and 5:0.2) corresponds to the
insect cell membrane [20], while the higher content of cholesterol (5:1, 5:2, and 5:3) can be used as a
model system for mammalian cells [17,21].

To elucidate the lipid binding behavior of Cyt2Aa2 protein and the nano-structure of the final
protein–lipid bilayer system, quartz crystal microbalance with dissipation (QCM-D) was combined
with atomic force microscopy (AFM). In this study, we report that cholesterol promotes the lipid binding
rate and changes the lipid binding behavior of Cyt2Aa2 protein at the highest cholesterol content.

2. Results

2.1. Changes in Lipid Bilayer Properties Upon Increasing of Cholesterol

To carry out protein–lipid interaction studies, supported lipid bilayers (SLBs) were formed by
liposome fusion method. POPC/Chol liposomes of different weight ratios were tested as candidates
for lipid bilayer formation by QCM-D and AFM. First, the liposome size and bilayer thickness of the
lipid/Chol were evaluated. Figure 1A shows that the liposome size and lipid bilayer thickness of the
lipid mixture from 5:1 to 5:3 (POPC:Chol) ratios tends to increase relative to the amount of cholesterol
in the lipid bilayer. In addition, the zeta potential (ζ) of liposomes was measured, while the obtained
values were similar, ranging from –3.0 to −4.0 mV (Table S1). Furthermore, QCM-D measurements
showed that the changes in ∆F and ∆D values for lipid bilayer were almost constant, except for the
lipid mixture 5:2 (POPC:Chol) ratio, which was slightly higher (see Table 1). Here, it is important to
point out that bilayer formation was only a spontaneous process for the pure POPC liposome and the
lowest cholesterol content in the liposome (5:0.2 ratio). The ∆F and ∆D plots for other POPC:Chol ratios
indicated three steps: liposome adsorption, liposome fusion, and further liposome formation. However,
lipid bilayers with higher cholesterol could be built by buffer rinsing after liposome adsorption and
fusion. Additional decreasing of ∆F (increasing of ∆D) was observed ca. 10 min after the maximum
liposome adsorption (the first peak of ∆F and ∆D). To obtain characteristic ∆F and ∆D values of
a lipid bilayer after liposome fusion, further changes in the signal were reduced by buffer rinsing
(Figure S1). Complementary AFM imaging and force–distance curves were carried out to confirm lipid
bilayer formation. The results showed that POPC/Chol bilayers were formed for all ratios (Figure
S2). Subsequently, the bilayer thickness was estimated by force–distance measurements (Figure 1B).
The indentation of the bilayer delivered the following values: 4.3 ± 0.3 nm, 4.5 ± 0.1 nm, 4.1 ± 0.3 nm,
4.8 ± 0.3 nm, and 5.5 ± 0.3 nm for 5:0, 5:0.2, 5:1, 5:2, and 5:3 (POPC:Chol), respectively. The lipid
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bilayers were thicker for the lipid mixtures of 5:2 and 5:3 (POPC:Chol) compared to pure POPC lipid
bilayer (the liposome size also followed the thickness trend, see Figure 1A).Int. J. Mol. Sci. 2018, 19, x 3 of 13 

 

 
Figure 1. Determination of the liposome size and the lipid bilayer thickness as a function of different 
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dynamic light scattering. The lipid bilayers were formed by liposome fusion method. After the 
topographic images were collected, then tip indentation experiments were carried out to determine 
the lipid bilayer thickness (data were collected from 40 points over the surface image of lipid bilayer). 
(B) The lipid bilayer thickness was measured from the force–distance curve. 
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POPC:Chol Ratio (by Weight) ∆F5 (Hz) ∆D5 (×10−6) 
5:0 −26.1 ± 1.2 1.6 ± 0.9 

5:0.2 −29.6 ± 2.6 1.6 ± 0.6 
5:1 −30.3 ± 0.5 1.9 ± 0.1 
5:2 −37.1 ± 1.0 3.6 ± 0.5 
5:3 −31.3 ± 0.6 2.2 ± 0.1 

The values are showed in mean ± SD. 

2.2. Increasing of Protein Adsorption Rate and Lipid Binding Behavior as Function of Cholesterol Content  

Once the lipid bilayers were successfully formed, Cyt2Aa2 solution of 25 µg/mL (1 µM) was 
introduced into the system and Cyt2Aa2-lipid binding was evaluated until it reached a saturated 
state (for 2 h) (Figure 2). At binding saturation state, the total changes in frequency (∆F) and 
dissipation (∆D) values were similar for 5:0, 5:0.2, 5:1, and 5:2 (POPC:Chol) ratios. However, the 
binding rate was different (Table 2). The corresponding values for the saturated point were about −30 
Hz and 2.5 × 10−6 for the ∆F and ∆D, respectively. Exceptionally, the 5:3 (POPC:Chol) ratio presented 
different binding behavior. The ∆F decreased monotonically with time without reaching equilibrium 
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Figure 1. Determination of the liposome size and the lipid bilayer thickness as a function of different
levels of cholesterol content in the lipid membrane. (A) The liposomes were determined size by
dynamic light scattering. The lipid bilayers were formed by liposome fusion method. After the
topographic images were collected, then tip indentation experiments were carried out to determine
the lipid bilayer thickness (data were collected from 40 points over the surface image of lipid bilayer).
(B) The lipid bilayer thickness was measured from the force–distance curve.

Table 1. Final ∆F and ∆D values for the supported lipid bilayers formed with different levels of
cholesterol content in the lipid membrane.

POPC:Chol Ratio (by Weight) ∆F5 (Hz) ∆D5 (×10−6)

5:0 −26.1 ± 1.2 1.6 ± 0.9
5:0.2 −29.6 ± 2.6 1.6 ± 0.6
5:1 −30.3 ± 0.5 1.9 ± 0.1
5:2 −37.1 ± 1.0 3.6 ± 0.5
5:3 −31.3 ± 0.6 2.2 ± 0.1

The values are showed in mean ± SD.

2.2. Increasing of Protein Adsorption Rate and Lipid Binding Behavior as Function of Cholesterol Content

Once the lipid bilayers were successfully formed, Cyt2Aa2 solution of 25 µg/mL (1 µM) was
introduced into the system and Cyt2Aa2-lipid binding was evaluated until it reached a saturated state
(for 2 h) (Figure 2). At binding saturation state, the total changes in frequency (∆F) and dissipation
(∆D) values were similar for 5:0, 5:0.2, 5:1, and 5:2 (POPC:Chol) ratios. However, the binding rate was
different (Table 2). The corresponding values for the saturated point were about −30 Hz and 2.5 × 10−6

for the ∆F and ∆D, respectively. Exceptionally, the 5:3 (POPC:Chol) ratio presented different binding
behavior. The ∆F decreased monotonically with time without reaching equilibrium after two hours
(∆F ~(−207) Hz), while the ∆D increased steadily in the meantime, denoting a very viscous layer (∆D
~43 × 10−6). Figure 2C depicts the adsorption kinetics (slope of ∆F curve) of all POPC:Chol ratios for
the first 60 min. To evaluate the rate of protein binding, the ∆F plots (indicating mass adsorption) were
fitted with a single exponential decay equation: Ft = F0 + Ae−t/Γ, where A is the amplitude, t is the
experimental time, and Γ is the time constant of decay (Figure S3). The binding constant is determined
by Γ; shorter times indicate faster protein–lipid binding and vice versa (Table 2). The binding rate
of Cyt2Aa2 protein was faster for the lipid bilayer containing higher cholesterol content, 5:1 and 5:2
(POPC:Chol), in which Γ = 3.2 and 2.1 min, respectively. Although the fastest adsorption occurred for
the 5:3 (POPC:Chol) ratio (the slope of decay is the steepest), the Γ value could not be determined,
since no saturation was achieved.
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the systems were rinsed by PBS, as indicated by the arrows. The solid and dash arrows indicate points 
of protein injection and buffer rinsing, respectively. (A) The quantitative lipid binding of Cyt2Aa2 
protein is observed in decreasing of ∆F. (B) The viscoelastic property of the layer is coincidently 
determined with increasing of ∆D. (C,D) Zoom-in of ∆F plot and ∆D plot for the first 60 min, 
respectively. These plots show the evolution of protein–lipid binding at the early time of incubation 
before reaching the saturated state. 
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min even if the binding rates were different. Interestingly, after 25 min of incubation, Cyt2Aa2 protein 
continuously bound on the bilayer with highest cholesterol content, 5:3 (POPC:Chol) ratio. 
Specifically, the ∆D–∆F plot shows a slight decrease before the growth of ∆F and ∆D became linearly 
proportional, which possibly indicates an initial protein–lipid structure arrangement. Subsequently, 
further Cyt2Aa2 protein adsorption delivered a more dissipating hybrid layer (generating a fluid-
like protein–lipid layer).  

Figure 2. Protein binding on lipid bilayers with different levels of cholesterol content. The lipid bilayers
were formed on top of the sensor surface via liposome fusion. This is represented as zero value at the
beginning of each curve. Cyt2Aa2 of 25 µg/mL (1 µM) was filled into QCM-D chamber; then, the flow
was paused in order to evaluate the lipid binding of Cyt2Aa2 protein for 2 h. After that, the systems
were rinsed by PBS, as indicated by the arrows. The solid and dash arrows indicate points of protein
injection and buffer rinsing, respectively. (A) The quantitative lipid binding of Cyt2Aa2 protein is
observed in decreasing of ∆F. (B) The viscoelastic property of the layer is coincidently determined
with increasing of ∆D. (C,D) Zoom-in of ∆F plot and ∆D plot for the first 60 min, respectively.
These plots show the evolution of protein–lipid binding at the early time of incubation before reaching
the saturated state.

Table 2. Summary of the final change in frequency (∆F), dissipation (∆D), and time constant of
decay (Γ) at saturated state of Cyt2Aa2 protein binding on lipid bilayers with different levels of
cholesterol content.

POPC:Chol Ratio (by Weight) ∆F5 (Hz) ∆D5 (×10−6) Γ (min)

5:0 −29 ± 2 2.2 ± 0.7 6.9
5:0.2 −33 ± 2 2.2 ± 0.3 6.3
5:1 −30 ± 1 2.7 ± 0.3 3.2
5:2 −32 ± 1 2.5 ± 0.9 2.1
5:3 −207 ± 4 43.7 ± 1.1 N/A

Γ of 5:3 (POPC:Chol) ratio cannot be determined, because the frequency value did not reach a saturated state.
The values are written as mean ± SD.

Furthermore, to determine the behavior of lipid binding, ∆D was plotted against ∆F (∆D–∆F
plot). Figure 3 reveals that the processes of protein–lipid binding were mostly similar for the first
25 min even if the binding rates were different. Interestingly, after 25 min of incubation, Cyt2Aa2
protein continuously bound on the bilayer with highest cholesterol content, 5:3 (POPC:Chol) ratio.
Specifically, the ∆D–∆F plot shows a slight decrease before the growth of ∆F and ∆D became linearly
proportional, which possibly indicates an initial protein–lipid structure arrangement. Subsequently,
further Cyt2Aa2 protein adsorption delivered a more dissipating hybrid layer (generating a fluid-like
protein–lipid layer).
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behavior of protein–lipid binding was considered according to the direction of plots. Inlet depicts the 
blow up of the behavior of lipid binding until reaching the saturated state. 

Since Cyt2Aa2 protein binding behavior was changed at a large cholesterol content in lipid 
bilayer (5:3 POPC:Chol), the non-specific binding was characterized. The interactions of such bilayer 
with both protease-inactivated Cyt2Aa2 wild type and Cyt2Aa2 N145A (inactive mutant) [22] were 
investigated as a negative control. Figure 4 shows that neither inactivated Cyt2Aa2 nor Cyt2Aa2 N145 
bind on the lipid bilayer, which neither changed in ∆F or in ∆D with time. These results confirmed 
that the change of binding behavior of Cyt2Aa2 protein on lipid bilayer with highest content 
cholesterol involved specific binding. 

 
Figure 4. Negative protein binding of protease-inactivated Cyt2Aa2 and inactive Cyt2Aa2 N145A on 
the lipid bilayer of 5:3 (POPC:Chol) ratio. All protein solutions of 25 µg/mL were filled into QCM-D 
chambers, then the solution flow was paused for 2 h. The protein–lipid binding was considered by ∆F 
and ∆D changing. The solid and dash arrows indicate to points of protein injection and buffer rinsing, 
respectively. 

Figure 3. Analysis of the ∆D–∆F plot of Cyt2Aa2 protein binding on the lipid bilayers with different
levels of cholesterol content. The frequency and dissipation values of Figure 2 were plotted together in
order to correlate the deposited mass and viscosity at each time point of protein binding. The behavior
of protein–lipid binding was considered according to the direction of plots. Inlet depicts the blow up of
the behavior of lipid binding until reaching the saturated state.

Since Cyt2Aa2 protein binding behavior was changed at a large cholesterol content in lipid bilayer
(5:3 POPC:Chol), the non-specific binding was characterized. The interactions of such bilayer with both
protease-inactivated Cyt2Aa2 wild type and Cyt2Aa2 N145A (inactive mutant) [22] were investigated
as a negative control. Figure 4 shows that neither inactivated Cyt2Aa2 nor Cyt2Aa2 N145 bind on the
lipid bilayer, which neither changed in ∆F or in ∆D with time. These results confirmed that the change
of binding behavior of Cyt2Aa2 protein on lipid bilayer with highest content cholesterol involved
specific binding.
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Figure 4. Negative protein binding of protease-inactivated Cyt2Aa2 and inactive Cyt2Aa2 N145A on
the lipid bilayer of 5:3 (POPC:Chol) ratio. All protein solutions of 25 µg/mL were filled into QCM-D
chambers, then the solution flow was paused for 2 h. The protein–lipid binding was considered by
∆F and ∆D changing. The solid and dash arrows indicate to points of protein injection and buffer
rinsing, respectively.
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2.3. Nanostructure of the Cyt2Aa2/Lipid Bilayer

AFM experiments were carried out to investigate the surface topography and properties of the
Cyt2Aa2/lipid bilayer. In these experiments, Cyt2Aa2 (25 µg/mL) was exposed to different ratios of
POPC/Chol bilayers: 5:0, 5:0.2, 5:1, 5:2, and 5:3. Once the lipid bilayers were formed, active Cyt2Aa2
solution was introduced in the liquid chamber and the Cyt2Aa2/lipid topography was imaged as
a function of time. After protein injection, the AFM-cantilever needed to equilibrate due to thermal
drift, and the early stage of Cyt2Aa2 protein binding could not be detected. However, after 15 min of
incubation a difference in protein binding was detected. At this point, the surface coverage increased
along with the amount of cholesterol in lipid bilayer; partial coverage was observed for 5:0 and 5:0.2
(POPC:Chol) ratios, larger coverage was seen for 5:1 (POPC:Chol) ratio, and the full coverage was
detected for 5:2 (POPC:Chol) ratio (Figure 5). A detailed analysis of the surface coverage versus time is
depicted in Figure 6. At 5:0 and 5:0.2 (POPC:Chol) ratios, the surface coverage increases in a linear
fashion with time, reaching a maximum value after two hours. For the 5:1 (POPC:Chol) ratio, full
coverage is achieved after 30 min. Finally, full coverage at 15 min takes place for the 5:2 mixture, being
the value of the surface coverage of the layer constant after this time. Particularly interesting was
the evolution of the surface properties with time when CytAa2 protein was exposed to POPC/Chol
bilayer of 5:0 and 5:0.2 ratios. Between the first protein aggregation steps and full coverage after two
hours, the formation of holes could be observed. A height profile analysis revealed hole depths were
about 1.5–3.0 nm, and the hole percentage within the layer was ca. 5% of the total area (Figure S4).
The analysis of the surface topography for the 5:0, 5:0.2, 5:1, and 5:2 (POPC:Chol) ratios after two hours
indicated that the number of holes was reduced when the amount of cholesterol was increased in the
bilayer (Figure 5).
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Figure 5. Time sequence AFM images of Cyt2Aa2 protein binding on lipid bilayers with different levels
of cholesterol content. Once the lipid bilayer formation was confirmed by tip indentation, Cyt2Aa2 of
25 µg/mL was introduced into the fluid cell chamber. AFM images were collected in tapping mode
with scan rate of 1–2 Hz in 5 µm × 5 µm. The final topographic images are zoomed in to reveal the
topographic pattern of protein–lipid binding.
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Interestingly, the adsorption of Cyt2Aa2 protein on the bilayer of 5:3 (POPC:Chol) ratio delivered
different surface properties for the Cyt2Aa2/lipid layer at early stage. After 15 min, strip patterns
and holes were observed on the surface (Figure S5). Subsequently, the Cyt2Aa2-lipid layer rearranged
after about 30 min. The topography images indicated that the strip pattern disappeared, while a ring
shape form appeared. After two hours, ring shapes were the main pattern observed on the hybrid
layer surface (Figure 7). Furthermore, force–distance curves were carried out on all the samples at
two hours (Figure 8). The results showed a strong repulsion between the AFM tip and Cyt2Aa2/lipid
layer for the 5:3 (POPC:Chol) ratio system. The AFM-tip experienced a repulsive force at about
40 nm, possibly a long-range electrostatic repulsion, due to the charge of the adsorbed protein on the
POPC/Chol bilayer. The force–distance curves were very similar for the other four systems exhibiting
negligible repulsion. AFM results might indicate a change in binding behavior of Cyt2Aa2 protein on
the bilayer of 5:3 (POPC:Chol) ratio, as shown by QCM-D. Two structures were found from the surface
topography studies: a strip pattern with holes, and ring shapes (which might refer to two binding
steps of ∆D–∆F plot).
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3. Discussion

3.1. The Role of Cholesterol on Lipid Bilayer

The characterization of the liposomes (in bulk) showed that the liposome size was enlarged upon
increasing of cholesterol content in lipid membrane and the zeta potential value remained similar
because of the zwitterionic nature of choline head group. These findings are in agreement with the
results concerning similar lipid systems [23]. In addition, cholesterol content also affected lipid bilayer
formation via liposome rupture. It was observed that for the lipid bilayer of pure POPC and the 5:0.2
(POPC:Chol) ratio, liposomes were spontaneously formed (Figure S1). In turn, the variation of the
∆F versus time for higher POPC:Chol ratios showed a second decrease in ∆F (approx. at 30 min),
which could indicate the formation of liposomes inserted in the lipid bilayer leading to bilayer defects.
Therefore, complete lipid bilayers were formed by buffer rinsing when the second decreasing of ∆F
was detected. The additional step of decreasing in ∆F might be explained by interactions between
the recent formed bilayer and liposomes in bulk solution during cholesterol flip-flop across lipid
bilayers [24–26]. Hence, the buffer flow is likely to remove the excess of intact liposomes and weak
adsorbed liposomes from the bulk and the surface. A similar result was found in the study of lipid
bilayer formation of liposome containing phase separation induced by cholesterol [27]. According
to the POPC-Chol phase diagram [28], the POPC:Chol mixtures used in this work present different
lipid phases at 25 ◦C: a liquid disordered phase (ld) corresponds to 5:0 and 5:0.2 (POPC:Chol) ratios,
a coexistence liquid disordered-liquid ordered phase (lo–ld) can be attributed to 5:1 ratio, while a
liquid ordered phase (lo) is related to the 5:2 and 5:3 (POPC:Chol) ratios. Here, cholesterol might be
involved in the lipid bilayer formation process via affecting the lipid bilayer packing related to the
lipid phase state.

Furthermore, AFM experiments were carried out in parallel to characterize the POPC/Chol
bilayer. Height and phase measurements indicate that all resulting of POPC/Chol bilayers are a flat
surface (Figure S2). Moreover, force–distance curves indicated that the POPC/Chol bilayers were
slightly thicker upon the increasing of cholesterol content, ranging from 4.0 to 5.5 nm (increasing
approximately 1.0 nm) (Figure 1). These values are comparable to the thickness of supported lipid
bilayers previously determined by AFM [29,30]. As previous studies state, the interplay between
cholesterol and phospholipid molecules promotes lateral ordering of lipid acyl chain leading to a lipid
phase change from ld phase to lo phase [31–33]. Consequently, it can be concluded that cholesterol can
enlarge liposome size and increase lipid bilayer thickness.
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3.2. Protein Binding as a Function of Cholesterol Content in Lipid Bilayer

The binding of Cyt2Aa2 protein on lipid bilayers was similar for the following POPC:Chol
ratios: 5:0, 5:0.2, 5:1, and 5:2 (Figure 2). The ∆F and ∆D at the saturated state were about −30 Hz
and 2.5 × 10−6, respectively. In addition, ∆D–∆F plots also indicated similar lipid binding behavior
among them (Figure 3). The lipid binding rate increased relative to the amount of cholesterol in lipid
bilayer by time constant decay (Γ) (see values in Table 2). Thus, cholesterol in our case speeds up the
binding process (binding also occurred when no cholesterol was present in the bilayer). The presence of
cholesterol in lipid bilayer might promote Cyt2Aa2 binding by reducing lipid fluidity (less lipid mobile)
that increases a chance for Cyt2Aa2 protein docking on lipid molecules. Unfortunately, electrophoretic
measurements did not provide large differences in the zeta potential value as a function of cholesterol
content. Interestingly, Cyt2Aa2 protein–lipid binding changed significantly for the lipid mixture of 5:3
(POPC:Chol) ratio. At this lipid mixture, the ∆F, ∆D, and ∆D–∆F curves (indicating binding behavior)
were different from the other mixtures. The ∆F and ∆D could not reach a plateau after two hours of
incubation; their values were ∆F ~(−207) Hz and ∆D ~43 × 10−6, respectively. In particular, the large
dissipation value indicated a more viscous layer, suggesting that high cholesterol content in the lipid
bilayer may lead to a new assembled Cyt2Aa2-lipid structure. The high dissipation values of Cyt2Aa2
could be indicative of beta-pore formation; a similar effect was observed for α-hemolysin during
pore formation in lipid bilayers [34]. The analysis of ∆D–∆F plot revealed the binding behavior of
Cyt2Aa2 protein on the lipid bilayer with the highest cholesterol content could consist of two processes.
The first step process was similar to the other four lipid mixtures but the speed of protein adsorption
was faster (∆F slope is steeper). Thus, the first protein–lipid layer arrangement led to a more rigid
layer (decreasing of ∆D), while in a second step further changes in ∆F and ∆D values took place
(Figure 3). The new structure after rearrangement might provide a place for further molecule binding,
e.g., Cyt2Aa2 protein, water, and ions.

Moreover, AFM time sequence imaging and force curve measurements provided additional
information of lipid binding and surface property. The increase of lipid binding rate upon higher
cholesterol content revealed by surface coverage of AFM image analysis (Figure 6) agrees with the
result of QCM-D indicating by Γ value. Although the change in ∆D of QCM-D results indicated that
the viscosity of the final structures was similar (at two hours), AFM measurements revealed differences
in surface topography. A strip pattern with holes was observed for 5:0 and 5:0.2 (POPC:Chol) ratios,
whereas no pattern could be seen for 5:1 and 5:2 (POPC:Chol) mixtures. The strip pattern of Cyt2Aa2
looks similar to a filament-like oligomer of volvatoxin 2 (homology protein structure) in solution [35].

On the contrary, the surface structural change as a function of time of the Cyt2Aa2-lipid layer for
the 5:3 (POPC:Chol) ratio corresponded with QCM-D results. At 15 min of incubation, the interaction
of Cyt2Aa2 with the 5:3 lipid/Chol layer was observed, leading to a strip pattern structure as found
for 5:0 and 5:0.2 (POPC:Chol) ratios. This result agrees with the ∆D–∆F plot that indicates a similar
protein–lipid interaction. Further incubation (for 2 h) showed the evolution of the surface properties of
Cyt2Aa2-lipid hybrid layer of 5:3 (POPC:Chol), while the other lipid/Chol ratios did not experience
any change. QCM-D and force–distance curves confirmed that the hybrid layer of the 5:3 (POPC:Chol)
ratio involved more compliance, showing a different surface charge distribution (repulsion interaction
between tip and layer). The diversity in the surface topographic pattern might be due to different in
protein–protein, lipid–lipid, and protein–lipid interactions influenced by the cholesterol content in the
lipid bilayers.

Finally, we assume that these results are related to the biological activity of Cyt2Aa2 protein.
Cyt2Aa2 protein is toxic to mosquito larvae and also exerts cytolytic activity against red blood cells [22].
Both cell membranes contain different lipid:Chol composition. As the results show, Cyt2Aa2 protein
has distinct lipid binding behavior on 5:0.2 and 5:3 (POPC:Chol) bilayers, which mimics the mosquito
cell membrane [20] and the red blood cell membrane [17,21], respectively. The results suggest that
Cyt2Aa2 protein may interact and change the structure of the cell membrane of both cell types in
different ways.
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4. Materials and Methods

4.1. Reagents and Buffer

1-palmitoyl,2-oleoyl-snglycero-3-phosphocholine (POPC) and cholesterol (Chol) were purchased
from Sigma-Aldrich, Germany. The lipids were dissolved in chloroform and aliquot. Then, the organic
solvent was evaporated under nitrogen stream and kept at −20 ◦C. Phosphate-buffered saline (PBS)
pH 7.4 was prepared from PBS tablet (Sigma-Aldrich, Darmstadt, Germany). The buffer tablet was
dissolved in ultra-pure water (Milli-Q water, Merck, Darmstadt, Germany) and then filtrated through
0.22 µm filter (Whatman, GE Health care Life science, Chicago, IL, USA).

4.2. Protein Preparation

Cyt2Aa2 protein wild type and mutant Cyt2Aa2 N145A were prepared as described previously
by B. Promdonkoy [36]. To obtain active protein, Cyt2Aa2 protein was solubilized in alkaline condition
(50 mM carbonate buffer, pH 10.0) at 30 ◦C for 1 h. Soluble Cyt2Aa2 was separated by centrifugation at
10,000× g for 10 min at 25 ◦C. Subsequently, Cyt2Aa2 protein was activated by 2% (w/w) chymotrypsin
(Sigma-Aldrich, Germany) at 30 ◦C for 2 h. Protein purity and molecular weight of Cyt2Aa2 were
evaluated by SDS-PAGE (Invitrogen, Waltham, MA, USA), and protein concentration was determined
by UV 280 nm absorption (Hitachi U2900, Tokyo, Japan).

4.3. Liposome Preparation and Characterization

The lipid compositions to prepare liposomes were POPC and cholesterol. The liposomes were
prepared as described previously [37]. In brief, POPC and cholesterol were mixed with different weight
ratios to 5:0.2, 5:1, 5:2, and 5:3 (POPC:Chol). After that, organic solvent was evaporated under a gentle
nitrogen stream to form a lipid film. The residual solvent was removed by keeping the lipid film under
nitrogen stream for 1 h. The lipid film was hydrated with PBS at ambient temperature (25 ◦C) for at
least 1 h. The hydrated film was intermittently vortexed during incubation until complete suspension.
The liposome mixture was repeatedly pressed through 50 nm-polycarbonate membrane 21 times by
using a mini-extruder (Avanti, Alabaster, AL, USA) and then stored at 4 ◦C.

The liposome size and zeta potential were determined with a Zetasizer Nano ZS (Malvern
Instrument, Worcestershire, UK). The liposome stocks were diluted to concentration of 50 µg/mL in
order to measure the liposome size by dynamic light scattering. For the zeta potential, the liposomes
were measured by laser doppler microelectrophoresis: 100 µL of 1 mg/mL liposome solution was
loaded into a bottom of folded capillary cell (DTS1070, Malvern Instrument, UK) containing PBS.
The liposomes were left at ambient temperature for 15 min before measurement. All of measurement
were carried out at 21 ◦C. Each of samples was measured five times from two independent batches of
liposome (10 measurements).

4.4. Quartz Crystal Microbalance with Dissipation (QCM-D) Measurement

Silicon-coated quartz sensors (QSX 303, Biolin Scientific, Gothenburg, Sweden) were used for all
of QCM-D measurements. The sensors were sequentially cleaned with sonication in 2% (w/w) SDS
solution for 15 min, ultra-pure water for 10 min, and ethanol for 10 min. Then, the sensors were dried
under nitrogen stream. The organic residues on the sensor surface were removed concomitant with
surface oxidized in UV/Ozone chamber (Bioforce Nanosciences, Salt Lake City, UT, USA) for 30 min.
The sensors were mounted into the QCM-D chamber as soon as possible to avoid any contamination.

The QCM-D experiments were carried out with Q-Sense E4 QCM-D (Biolin Scientific, Sweden).
The fundamental frequency and the frequencies of the overtones (3rd, 5th, 7th, 9th, 11th, and 13th)
were evaluated prior the experiment running. The changes of frequency (∆f) and dissipation (∆D)
values of the 5th overtone are presented for all experiments. The crystal sensors were incubated with
PBS (pH 7.4) under flow condition with a flow rate of 50 µL/min until reaching to a stable baseline
(at least 1 h). The lipid bilayer formation on top of sensor surface was described previously [23].
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Briefly, 0.1 mg/mL liposome solutions were slowly filled into the QCM-D chamber with flow rate
of 50 µL/min. Once the signal of lipid bilayer formation was observed, the excess liposomes were
removed by buffer rinsing until a stable signal was obtained. The protein solution of Cyt2Aa2 was
introduced into the system at flow rate of 50 µL/min. Then, the flow was stopped for 2 h in order to
evaluate the protein–lipid binding process. The still unbound protein was flushed from the chamber
with PBS at flow rate of 50 µL/min for 30 min. The experiments (at least three replications) were
carried out at 25 ◦C.

4.5. Atomic Force Microscope (AFM) Imaging

Lipid bilayers were formed on 1 cm x 1 cm silicon wafers (IMEC, Leuven, Belgium) by mean of
liposome fusion. The silicon wafers were cleaned in a similar way to QCM-D sensor; sonication in 2%
(w/w) SDS for 15 min, rinsing with ultrapure water and ethanol, and drying under nitrogen stream.
Finally, the organic contaminates were removed concomitant with surface activation by plasma cleaner
(Diener electronic, Ebhausen, Germany). The AFM probe and the silicon wafers were mounted into
a closed liquid chamber. The solutions were exchanged by syringe injection. After introducing the
solutions, the system was left to equilibrate until the deflection signal was stable. To form the lipid
bilayer, the liposome solutions at 0.1 mg/mL were incubated over the silicon surface for 15 min and
then the excess liposomes were flushed from the chamber. Once lipid bilayer formation was confirmed
by means of tip indentation, the Cyt2Aa2 solution was added to the chamber. Cyt2Aa2-lipid binding
was imaged as a function of time. The AFM images were obtained in tapping mode with DNP-S10
AFM cantilevers of nominal spring constant of 0.24 N/m (Bruker, Billerica, MA, USA). All experiments
were carried outed with a JV-scanner controlled by NanoScope V controller (Bruker, USA) at a scan rate
of 1–2 Hz at room temperature (~25 ◦C). Force–distance curves were performed at 1 Hz. The applied
force on the sample was kept as low as possible to avoid damaging. The images were processed and
analyzed with NanoScope Analysis program (Bruker, USA).

5. Conclusions

In this work, the cholesterol content was varied in the lipid bilayers in order to mimic the cell
membrane of insect and mammalian cells. The results have shown that the cholesterol content (of a
lipid bilayer) influences the protein–lipid binding of Cyt2Aa2 protein by increasing its binding rate and
changing the surface properties of the final protein:lipid:Chol layer. However, the experimental results
also show that in absence of cholesterol, Cyt2Aa2 protein also binds to the lipid bilayer. Furthermore,
Cyt2Aa2 protein changes its binding behavior for the 5:3 (POPC:Chol) bilayer, which corresponds
to the mammalian cell model. Our findings imply that the amount of cholesterol in the lipid bilayer
affects the protein–lipid binding rate and the final structure of the Cyt2Aa2/lipid layer. In future work,
supporting lipid bilayers made of different phospholipid compositions will be used to get more insight
about the Cyt2Aa2-lipid bilayer interaction. This study leaves open questions related to the energetics
and molecular mechanism of binding. Therefore, QCM-D, AFM, calorimetry, and electrochemistry
experiments with Cyt2Aa2 mutants will be carried out to address these issues. Especially interesting
will be the binding and the final nanostructure of the hybrid protein–lipid bilayer dependence on
(amino acid) point mutations.
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Abbreviations

Bt Bacillus thuringiensis
Cyt protein Cytolytic protein
Cyt2Aa2 protein Cytolytic protein from Bacillus thuringiensis subsp. darmstadiensis
QCM-D Quartz crystal microbalance with dissipation
AFM Atomic force microscope
POPC 1-palmitoyl,2-oleoyl-snglycero-3-phosphocholine
Chol cholesterol
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