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Abstract 

SYBA (SYnthetic Bayesian Accessibility) is a fragment-based method for the rapid classification of organic compounds 
as easy- (ES) or hard-to-synthesize (HS). It is based on a Bernoulli naïve Bayes classifier that is used to assign SYBA score 
contributions to individual fragments based on their frequencies in the database of ES and HS molecules. SYBA was 
trained on ES molecules available in the ZINC15 database and on HS molecules generated by the Nonpher method-
ology. SYBA was compared with a random forest, that was utilized as a baseline method, as well as with other two 
methods for synthetic accessibility assessment: SAScore and SCScore. When used with their suggested thresholds, 
SYBA improves over random forest classification, albeit marginally, and outperforms SAScore and SCScore. However, 
upon the optimization of SAScore threshold (that changes from 6.0 to – 4.5), SAScore yields similar results as SYBA. 
Because SYBA is based merely on fragment contributions, it can be used for the analysis of the contribution of indi-
vidual molecular parts to compound synthetic accessibility. SYBA is publicly available at https​://githu​b.com/lich-uct/
syba under the GNU General Public License.
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Background
Chemical space available for the generation of new mol-
ecules is huge [1–4], making the synthesis and testing of 
all possible compounds impractical. Therefore chemists, 
both experimental and computational, developed tools 
and approaches for the exploration of chemical space 
with the aim to identify new compounds with desirable 
physico-chemical, biological and pharmacological prop-
erties [5–12]. A major in silico method for chemical space 
exploration is de novo molecular design in which new 
virtual molecules are assembled from scratch [13–18]. An 
essential requirement for de novo designed compounds 
is their synthetic accessibility. Synthetic accessibility is 
commonly incorporated into de novo design programs 

by employing chemical strategies that guide an assembly 
process. For example, the connections between certain 
atom types can be disallowed [19], established chemical 
reactions can be used to connect individual molecular 
building blocks [20, 21] or the retrosynthetic rules can be 
directly incorporated into the assembly process [22, 23].

The latest development in de novo molecular design are 
molecular generators based on deep learning approaches 
[24–26]. These typically construct new molecules not by 
assembling the building blocks, but by producing chemi-
cally feasible SMILES strings [27–32]. The generators are 
able to produce millions of virtual compounds, synthetic 
accessibility of which has to be quickly and efficiently 
assessed. Quick synthetic accessibility assessment can be 
based [33] on molecule’s complexity that is typically cal-
culated [34–37] from the number of atoms, bonds, rings, 
and/or hard-to-synthesize motifs, such as chiral centers 
or uncommon ring fusions. However, the definition of 
molecular complexity is ambiguous and context depend-
ent [38, 39]. The structural complexity is not equivalent 
to the synthetic one as complexity-based metrics do 
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not incorporate any information about starting mate-
rials and tend to remove molecules that can be synthe-
sized from already existing complex precursors [40, 41]. 
A better way of synthetic accessibility assessment is to 
use the complexity of the synthetic route [42]. Based on 
this principle, SCScore, a data-driven metric designed 
to describe real syntheses, was developed recently [43]. 
SCScore is based on the idea that reaction products are 
synthetically more complex than reactants. To quantify 
this, a deep feed-forward neural network, that assigns a 
synthetic complexity score between 1 and 5, was trained 
on 22 million reactant-product pairs from the Reaxys 
database [44]. Using the hinge loss objective function, 
that supports the separation between scores in each reac-
tant–product pair, the model learns synthetic complexity 
score that correlates with the number of reaction steps, 
but does not rely on the availability of reaction database 
or organic chemist ranking.

SAScore [45], another popular and rapid method for 
synthetic accessibility assessment, is based on the anal-
ysis of ECFP4 [46] fragments obtained from one mil-
lion compounds randomly selected from the PubChem 
database [47]. The main idea of SAScore is that when a 
molecular fragment occurs often in the PubChem data-
base, it contributes to the synthetic accessibility of a mol-
ecule more than a less frequently occurring fragment. 
Each fragment is assigned a numerical score, frequent 
fragments have positive scores and less frequent frag-
ments have negative scores. In addition to the fragment 
score, SAScore consists of a complexity penalty and sym-
metry bonus. These terms penalize nonstandard struc-
tural motives such as macrocycles, stereo centers, spiro 
and bridge atom, but reward the symmetry of a structure. 
SAScore acquires values between 1 (easy to make) and 
10 (very difficult to make), where 6.0 is suggested by the 
authors [45] as a threshold to distinguish between easy- 
and hard-to-synthesize compounds. SAScore is a popular 
high-throughput measure and proved to be a very useful 
tool in many cheminformatics applications [27, 48–50].

In the present work, we further expand on main con-
cepts of SAScore construction. We developed SYBA 
(SYnthetic Bayesian Accessibility), a rapid fragment-
based score derived using Bayesian probabilistic mod-
eling. Fragment contributions to SYBA are calculated not 
only from fragments present in synthetically accessible 
molecules, but also from fragments appearing in hard-to-
synthesize molecules.

Methods
SYBA score derivation
SYBA is a Bernoulli naïve Bayes classifier based on 
the frequency of molecular fragments that are pre-
sent in the database of easy-to-synthesize (ES) and 

hard-to-synthesize (HS) molecules and on the assumption 
of the independence of molecular fragments. Though such 
assumption is bold, it was shown to provide surprisingly 
good results in many cheminformatics studies [51–55].

Each compound is represented by a binary finger-
print F = [f1, f2, . . . , fM] of length M where fi indicates 
the presence ( fi = 1 ) or absence ( fi = 0 ) of the specific 
fragment i in the compound. SYBA uses this fingerprint 
to assign the molecule to a class C ∈ �ES,HS� . The cal-
culation is based on the Bayes theorem

where p(C|F ) is the posterior probability that a com-
pound with a certain set of molecular fragments F 
belongs to the class C . The likelihood p(F |C) is the con-
ditional probability that a compound from the class C 
contains a set of molecular fragments F. The marginal 
probabilities p(F ) and p(C) express our belief to observe 
a set of molecular fragments F and the molecule that 
belongs to the class C.

The SYBA score is defined as the logarithm of the 
ratio of the posterior probabilities that the molecule 
belongs to the ES and HS classes,

Using Eq. 1, the SYBA score can be expressed as

In the data set SYBA was derived from (further referred 
to as the training data set S), ES and HS compounds are 
represented evenly, the priors p(ES) and p(HS) are thus 
equal and the term ln

(

p(ES)
p(HS)

)

 becomes zero:

Assuming the independence of molecular fragments, the 
conditional probability p(F |C) factorizes to 

p(F |C) =
M
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p(fi|C) and the SYBA score simplifies to

where si
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fi
)

 is the score contribution from the fragment i 
(SYBA fragment score) given as
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Considering that p
(

fi|ES
)

= 1− p
(

fi|HS
)

 , the fragment 
scores si

(

fi
)

 in Eq. 6 represent logits and can be expressed 
using the fragment frequencies in the training data set S 
as

where NHS is the number of HS and NES the number of 
ES molecules in the training data set S, nHS,i is the num-
ber of HS molecules in the training data set S that contain 
the fragment i, and nES,i is the number of ES molecules 
in the training data set S that contain the fragment i. 
See Additional file  2 for a detailed derivation. Positive 
si
(

fi
)

 means that the presence/absence of the fragment i 
is more probable in ES than in HS class and vice versa. 
Positive SYBA means that the compound belongs more 
likely to the ES class, while negative SYBA means that 
the compound belongs more likely to the HS class. The 
higher the absolute value of SYBA, the more evidence for 
the class membership is present in the molecule.

Training set construction
The training data set S consists of two subsets: S+ con-
tains ES structures and S- contains HS structures (Fig. 1, 
Additional file  1). While ES molecules can be readily 
obtained, for example, from the ZINC database of pur-
chasable compounds [56, 57], no equivalent database 

(7)

si
(

fi
)

= ln
NHS + 2

NES + 2
+ filn

(

nES,i + 1
)

(

nHS,i + 1
)

+ (1− fi)ln

(

NES − nES,i + 1
)

(

NHS − nHS,i + 1
) ,

of HS molecules exists. However, HS molecules can be 
designed by Nonpher [58], a method based on a molec-
ular morphing approach [59]. In Nonpher, a starting 
molecule is gradually transformed into a more complex 
compound using small structural perturbations, such as 
the addition or removal of an atom or a bond. To prevent 
the creation of overly complex structures, four complex-
ity indices (Bertz [34], Whitlock [35], BC [36] and SMCM 
[37]) are monitored and once their respective thresholds 
(Additional file  2: Table  S1) are exceeded, Nonpher is 
stopped.

Using Nonpher, 693 353 HS molecules were generated 
and they form the S- data set. The S+ data set, containing 
ES compounds, is formed by the same number of mol-
ecules randomly chosen (excluding natural products) 
from the ZINC15 database [57] so that their distribution 
of the number of heavy atoms is the same as in the S- data 
sets. Every S+ and S- molecule was fragmented using 
the Morgan fingerprint function in the RDKit toolkit 
[60]. Fragments with the radius of 4 and smaller, corre-
sponding to radial ECFP8 [46] fragments, were used. This 
type of fragments consists of a central atom and atoms 
distant from the central atom up to four bonds. Besides 
ECFP8 fragments, the number of stereocenters was also 
included into SYBA as the molecules with more stereo-
centers are typically more difficult to synthesize. The ste-
reo score is based, similarly to the fragment score, on the 
analysis of the number of stereocenters in the training set 
S. To obtain the stereo score, molecules were divided into 
6 bins differing by the number of stereocenters (0, 1, 2, 3, 

Fig. 1  Data set summary. Training set was used to derive SYBA scores, as well as to train a random forest classifier. Training set consists of 693 
353 molecules randomly selected from the ZINC15 database [57] that are considered to be ES (S+ data set) and of the same number of HS 
molecules generated by Nonpher [58] (S− data set). Two test sets were used to compare the performance of SYBA, a random forest, SAScore [45] 
and SCScore [43]. Manually curated test set (TMC) contains 40 compounds (TMC- data set) considered to be HS by experienced medicinal chemists 
[58] supplemented by 40 ES compounds randomly selected from the ZINC15 database (TMC+ data set). 30 TMC data set instances differing in 
TMC+ compounds were constructed. Computationally picked test set (TCP) consists of 3 581 HS compounds that were obtained from the GDB-17 
database [61] (TCP- data set) complemented by the same number of compounds randomly selected from the ZINC15 database (TCP+ data set)
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4 and 5+) and individual score contributions were calcu-
lated from Eq. 7.

Test set construction
SYBA performance could have been assessed using a test 
set created in a similar way as the training set S, i.e. using 
HS compounds generated by Nonpher. However, such 
test set would be clearly biased towards chemical space 
covered by Nonpher. Therefore, two test sets were con-
structed in a conceptually different manner. First test set, 
further denoted as TMC, was manually curated from the 
literature, second test set, referred to as TCP, was compu-
tationally picked from the ZINC15 [57] and GDB17 data-
bases [61].

HS compounds in TMC (denoted as TMC−) were 
obtained by the analysis [58] of 296 published com-
pounds assessed by experienced medicinal chemists [41, 
45, 62, 63]. Based on original chemists’ scores, the final 
TMC- data set of 40 HS compounds was assembled. A 
complementary TMC+ data set consists of 40 ES com-
pounds selected from the ZINC15 database [57] in such 
a way that the distribution of the number of their heavy 
atoms is the same as in the TMC- data set. Because small 
TMC size may bias the results, 30 different TMC data set 
instances were generated using the same 40 TMC- com-
pounds, but different 40 TMC+ compounds (Additional 
file 3).

HS compounds in the TCP test set (Additional file  4), 
denoted as TCP-, were obtained by the analysis of the pub-
licly available subset of 50 M molecules from the GDB-
17 database [61]. Only molecules exceeding thresholds 
(Additional file 2: Table S1) of all monitored complexity 
indices (Bertz [34], Whitlock [35], BC [36] and SMCM 
[37]) were considered to be HS. In total, 3 581 molecules 
form the TCP- data set. A complementary TCP+ data set 
consists of the same number of compounds randomly 
selected from the ZINC15 database [57] that follow the 
same size distribution as HS compounds and that, in 
addition, do not exceed any of the aforedescribed com-
plexity indices. Data sets used in the present work are 
summarized in Fig. 1.

Performance evaluation
The performance of classification models studied in the 
present work was assessed by four different metrics: the 
classification accuracy (Acc), sensitivity (SN), specificity 
(SP) and area under the ROC curve (AUC​). Acc gives the 
percentage of correctly classified samples regardless of 
their class.

(8)Accuracy (Acc) =
TP + TN

TP + TN + FN + FP

where true positives (TP) are ES compounds predicted by 
a model to be ES, true negatives (TN) are HS compounds 
predicted to be HS, false positives (FP) are HS com-
pounds predicted to be ES and false negatives (FN) are ES 
compounds predicted to be HS. The accuracy can also be 
evaluated for positive and negative classes independently 
leading to SN and SP. SN is the percentage of correctly 
predicted positive class compounds, while the percent-
age of correctly predicted negative class compounds is 
known as SP.

SN and SP can be combined in the receiver operating 
characteristic (ROC) curve that is the graphical represen-
tation of the trade-off between true positive rate (given as 
SN) and false positive rate (given as 1 − SP) over all pos-
sible thresholds (Fig. 2). The area under the ROC curve 
(AUC​) is the quantitative measure of the performance 
of a classifier and is equal to the probability that a classi-
fier will rank a randomly chosen positive example higher 
than a randomly chosen negative example. A random 
classifier has AUC​ of 0.5, while AUC​ for a perfect classi-
fier is equal to 1.

Random forest classification, SAScore and SCScore
Because of its wide adoption in various cheminformat-
ics applications [58, 64–66], the random forest (RF) 
classifier with compounds encoded by 1024-bits long 
Morgan fingerprint with radius 2 was used as a baseline 
method with which SYBA, SAScore [45] and SCScore 
[43] were compared. The RF classifier was implemented 
in Scikit-learn [67]. Two RF hyperparameters were opti-
mized: the number of trees (50, 100, 300 and 500) and 
the maximum number of features considered when look-
ing for the best split (10% out of 1024 = 102, 25% = 256, 
50% = 512, 75% = 768, 100% = 1024, 

√
1024 = 32 and 

log2 (1024) = 10 ). For each pair of hyperparameters, RF 
model was trained using the training set S and the pre-
diction accuracy was evaluated on the test set TCP (Addi-
tional file 2: Table S2, Figures S2–S8). The setting used in 
this work (100 trees and 32 features) represents the best 
trade-off between computational efficiency and predic-
tion accuracy [64]. RF was trained using the training set S 
(Fig. 1). SAScore was calculated by the RDKit toolkit [60]. 
SCScore code was downloaded from the public GitHub 
repository [68].

(9)Sensitivity (SN) =
TP

TP + FN

(10)Specificity (SP) =
TN

TN + FP
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Classification thresholds
In SYBA, more positive value means a higher prob-
ability that the compound is ES and more negative value 
indicates a higher probability that the compound is HS 
(Eq.  4). The threshold value of zero is used to distin-
guish between ES and HS compounds. For SAScore, the 
recommended value of 6.0 [45] was used as a threshold. 
In RF, the final prediction is based on a number of deci-
sion trees that predict either of classes. Here, 0.5 is used 
as a threshold, i.e., if more decision trees predict ES than 
HS class, a compound is classified as ES and vice versa. 
For SCScore [43], no threshold was suggested by the 
authors. In such case, the threshold can be identified by 
the analysis of the ROC curve. A frequently used meas-
ure that enables the selection of an optimal threshold is 
the Youden index (YI) [69, 70]. YI is defined as

and ranges between 0 and 1 (Fig. 2). The optimal thresh-
old value is selected by maximizing YI, i.e., by maximiz-
ing the sum of SN and SP.

(11)YI = max(SN + SP − 1)

Statistical comparison of model performance
The performance of studied classification models was 
compared using non-parametric Cochran’s Q test [71], 
an omnibus test for testing for differences between three 
or more machine learning models. In the case of the sta-
tistically significant result of Cochran’s Q test, differing 
pairs of classification models were identified by McNe-
mar’s post hoc paired test [72] with Benjamini–Hoch-
berg false discovery rate adjustment [73]. McNemar’s test 
checks if the distribution of disagreements between two 
methods is imbalanced. The statistical significance for all 
tests in the present work was assessed at the significance 
level α = 0.05.

Results and discussion
Chemical space covered by SYBA data sets
The examples of training set compounds are given in 
Additional file  2: Figures  S9–S12. In total, 3 439 074 
ECFP8 fragments were obtained for ES compounds and 
23 447 524 fragments for HS compounds. 458 040 frag-
ments are common for both S + and S- subsets. 55.0% 
of S+ fragments and 91.7% of S− fragments are present 
only once in the whole data set S (singletons). Typical ES 
and HS fragments are shown in Figs. 3 and 4, fragments 
with very low SYBA in Additional file 2: Figure S13 and 

Fig. 2  ROC curve and Youden index. The ROC curve (red line) is the 
dependency of true positive rate (it equals to SN) on false positive 
rate (it equals to 1-SP) at various thresholds. The random chance line 
represents a classifier that assigns examples into individual classes 
randomly. Orange shaded area represents the area under the ROC 
curve (AUC). The larger the AUC, the better is the overall performance 
of the classifier. Youden index (YI) is the point on the ROC curve that 
is farthest from the random chance line along the SN axis

Fig. 3  ES fragments enriched in the S+ data set. Nine fragments 
that are most frequent in the S+ data set and, at the same time, least 
frequent in the S- data set. si is SYBA fragment score. Blue circles 
represent each fragment central atom, yellow circles represent 
aromatic atoms. Fragment images were generated by the RDKit 
function DrawMorganEnvs()
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compounds containing these fragments in Additional 
file 2: Figure S14.

Though the number of fragments in HS compounds 
is much larger than in ES compounds, chemical space is 
equally covered by both HS and ES molecules and there 
is no bias towards HS compounds (Fig. 5).

The visualization of chemical space (Fig.  6) covered 
by S, TCP and TMC compounds shows that test set com-
pounds lie within chemical space of training compounds. 
The examples of TCP and TMC compounds are given in 
Additional file 2: Figures S15–S21.

SYBA also enables the visualization and interpretation 
of fragment score contributions. Each SYBA fragment 
score can be projected to the corresponding fragment 
root atom and this projection can be used to analyze 
which fragments contribute unfavorably to molecule syn-
thetic accessibility (Fig. 7).

Classifier performance on manually curated test set
The differences in classification of TMC (Fig.  1) com-
pounds using SYBA, SAScore and RF with default thresh-
olds are statistically significant. The Cochran’s Q test p 
value is 2 × 10−5 for the TMC test set with the smallest 
SYBA AUC. The results of the corresponding McNemar’s 
paired tests [72] are summarized in Table  1. While RF 
and SYBA do not differ significantly, both RF and SYBA 
yield significantly better results than SAScore.

Fig. 4  HS fragments enriched in the S- data set. Nine fragments 
that are most frequent in the S- data set and, at the same time, least 
frequent in the S+ data set. si is SYBA fragment score. Blue circles 
represent fragment central atom, gray circles represent aliphatic 
ring atoms. Fragment images were generated by the RDKit function 
DrawMorganEnvs()

Fig. 5  Chemical space coverage by ES and HS training set compounds. 3000 ES and 3000 HS compounds were randomly selected from the 
training set and each compound was encoded by 1024 bits long ECFP4 fingerprint. The dimensionality of the input space was reduced by SVD to 
500 components that explain 85% of the variance in the data
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The quality measures of the classification of the com-
pounds in the manually curated TMC test set, aver-
aged over 30 TMC instances, are summarized in Table 2. 
The corresponding confusion matrices are reported in 

Additional file 2: Panel S1 and Panel S2 and ROC curves 
are shown in Fig. 8.

In terms of Acc, the best performing model is SYBA fol-
lowed by RF and SAScore. While SYBA and RF sensitivity 

Fig. 6  Chemical space coverage by training set S and test sets TCP and TMC. TMC data set consists of 40 HS compounds and 1200 ES compounds, 
from S and TCP data sets random samples of 1240 compounds were generated. Each compound was encoded by 1024 bits long ECFP4 fingerprint. 
The dimensionality of the input space was reduced by SVD to 500 components that explain 88% of the variance in the data

Fig. 7  SYBA fragment score visualization. Fragment score is projected on the fragment root atom and the whole molecule is visualized as a 
similarity map [74]. The more frequent the fragment is in the S+ data set compared to the S- data set, the greener is its central atom. Similarly, the 
more frequent the fragment is in the S- data set compared to the S+ data set, the redder is its central atom. This visualization enables to analyze the 
contributions of the individual parts of the molecule to its synthetic accessibility. In the HS molecule, the quaternary carbon is most problematic. 
Another substructure decreasing compound synthetic accessibility is a fused cyclopropane ring as can be observed both in ES and HS compounds



Page 8 of 13Voršilák et al. J Cheminform           (2020) 12:35 

and specificity are well balanced, SAScore shows high 
sensitivity (SN = 0.934, i.e., on average 93.4% of ES com-
pounds are predicted as ES), while its specificity (i.e., the 
ability to correctly classify HS compounds) is rather low 
(SP = 0.300). The observed high sensitivity of SAScore is 
not surprising as only 0.2% of ZINC structures have SAS-
core greater than 6.0 and out of these, only lower units 
were selected into the TMC+ set.

For optimized thresholds, the differences between 
SYBA, SAScore and RF are again statistically significant 
(Cochran’s Q test p-value is 2 × 10−14 for the TMC test 
set with the smallest SYBA AUC). However, McNemar’s 
paired test (Table  3) identifies significant differences 
only between SCScore and other methods meaning that 
SAScore results improve significantly upon threshold 
optimization.

In terms of performance measures (Table 2), the most 
accurate classifiers are SYBA, RF and SAScore followed 
afar by SCScore. Notable is the improvement of SAS-
core SP by 0.619 compared to the default threshold. The 
increase in SAScore SP comes, however, at the cost of SN 
that decreases by 0.135. The worst performing model, 
SCScore, is only slightly better (AUC​ = 0.528) than a 
random model. However, because TMC+ and TMC− data 
sets consist of only 40 compounds each, the results must 
be interpreted with caution as small changes in confu-
sion matrices lead to relatively large changes in reported 
metrics.

Table 1  The results of  McNemar’s two-sided paired 
tests for  the  TMC test set with  the  smallest SYBA AUC 
(AUC = 0.830)

The default threshold values were used (0.0 for SYBA, 0.5 for RF, and 6.0 for 
SAScore). The p-values were adjusted using Benjamini–Hochberg method

Adjusted p-value

RF vs. SAScore 0.002

RF vs. SYBA 1.000

SAScore vs. SYBA 0.001

Table 2  The performance of  classification models 
for the manually curated TMC test set

Quality measures AUC​, Acc, SN and SP, as well as thresholds, are reported as their 
average values over 30 TMC instances

Model AUC​ Acc SN SP Threshold

Default threshold

SYBA 0.903 0.844 0.913 0.775 0.0

SAScore 0.865 0.617 0.934 0.300 6.0

RF 0.875 0.819 0.863 0.775 0.5

Optimized threshold

SYBA 0.903 0.871 0.902 0.840 19.1

SAScore 0.865 0.859 0.799 0.919 3.9

SCScore 0.528 0.601 0.707 0.496 3.7

RF 0.875 0.842 0.855 0.828 0.6

Fig. 8  The ROC curves of classification models for the manually curated TMC test set. Out of 30 possible TMC instances, ROC curves of the TMC test set 
with the smallest (left) and largest (right) SYBA AUC are shown
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Classifier performance on computationally picked test set
Even stronger evidence of the differences between the 
models is provided by the classification of compounds 
in the large computationally picked TCP test set (Fig. 1). 
Using the default thresholds, the differences between 
the classifiers are statistically significant (Cochran’s Q 
test p-value < 10−16) and all classifiers differ significantly 
(Table 4).

When used with their default thresholds, both SYBA 
and RF are more accurate than SAScore (Table 5, Addi-
tional file 2: Panel S3). Low observed SAScore accuracy 
(Acc = 0.665) is caused by its low specificity when almost 
70% of HS compounds are predicted to be ES (Table 5).

Cochran’s Q test identifies significant differences 
(p-value < 10−16) also if classifiers are used with the 
optimized thresholds. While statistically significant dif-
ferences were detected within RF/SAScore and RF/
SYBA pairs (Table  6), the effect size is still rather small 
(Table 5). However, the difference between SCScore and 
all other methods is statistically significant and large 
(Tables  5 and   6). No statistically significant difference 
was observed between SYBA and SAScore meaning that 
these two methods yield comparable results.

Compared to its default threshold of 6.0, SAScore 
specificity increases by 0.662 (Table 5) when the thresh-
old is shifted to the optimal value of 4.5 (Fig. 10). At this 
threshold, SAScore is on par with SYBA and RF methods 

(Table  5). However, SYBA retains its high performance 
over much broader range of threshold values than SAS-
core (Additional file 2: Figure S1).

High performance of SYBA, RF and SAScore is also 
evident from their AUC​ that is close to one (Fig.  9, 
Table 5). On the other hand, SCScore fails to distinguish 
between ES and HS compounds as can be deduced from 
its ROC curve (Fig.  9). In its optimal threshold of 3.1, 
SCScore predicts a majority of TCP compounds as HS 
(Fig. 10, Additional file 2: Panel S3).

In addition to the TMC and TCP test sets, the perfor-
mance of SAScore and SCScore was also assessed using 
the training set S, as this data set was not used for their 
parametrization. Classification results are shown in 
Table  7 and Fig.  11, confusion matrices are available in 
Additional file 2: Panel S4.

In agreement with previous experiments on the TMC 
and TCP test sets, SAScore is able to distinguish between 
ES and HS compounds more accurately than SCScore. 
However, to achieve the best performance, SAScore clas-
sification threshold must be shifted from its default value 
of 6.0 to the optimal value of 4.4. At this threshold, SAS-
core is both highly sensitive and specific, while SCScore 

Table 3  The results of  McNemar’s two-sided paired 
tests for  the  TMC test set with  the  smallest SYBA AUC 
(AUC = 0.830)

The optimized threshold values were used (27.7 for SYBA, 0.5 for RF, 3.7 for 
SAScore, and 4.0 for SCScore). The p-values were adjusted using Benjamini–
Hochberg method

Adjusted p-value

RF vs. SAScore 0.164

RF vs. SCScore 2 × 10−6

RF vs. SYBA 0.687

SAScore vs. SCScore 1 × 10−8

SAScore vs. SYBA 0.466

SCScore vs. SYBA 2 × 10−6

Table 4  The results of  McNemar’s two-sided paired tests 
for the TCP test set

The default threshold values were used (0.0 for SYBA, 0.5 for RF, and 6.0 for 
SAScore). The p-values were adjusted using Benjamini–Hochberg method

Adjusted p-value

RF vs. SAScore < 10−16

RF vs. SYBA < 10−16

SAScore vs. SYBA < 10−16

Table 5  The performance of  classification models 
for the computationally picked TCP test set

Model AUC​ Acc SN SP Threshold

Default threshold

SYBA 0.903 0.962 0.925 1.000 0.0

SAScore 0.999 0.665 0.999 0.331 6.0

RF 0.995 0.892 0.784 0.999 0.5

Optimized threshold

SYBA 0.998 0.988 0.985 0.991 − 18.6

SAScore 0.999 0.990 0.986 0.993 4.5

SCScore 0.641 0.612 0.499 0.725 3.1

RF 0.995 0.973 0.960 0.986 0.2

Table 6  The results of  McNemar’s two-sided paired tests 
for the TCP test set

The optimized values of threshold (− 18.6 for SYBA, 0.2 for RF, 4.5 for SAScore, 
3.1 for SCScore) were used. p-values were adjusted using Benjamini–Hochberg 
method

Adjusted p-value

RF vs. SAScore 4 × 10−15

RF vs. SCScore < 10−16

RF vs. SYBA 2 × 10−14

SAScore vs. SCScore < 10−16

SAScore vs. SYBA 0.474

SCScore vs. SYBA < 10−16
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is, using its optimal threshold of 3.7, sensitive and spe-
cific only moderately.

The observed poor performance of SCScore in all data 
sets may follow from the fact that SCScore differs con-
ceptually from other methods tested in the present work. 
In SCScore, the problem of predicting synthetic complex-
ity is reformulated as the analysis of reactions consisting 
of reactant-product pairs and SCScore correlates with 
a number of reaction steps. It means that, contrary to 
SYBA and SAScore, SCScore captures synthetic feasibil-
ity of compounds, not structural complexity. In SCScore 
derivation, each molecule is analyzed as a whole in the 
context of all molecules and reactions as they appear in 
the Reaxys database [44]. Thus, SCScore is biased [43] by 
the types of reactants and products in the Reaxys data-
base. Therefore, we hypothesize that the unsatisfactory 
results of SCScore are caused by the fact that compounds 
in our data sets come from chemical subspace insuffi-
ciently covered by Reaxys compounds.

Conclusions
In the present work, SYBA method for the classification 
of organic compounds as easy- and hard-to-synthe-
size is described. SYBA is an additive fragment-based 
approach meaning that the compound is decomposed 
into individual substructure fragments, each fragment 
is assigned its respective SYBA fragment score and 
these are summed to obtain the final SYBA score. The 

fragment scores were derived by the Bayesian analysis 
of the frequency of ECFP8 fragments occurring in the 
database of ES compounds, that were randomly chosen 
from the ZINC15 database [57], and HS compounds, 
that were generated using the Nonpher approach [58]. 
Because SYBA was derived from ECFP8 fragments 
that utilize only molecular connectivity and no 3D 
information, the influence of stereochemistry on syn-
thetic accessibility is not accounted for. However, apart 
from ECFP8 fragments, the number of stereocenters is 
included in SYBA calculation and the compounds with 
many stereocenters are penalized. If the SYBA score is 
positive, the compound is considered to be ES and vice 
versa. While SYBA score can theoretically assume val-
ues between plus and minus infinity, a majority of com-
pounds will have SYBA score between − 100 and +100 
in real applications. It must be stressed here that the 
absolute value of the SYBA score is the measure of the 
confidence of the prediction and not of the degree of 
the synthetic accessibility.

SYBA was compared with other two recent classifica-
tion methods, SAScore [45] and SCScore [43]. As a base-
line for the comparison, RF/ECFP4 classifier was used 
due to its wide adoption in many cheminformatics appli-
cations. All methods were assessed using accuracy, sen-
sitivity, specificity and area under the ROC curve. While 
SYBA and RF provide similar performance, we recom-
mend to use SYBA due to its smaller complexity, lower 
computational demands and more straightforward analy-
sis of the individual fragment contributions. SYBA out-
performs SAScore when this is used with the threshold of 
6.0 proposed by the authors [45]. However, if the SAScore 
threshold is changed to the value of ~ 4.5, the accuracy of 
SYBA and SAScore becomes comparable. Therefore, to 
reduce the number of false positives in workflows that 
utilize SAScore, we recommend to decrease the SAScore 
threshold to ~ 4.5. SYBA, RF and SAScore substantially 
outperform SCScore. The observed weak performance of 
SCScore can be, in our opinion, attributed to the fact that 
our test set compounds come from a part of chemical 
space that is insufficiently covered by Reaxys compounds 
used to derive SCScore. The SYBA fragment scores can 
be mapped [74] onto a molecule and used for the analysis 
of the contribution of its individual substructures to the 
overall synthetic accessibility.

SYBA can be used to quickly rank large molecu-
lar data sets that originate, for example, from de novo 
molecular design. However, SYBA is conceptually 
based on the notion that a compound can be catego-
rized as easy- and hard-to-synthesize. As the synthetic 

Fig. 9  ROC curves of classification models for the TCP test set



Page 11 of 13Voršilák et al. J Cheminform           (2020) 12:35 	

accessibility is a vaguely defined term, SYBA’s simplify-
ing approach, though accurate enough, cannot compete 
with more sophisticated synthetic path-reconstruction 
methods that enable the incorporation of other factors 
such as the availability of starting materials, reaction 
yields or a price aspect. In the end, the definitive assess-
ment of synthetic accessibility is in the hands of experi-
enced organic chemists.

Fig. 10  SYBA, SAScore and SCScore histograms of ES and HS compounds in the computationally picked TCP test set. The positions of optimal 
thresholds are shown. SAScore recommended threshold of 6.0 leads to a large number of FP (Additional file 2: Panel S3). If the threshold is moved to 
its optimal value of 4.5, SAScore specificity increases from 0.317 to 0.994, i.e. by 0.677

Table 7  The performance of  classification models 
for the training set S

Model AUC​ Acc SN SP Threshold

Default threshold

SAScore 0.981 0.767 0.998 0.536 6.0

Optimized threshold

SAScore 0.981 0.933 0.935 0.932 4.4

SCScore 0.667 0.623 0.564 0.682 3.7

Fig. 11  ROC curves of classification models for the training set S
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