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Abstract: Development of novel anticancer therapeutic candidates is one of the key challenges in
medicinal chemistry. Podophyllotoxin and its derivatives, as a potent cytotoxic agent, have been at
the center of extensive chemical amendment and pharmacological investigation. Herein, a new series
of podophyllotoxin-N-sulfonyl amidine hybrids (4a–4v, 5a–5f) were synthesized by a CuAAC/ring-
opening procedure. All the synthesized podophyllotoxins derivatives were evaluated for in vitro
cytotoxic activity against a panel of human lung (A-549) cancer cell lines. Different substituents’, or
functional groups’ antiproliferative activities were discussed. The –CF3 group performed best (IC50:
1.65 µM) and exhibited more potent activity than etoposide. Furthermore, molecular docking and
dynamics studies were also conducted for active compounds and the results were in good agreement
with the observed IC50 values.

Keywords: podophyllotoxin hybrids; CuAAC; antiproliferative activity; molecular docking; molecu-
lar dynamics; structure–activity correlation

1. Introduction

Podophyllotoxin is a potent cytotoxic agent and serves as a useful lead compound for the
development of drugs due to its cytotoxic, insecticidal, antifungal, antiviral, anti-inflammatory,
neurotoxic, immunosuppressive, antirheumatic, antioxidative, anti-spasmogenic, and hy-
polipidemic activities. Its derivatives also act as excellent anticancer aspirants for future
chemotherapies [1–5]. Similar to etoposide [6], teneposide [7] drugs have been proven
to be potential antitumor drugs in clinical use; NPF [8] and GL-331 [9] have been under
clinical trials. However, their therapeutic efficacy is often limited to their undesirable sec-
ondary effects, for example, gastrointestinal toxicity, neurotoxicity, hair loss, bone marrow
suppression, etc., as well as the development of resistance by cancer cells [3]. Therefore,
the development of less toxic derivatives or analogues has been a consistent focus of
podophyllotoxin modifications.

Previous studies have shown that modifications in the podophyllotoxin skeleton’s
A-ring and D-ring compounds appeared to be biologically less active than podophyllotoxin
itself [10]. Intact A-ring and D-ring systems are important for the compounds’ DNA topoi-
somerase II (dtop II)-inhibiting activity. Meanwhile, rational modification at C4, including
podophyllotoxin hybrids [11–13] and the β-configurated derivative podophyllotoxin hy-
brids, might improve the molecule’s topoisomerase II-inhibition activity, water solubility,
drug resistance profile, and antimitotic activities [14] (Figure 1).
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idine/pyrimidine [30], pterostilbene [31], retinoic acid [32], sugar [33], (thio)urea [34], or 
sulfur [35] (Figure 1). These have been subjected to extensive research and have been 
shown to be highly active against both MDR and drug-sensitive cancer cell lines with IC50 
or GI50 values at a nanomolar level; however, the water solubility, bioactivities, and tox-
icity still need to be improved. Analogs on a large scale, for drug discovery and applica-
tion, are still required. 

 
Figure 1. Podophyllotoxin and podophyllotoxin derivatives. 

On the other hand, the N-sulfonyl amidine moiety frequently appears in biologically 
active compounds, and has displayed a crucial role in medicinal chemistry research, 
where it has therapeutic effects against several diseases. It showed a prolific set of biolog-
ical activities (Figure 2), including anticancer (a) [36], antifungal (b) [37], antiresorptive (c) 
[38], dopamine transporter inhibition (d) [39], and antiproliferative activities [40], etc. 
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Accordingly, herein we describe a new series of podophyllotoxin-N-sulfonyl amidine 
hybrids (PSAH) with potent antiproliferative activity. The operationally simple synthesis 
protocol involved stirring a mixture of the terminal alkynes, sulfonyl azides, and podo-
phyllotoxin in the presence of a copper (I) catalyst; additionally, we studied the effects of 
different functional groups on cytotoxicity (Scheme 1). 

Figure 1. Podophyllotoxin and podophyllotoxin derivatives.

Depending on the chosen modern molecule hybridization strategy [15,16], podophyl-
lotoxin/epipodophyllotoxin can hybridize with amino acid/peptide [17,18], azole [19],
biotin [20], carbamate [21], chalcone [22], cinnamic acid [23], cinnamic acid [24], fer-
rocene [25], furan/pyrrole [26], hydroxamic acid [27], indole [28], norcantharidin [29],
pyridine/pyrimidine [30], pterostilbene [31], retinoic acid [32], sugar [33], (thio)urea [34],
or sulfur [35] (Figure 1). These have been subjected to extensive research and have been
shown to be highly active against both MDR and drug-sensitive cancer cell lines with IC50
or GI50 values at a nanomolar level; however, the water solubility, bioactivities, and toxicity
still need to be improved. Analogs on a large scale, for drug discovery and application, are
still required.

On the other hand, the N-sulfonyl amidine moiety frequently appears in biologically
active compounds, and has displayed a crucial role in medicinal chemistry research, where
it has therapeutic effects against several diseases. It showed a prolific set of biological
activities (Figure 2), including anticancer (a) [36], antifungal (b) [37], antiresorptive (c) [38],
dopamine transporter inhibition (d) [39], and antiproliferative activities [40], etc.
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Accordingly, herein we describe a new series of podophyllotoxin-N-sulfonyl amidine
hybrids (PSAH) with potent antiproliferative activity. The operationally simple synthesis
protocol involved stirring a mixture of the terminal alkynes, sulfonyl azides, and podophyl-
lotoxin in the presence of a copper (I) catalyst; additionally, we studied the effects of
different functional groups on cytotoxicity (Scheme 1).
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Scheme 1. Design and synthesis of novel podophyllotoxin hybrids.

2. Materials and Methods
2.1. General Methods

All melting points were determined on a Yanaco melting point apparatus (Kyoto,
Japan) and were uncorrected. IR spectra were recorded as KBr pellets on a Nicolet FT-
IR 5DX spectrometer (Waltham, MA, USA). All spectra of 1H NMR (400 MHz) and 13C
NMR (100 MHz) were recorded on a Bruker AVANCE NEO 400 MHz spectrometer (Berne,
Switzerland) in DMSO-d6 or CDCl3 (unless otherwise indicated), with TMS used as an
internal reference and the J values given in Hz. HRMS were obtained on a Thermo Scien-
tific Q Exactive Focus Orbitrap LC-MS/MS spectrometer (Waltham, MA, USA). Optical
rotations are measured on a P-2000, serial number: B209161232, JASCO corporation (Tokyo,
Japan). 4β-Aminopodophyllotoxin (1a) and 4′-O-demethyl-4β-aminopodophyllotoxin (1b)
were prepared by using reported methods [41,42]. All terminal alkynes (2a–2m, see Sup-
plemetary Materials Scheme S2) were prepared by the manufacturer and sulfonyl azides
(3a–3j, see Supplemetary Materials Scheme S3) were prepared using methods in the litera-
ture [43].

2.2. General Procedure for the Synthesis of PSAH

We added 4β-Aminopodophyllotoxin (1a) or 4′-O-demethyl-4β-aminopodophyllotoxin
(1b) (0.1 mmol), terminal alkynes (2) (0.12 mmol), sulfonyl azides (3) (0.12 mmol), CuI (0.02
mmol), NEt3 (0.4 mmol), and dry MeCN (2 mL) to an oven-dried Schlenk tube, equipped
with a magnetic stirring bar. After the reaction was stirred at room temperature for 12 h,
the solvent was removed by evaporation in vacuum. The residue was directly purified by
flash column chromatography (silica gel, using hexanes/EtOAc as eluent) to afford the
corresponding products PSAH, see 4 or 5. Details of the compound characterizations are
provided in the following subsections.

N-((5S,5aS,8aR,9R)-8-Oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,7]naphtho
[2,3-d][1,3]dioxol-5-yl)-2-phenyl-N′-tosylacetimidamide (4a), white solid, 63 mg; yield: 92%;
m.p.: 146–148 ◦C, [α]D

25 = −59.1 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ = 7.82 (dd,
J = 15.7, 7.9 Hz, 2H), 7.33 (dd, J = 11.9, 7.4 Hz, 5H), 7.21 (d, J = 7.2 Hz, 2H), 6.52 (s, 1H), 6.41
(s, 1H), 6.17 (s, 2H), 5.95 (d, J = 3.0 Hz, 2H), 5.27 (d, J = 6.9 Hz, 1H), 5.19 (t, J = 5.7 Hz, 1H),
4.42 (d, J = 5.1 Hz, 1H), 4.41–4.27 (m, 2H), 4.10 (t, J = 8.3 Hz, 1H), 3.77 (s, 3H), 3.71 (s, 6H),
3.61 (t, J = 10.0 Hz, 1H), 2.86–2.68 (m, 1H), 2.45 (m, 1H), 2.43 (s, 3H); 13C NMR (100 MHz,
CDCl3) δ = 173.9, 166.5, 152.8 (2C), 148.8, 147.9, 143.2, 140.0, 137.5, 134.5, 133.0, 132.6, 129.9,
129.8 (2C), 129.7 (2C), 128.6, 127.3, 126.6 (2C), 126.5, 110.3, 108.7, 108.4 (2C), 101.9, 69.0, 60.9,
56.4 (2C), 50.6, 43.7, 42.0, 39.5, 36.9, 21.7; IR νmax (KBr): 3398, 2943, 1778, 1535, 1485, 1423,
1392, 1234, 933, 690 cm−1; HRMS (ESITOF) m/z calcd. for C37H36N2O9S, [M + H]+ 685.2214,
found 685.2209.

N-((5S,5aS,8aR,9R)-8-Oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,7]naphtho
[2,3-d][1,3]dioxol-5-yl)-2-(p-tolyl)-N′-tosylacetimidamide (4b), white solid, 65 mg; yield: 93%;
m.p.: 148–150 ◦C, [α]D

25 = −69.1 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ = 7.84 (d,
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J = 8.1 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.16–7.04 (m, 4H), 6.53 (s, 1H), 6.42 (s, 1H), 6.18 (s,
2H), 5.96 (s, 2H), 5.33 (d, J = 7.0 Hz, 1H), 5.20 (dd, J = 7.0, 4.7 Hz, 1H), 4.43 (d, J = 5.0 Hz,
1H), 4.29 (m, 2H), 4.10 (dd, J = 9.2, 7.4 Hz, 1H), 3.77 (s, 3H), 3.71 (s, 6H), 2.79 (dddd, J = 15.3,
11.5, 7.4, 4.7 Hz, 1H), 2.45 (m, 1H), 2.43 (s, 3H), 2.32 (s, 3H); 13C NMR (100 MHz, CDCl3)
δ = 173.9, 166.9, 152.8 (2C), 148.8, 147.9, 143.2, 140.0, 138.4, 137.5, 134.5, 132.6, 130.5 (2C),
129.7 (3C), 129.6 (2C), 127.4, 126.6 (2C), 110.3, 108.8, 108.4 (2C), 101.8, 69.1, 60.9, 56.4 (2C),
50.5, 43.7, 42.0, 39.1, 36.9, 21.7, 21.3; IR νmax (KBr): 3394, 2927, 1778, 1531, 1485, 1388, 1330,
1234, 933, 690 cm−1; HRMS (ESITOF) m/z calcd. for C38H38N2O9S, [M + H]+ 699.2371,
found 699.2364.

2-(4-(Dimethylamino)phenyl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-
hexahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-N′-tosylacetimidamide (4c), white solid,
70 mg; yield: 96%; m.p.: 139–141 ◦C, [α]D

25 = −77.3 (c 1.00, CH2Cl2); 1H NMR (400 MHz,
CDCl3) δ = 7.84 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 6.64 (d,
J = 8.4 Hz, 2H), 6.57 (s, 1H), 6.41 (s, 1H), 6.19 (s, 2H), 5.94 (dd, J = 5.3, 1.3 Hz, 2H), 5.54 (d,
J = 7.1 Hz, 1H), 5.23 (dd, J = 7.2, 4.8 Hz, 1H), 4.43 (d, J = 5.0 Hz, 1H), 4.20 (d, J = 4.4 Hz,
2H), 4.16–4.10 (m, 1H), 3.77 (s, 3H), 3.71 (s, 6H), 3.62 (dd, J = 10.9, 9.3 Hz, 1H), 2.93 (s, 6H),
2.80 (dddd, J = 15.1, 11.3, 7.1, 4.6 Hz, 1H), 2.47 (dd, J = 14.5, 5.1 Hz, 1H), 2.42 (s, 3H); 13C
NMR (100 MHz, CDCl3) δ = 174.0, 167.9, 152.7 (2C), 150.2, 148.6, 147.8, 142.9, 140.1, 137.4,
134.5, 132.5, 130.6 (2C), 129.6 (2C), 127.4, 126.5 (2C), 119.3, 113.2 (2C), 110.2, 108.8, 108.3
(2C), 101.7, 69.0, 60.8, 56.3 (2C), 50.3, 43.6, 41.9, 40.4 (2C), 38.5, 36.8, 21.6; IR νmax (KBr):
3437, 2931, 1778, 1527, 1485, 1284, 1234, 1145, 941, 686 cm−1; HRMS (ESITOF) m/z calcd. for
C39H41N3O9S, [M + H]+ 728.2636, found 728.2632.

2-(4-Methoxyphenyl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro
[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-N′-tosylacetimidamide (4d), white solid, 68 mg; yield:
95%; m.p.: 133–135 ◦C, [α]D

25 =−91.3 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ = 7.76
(t, J = 5.7 Hz, 2H), 7.28 (m, 2H), 7.12 (d, J = 8.2 Hz, 2H), 6.87–6.75 (m, 2H), 6.53 (d, J = 2.3
Hz, 1H), 6.37 (d, J = 6.6 Hz, 1H), 6.18 (s, 2H), 5.92 (d, J = 6.7 Hz, 2H), 5.84 (m, 1H), 5.21 (dd,
J = 7.1, 4.7 Hz, 1H), 4.40 (d, J = 5.1 Hz, 1H), 4.28 (dd, J = 16.8, 4.1 Hz, 1H), 4.19–4.00 (m,
2H), 3.76 (s, 3H), 3.74 (s, 3H), 3.69 (s, 6H), 3.60 (t, J = 10.1 Hz, 1H), 2.79 (dddd, J = 15.0, 11.3,
7.3, 4.7 Hz, 1H), 2.60 (dd, J = 14.1, 5.2 Hz, 1H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl3)
δ = 174.0, 167.0, 159.3, 152.6 (2C), 148.6, 147.7, 143.0, 139.9, 137.2, 134.6, 132.5, 130.8, 130.7,
129.6, 129.5, 127.3, 126.4, 126.3, 124.8, 114.9, 114.8, 110.1, 108.7, 108.2 (2C), 101.7, 68.9, 60.7,
56.3 (2C), 55.3, 50.4, 43.6, 41.8, 38.4, 36.8, 21.5; IR νmax (KBr): 3390, 2935, 2839, 1778, 1585,
1512, 1330, 1238, 933, 690 cm−1; HRMS (ESITOF) m/z calcd. for C38H38N2O10S, [M + H]+

715.2320, found 715.2321.

2-(3-Hydroxyphenyl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro
[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-N′-tosylacetimidamide (4e), white solid, 55 mg; yield:
79%; m.p.: 154–156 ◦C, [α]D

25 = −48.1 (c 1.00, CH2Cl2). dr = 3.3:1; 1H NMR (400 MHz,
CDCl3, contains two isomers) δ = 7.73 (d, J = 8.0 Hz, 2H, major), 7.65 (d, J = 7.9 Hz, 2H,
minor), 7.30–7.23 (m, 2H, major + minor), 7.18 (t, J = 7.8 Hz, 1H, minor), 7.09 (t, J = 8.0 Hz,
1H, major), 6.84 (dd, J = 8.2, 2.3 Hz, 2H, minor), 6.72 (d, J = 7.0 Hz, 2H, major), 6.68 (d,
J = 7.5 Hz, 1H, major + minor), 6.50 (s, 1H, major), 6.39 (s, 1H, minor), 6.26 (s, 1H, minor),
6.23 (s, 1H, major), 6.21 (d, J = 6.8 Hz, 2H, minor), 6.16 (s, 2H, major), 5.85 (d, J = 14.7 Hz,
2H, major), 5.79 (d, J = 8.5 Hz, 2H, minor), 5.30 (dd, J = 8.5, 5.1 Hz, 1H, minor), 5.18 (dd,
J = 7.3, 3.5 Hz, 1H, major), 4.32 (d, J = 3.9 Hz, 1H, major), 4.24 (d, J = 16.0 Hz, 1H, major),
4.17 (d, J = 8.5 Hz, 1H, minor), 4.13 (d, J = 13.9 Hz, 1H, minor), 4.05–3.97 (m, 2H, major),
3.90–3.84 (m, 2H, minor), 3.80 (s, 3H, minor), 3.73 (s, 3H, major), 3.69 (s, 6H, major + minor),
3.62 (m, 2H, major), 3.38 (dd, J = 10.3, 4.6 Hz, 1H, minor), 3.20 (dt, J = 10.3, 5.2 Hz, 1H,
minor), 2.75 (m, 2H, major + minor), 2.40 (s, 3H, major + minor); 13C NMR (100 MHz,
CDCl3, contains two isomers) δ (major + minor) = 179.1, 174.6, 167.1, 166.7, 157.4, 157.1,
153.5 (2C), 152.6 (2C), 148.5, 148.0, 147.6, 147.3, 143.2, 143.1, 139.7, 139.6, 137.2, 137.0, 136.8,
134.8, 134.8, 133.9, 132.5, 131.1, 130.7, 130.5, 129.6 (2C), 127.2, 127.0, 126.4 (2C), 126.2 (2C),
121.5, 120.9, 116.8, 116.6, 116.0, 115.3, 110.1, 109.9, 108.9 (2C), 108.3 (2C), 106.5, 105.0, 101.7,
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101.5, 69.1, 68.6, 60.9, 60.8, 56.3 (2C), 56.2 (2C), 50.6, 45.1, 44.7, 43.5, 41.7, 39.6, 39.1, 38.3,
36.9, 21.6 (2C); IR νmax (KBr): 3630, 3387, 2927, 1778, 1535, 1485, 1330, 1234, 933, 690 cm−1;
HRMS (ESITOF) m/z calcd. for C37H36N2O10S, [M + H]+ 701.2163, found 701.2159.

2-(4-Chlorophenyl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro
[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-N′-tosylacetimidamide (4f), white solid, 63 mg; yield:
88%; m.p.: 138–140 ◦C, [α]D

25 =−61.3 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ = 7.73
(d, J = 7.9 Hz, 2H), 7.28 (m, 4H), 7.16 (d, J = 8.1 Hz, 2H), 6.51 (s, 1H), 6.40 (s, 1H), 6.18 (s,
2H), 5.95 (d, J = 5.1 Hz, 2H), 5.68 (d, J = 6.9 Hz, 1H), 5.19 (dd, J = 7.0, 4.7 Hz, 1H), 4.45–4.33
(m, 2H), 4.12 (d, J = 16.4 Hz, 1H), 4.05 (t, J = 8.3 Hz, 1H), 3.75 (s, 3H), 3.70 (s, 6H), 3.60 (t,
J = 10.0 Hz, 1H), 2.80 (dddd, J = 15.2, 11.6, 7.4, 4.8 Hz, 1H), 2.61 (dd, J = 14.4, 5.0 Hz, 1H),
2.42 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 173.9, 165.8, 152.7 (2C), 148.8, 147.9, 143.3,
139.7, 137.4, 134.5, 134.3, 132.6, 131.7, 130.9 (2C), 129.7 (2C), 129.6 (2C), 127.3, 126.4 (2C),
110.3, 108.7, 108.3 (2C), 101.8, 68.9, 60.8, 56.4 (2C), 50.7, 43.7, 41.9, 38.6, 36.8, 21.6; IR νmax
(KBr): 3302, 2927, 1778, 1535, 1485, 1234, 933, 810, 779, 690 cm−1; HRMS (ESITOF) m/z calcd.
for C37H35ClN2O9S, [M + H]+ 719.1824, found 719.1821.

2-(3-Chlorophenyl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro
[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-N′-tosylacetimidamide (4g), white solid, 68 mg;
yield: 94%; m.p.: 151–153 ◦C, [α]D

25 = −59.6 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3)
δ = 7.65 (d, J = 7.9 Hz, 2H), 7.27–7.19 (m, 4H), 7.20–7.10 (m, 2H), 6.50 (s, 1H), 6.33 (s, 1H),
6.27 (d, J = 7.0 Hz, 1H), 6.17 (s, 2H), 5.90 (d, J = 16.2 Hz, 2H), 5.21 (dd, J = 7.1, 4.1 Hz, 1H),
4.38 (dd, J = 10.1, 5.6 Hz, 2H), 4.05–3.97 (m, 1H), 3.97 (d, J = 11.9 Hz, 1H), 3.72 (s, 3H), 3.68
(s, 6H), 3.58 (t, J = 9.5 Hz, 1H), 2.86–2.66 (m, 2H), 2.40 (s, 3H); 13C NMR (100 MHz, CDCl3)
δ = 174.1, 165.4, 152.5 (2C), 148.5, 147.6, 143.1, 139.6, 137.1, 135.9, 134.8, 134.7, 132.4, 130.4,
129.5 (2C), 129.2, 127.9, 127.4, 127.3, 126.2 (2C), 110.1, 108.7, 108.1 (2C), 101.6, 68.7, 60.7, 56.2
(2C), 50.5, 43.6, 41.6, 38.3, 36.7, 21.5; IR νmax (KBr): 3398, 2931, 1778, 1585, 1423, 1330, 1234,
933, 771, 690 cm−1; HRMS (ESITOF) m/z calcd. for C37H35ClN2O9S, [M + H]+ 719.1825,
found 719.1824.

2-(4-Bromophenyl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro
[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-N′-tosylacetimidamide (4h), white solid, 59 mg;
yield: 77%; m.p.: 163–165 ◦C, [α]D

25 = −64.4 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3)
δ = 7.68 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 7.29–7.20 (m, 2H), 7.08 (d, J = 8.1 Hz,
2H), 6.51 (s, 1H), 6.37 (s, 1H), 6.17 (s, 2H), 5.97–5.94 (m, 2H), 5.93 (m, 1H), 5.21 (dd, J = 7.1,
4.6 Hz, 1H), 4.41 (d, J = 4.9 Hz, 1H), 4.33 (d, J = 16.2 Hz, 1H), 4.09–3.97 (m, 1H), 3.73 (s,
3H), 3.69 (s, 6H), 3.60 (t, J = 9.9 Hz, 1H), 2.80 (dddd, J = 15.1, 11.2, 7.2, 4.7 Hz, 1H), 2.68 (dd,
J = 14.4, 5.0 Hz, 1H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 174.0, 165.7, 152.7 (2C),
148.7, 147.8, 143.2, 139.7, 137.3, 134.6, 132.6, 132.5 (2C), 132.4, 131.1 (2C), 129.6 (2C), 127.3,
126.4, 126.3, 122.2, 110.2, 108.7, 108.3 (2C), 101.8, 68.9, 60.8, 56.3 (2C), 50.7, 43.6, 41.8, 38.6,
36.8, 21.6; IR νmax (KBr): 3437, 2935, 1778, 1535, 1485, 1330, 1234, 933, 694, 551 cm−1; HRMS
(ESITOF) m/z calcd. for C37H35BrN2O9S, [M + H]+ 763.1319, found 763.1310.

N-((5S,5aS,8aR,9R)-8-Oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,7]naphtho
[2,3-d][1,3]dioxol-5-yl)-N′-tosyl-2-(4-(trifluoromethyl)phenyl)acetimidamide (4i), white solid,
73 mg; yield: 97%; m.p.: 201–203 ◦C, [α]D

25 = −57.2 (c 1.00, CH2Cl2); 1H NMR (400 MHz,
CDCl3) δ = 7.74–7.65 (m, 2H), 7.56 (dd, J = 8.2, 3.2 Hz, 2H), 7.35 (d, J = 7.9 Hz, 2H), 7.25 (dd,
J = 8.9, 2.9 Hz, 2H), 6.47 (s, 1H), 6.40 (d, J = 2.4 Hz, 1H), 6.18 (s, 2H), 5.93 (d, J = 13.1 Hz,
2H), 5.81–5.66 (m, 1H), 5.21 (dd, J = 6.8, 4.6 Hz, 1H), 4.51 (dd, J = 16.1, 3.0 Hz, 1H), 4.46–4.39
(m, 1H), 4.14 (dd, J = 16.2, 5.4 Hz, 1H), 4.06 (t, J = 8.3 Hz, 1H), 3.74 (s, 3H), 3.69 (s, 6H),
3.64 (t, J = 10.1 Hz, 1H), 2.82 (dddd, J = 15.1, 11.4, 7.3, 4.7 Hz, 1H), 2.67 (dt, J = 13.8, 5.2 Hz,
1H), 2.40 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 174.0, 165.2, 152.7 (2C), 148.8, 147.9,
143.4, 139.6, 137.6, 137.4, 134.6, 132.6, 130.4 (q, J = 31.1 Hz, 1C), 129.8 (2C), 129.6 (2C), 127.3
(q, J = 1.1 Hz, 2C), 126.4, 126.3 (q, J = 3.3 Hz, 2C), 123.9 (q, J = 272.2 Hz, 1C), 110.3, 108.6,
108.3 (2C), 101.9, 68.9, 60.8, 56.4 (2C), 50.9, 43.7, 42.0, 39.0, 36.8, 21.6; IR νmax (KBr): 3437,
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2935, 1778, 1535, 1485, 1327, 1234, 1126, 933, 690 cm−1; HRMS (ESITOF) m/z calcd. for
C38H35F3N2O9S, [M + H]+ 753.2088, found 753.2082.

4-(2-(((5S,5aS,8aR,9R)-8-Oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,7]
naphtha[2,3-d][1,3]dioxol-5-yl)amino)-2-(tosylimino)ethyl)benzoic acid (4j), white solid,
45 mg; yield: 61%; m.p.: 170–172 ◦C, [α]D

25 =−61.8 (c 1.00, (CH3)2CO); 1H NMR (400 MHz,
(CD3)2CO) δ = 8.00 (d, J = 7.4 Hz, 1H), 7.93 (d, J = 7.9 Hz, 2H), 7.79 (d, J = 7.9 Hz, 2H), 7.52
(d, J = 7.9 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 6.77 (s, 1H), 6.48 (s, 1H), 6.35 (s, 2H), 5.97 (d,
J = 7.5 Hz, 2H), 5.45 (dd, J = 7.6, 4.0 Hz, 1H), 4.62 (d, J = 15.0 Hz, 1H), 4.52 (d, J = 4.8 Hz,
1H), 4.26 (d, J = 15.0 Hz, 1H), 4.13–4.04 (m, 1H), 3.76 (t, J = 9.5 Hz, 1H), 3.66 (s, 6H), 3.65 (s,
4H), 3.61 (s, 1H), 3.16–3.01 (m, 2H), 2.39 (s, 3H); 13C NMR (100 MHz, (CD3)2CO) δ = 173.6,
166.5, 165.2, 152.5 (2C), 148.1, 147.2, 142.1, 141.2, 140.5, 137.3, 135.4, 132.8, 129.7 (2C), 129.2,
129.1 (4C), 128.4, 126.2 (2C), 109.5, 109.1, 108.5 (2C), 101.5, 68.4, 59.4, 55.4 (2C), 50.2, 43.6,
41.1, 38.4, 37.0, 20.4; IR νmax (KBr): 3433, 2924, 1778, 1724, 1543, 1485, 1330, 1234, 933, 690
cm−1; HRMS (ESITOF) m/z calcd. for C38H36N2O11S, [M + H]+ 729.2113, found 729.2110.

N-((5S,5aS,8aR,9R)-8-Oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,7]naphtho
[2,3-d][1,3]dioxol-5-yl)-N′-tosyloctanimidamide (4k), white solid, 56 mg; yield: 81%; m.p.:
140–142 ◦C, [α]D

25 = −99.3 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ = 7.74 (d, J =
7.9 Hz, 2H), 7.28 (d, J = 5.5 Hz, 2H), 6.69 (s, 1H), 6.43 (s, 1H), 6.21 (s, 2H), 5.95 (d, J = 7.5
Hz, 2H), 5.25 (dd, J = 7.1, 4.1 Hz, 1H), 4.46 (d, J = 4.3 Hz, 1H), 4.04 (dd, J = 9.2, 6.8 Hz, 1H),
3.74 (s, 3H), 3.71 (s, 6H), 3.62 (t, J = 9.7 Hz, 1H), 2.87 (td, J = 17.0, 15.7, 6.1 Hz, 3H), 2.67
(dt, J = 14.3, 8.0 Hz, 1H), 2.41 (s, 3H), 1.59 (t, J = 7.5 Hz, 2H), 1.32–1.21 (m, 9H), 0.87 (t, J =
6.7 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ = 174.2, 169.0, 152.7 (2C), 148.6, 147.8, 142.9,
140.3, 137.2, 134.8, 132.6, 129.5 (2C), 127.8, 126.4 (2C), 110.2, 109.1, 108.2 (2C), 101.8, 69.0,
60.8, 56.3 (2C), 50.2, 43.7, 41.9, 36.8, 33.9, 31.8, 29.6, 28.9, 28.2, 22.6, 21.6, 14.1; IR νmax (KBr):
3441, 2927, 1778, 1531, 1485, 1330, 1234, 1145, 937, 694 cm−1; HRMS (ESITOF) m/z calcd. for
C37H44N2O9S, [M + H]+ 693.2840, found 693.2836.

N-((5S,5aS,8aR,9R)-8-Oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,7]naphtho
[2,3-d][1,3]dioxol-5-yl)-2-(thiophen-2-yl)-N′-tosylacetimidamide (4l), white solid, 42 mg;
yield: 61%; m.p.: 128–130 ◦C, [α]D

25 = −82.9 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3)
δ = 7.81 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 8.0 Hz, 3H), 6.97 (d, J = 5.6 Hz, 2H), 6.60 (s, 1H), 6.42
(s, 1H), 6.19 (s, 2H), 5.96 (s, 2H), 5.76 (d, J = 6.9 Hz, 1H), 5.21 (t, J = 5.7 Hz, 1H), 4.63–4.47
(m, 2H), 4.46 (d, J = 5.0 Hz, 1H), 4.05 (t, J = 8.3 Hz, 1H), 3.76 (s, 3H), 3.71 (s, 6H), 3.62 (t,
J = 10.1 Hz, 1H), 2.89–2.73 (m, 1H), 2.57 (dd, J = 14.3, 5.1 Hz, 1H), 2.42 (s, 3H); 13C NMR
(100 MHz, CDCl3) δ = 173.9, 165.2, 152.7 (2C), 148.8, 147.9, 143.3, 139.8, 137.5, 134.5, 133.9,
132.6, 129.8, 129.7, 129.2, 128.0, 127.3, 127.1, 126.6, 126.5 (2C), 110.3, 108.9, 108.3 (2C), 101.8,
69.0, 60.8, 56.4 (2C), 50.6, 43.7, 42.0, 37.0, 33.5, 21.7; IR νmax (KBr): 3441, 2935, 1778, 1585,
1539, 1485, 1419, 1392, 933, 690 cm−1; HRMS (ESITOF) m/z calcd. for C35H34N2O9S, [M +
H]+ 691.1778, found 691.1774.

3-(1H-Indol-1-yl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro
[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-N′-tosylpropanimidamide (4m), white solid, 47 mg;
yield: 64%; m.p.: 149–151 ◦C, [α]D

25 = −78.0 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3)
δ = 7.82 (dd, J = 8.1, 3.0 Hz, 2H), 7.65 (d, J = 7.8 Hz, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.30 (d,
J = 8.0 Hz, 2H), 7.17 (t, J = 7.9 Hz, 1H), 7.14 (d, J = 3.1 Hz, 1H), 7.10 (t, J = 7.4 Hz, 1H), 6.50
(d, J = 3.1 Hz, 1H), 6.28 (d, J = 2.9 Hz, 1H), 6.08 (s, 2H), 5.91 (d, J = 4.2 Hz, 2H), 5.88 (s, 1H),
5.67 (d, J = 6.8 Hz, 1H), 4.80 (dt, J = 23.7, 4.3 Hz, 2H), 4.71–4.60 (m, 1H), 4.24 (d, J = 5.1 Hz,
1H), 3.73 (m, 1H), 3.70 (s, 3H), 3.64 (s, 6H), 3.46 (dt, J = 12.3, 5.9 Hz, 1H), 3.30–3.15 (m, 2H),
2.55 (dddd, J = 15.2, 11.6, 7.3, 3.6 Hz, 1H), 2.41 (s, 3H), 2.18–2.09 (m, 1H); 13C NMR (100
MHz, CDCl3) δ = 174.1, 164.7, 152.5 (2C), 148.5, 147.4, 143.3, 139.8, 137.2, 135.7, 134.8, 132.3,
129.6 (2C), 128.8, 127.8, 127.0, 126.4 (2C), 122.3, 121.9, 120.0, 109.9, 109.2, 109.1, 108.2 (2C),
102.7, 101.6, 68.7, 60.7, 56.3 (2C), 50.7, 44.0, 43.5, 41.4, 36.6, 35.8, 21.6; IR νmax (KBr): 3433,
2931, 1778, 1581, 1535, 1508, 1330, 1234, 933, 694 cm−1; HRMS (ESITOF) m/z calcd. for
C40H39N3O9S, [M + H]+ 738.2480, found 738.2478.
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N-((5S,5aS,8aR,9R)-8-Oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,7]naphtho
[2,3-d][1,3]dioxol-5-yl)-2-phenyl-N′-(phenylsulfonyl)acetimidamide (4n), white solid, 64 mg;
yield: 96%; m.p.: 135–137 ◦C, [α]D

25 = −71.2 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3)
δ = 7.98–7.86 (m, 2H), 7.60–7.44 (m, 4H), 7.33–7.29 (m, 2H), 7.25–7.18 (m, 2H), 6.53 (s, 1H),
6.37 (s, 1H), 6.17 (s, 2H), 5.92 (dd, J = 6.5, 1.2 Hz, 2H), 5.67 (d, J = 7.0 Hz, 1H), 5.21 (dd, J =
7.0, 4.7 Hz, 1H), 4.46–4.33 (m, 2H), 4.24 (d, J = 16.6 Hz, 1H), 4.07 (td, J = 9.2, 7.4 Hz, 1H),
3.75 (s, 3H), 3.69 (s, 6H), 3.64–3.54 (m, 1H), 2.80 (dddd, J = 15.3, 11.6, 7.4, 4.7 Hz, 1H), 2.54
(dd, J = 14.4, 5.1 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ = 174.0, 166.7, 152.7 (2C), 148.7,
147.8, 142.7, 137.4, 134.6, 133.1, 132.5, 132.4, 129.6 (2C), 129.2, 129.0 (2C), 128.4, 127.3, 126.4
(2C), 126.3, 110.2, 108.8, 108.3 (2C), 101.8, 68.9, 60.8, 56.3 (2C), 50.6, 43.6, 41.8, 39.4, 36.8; IR
νmax (KBr): 3317, 2939, 1778, 1542, 1419, 1334, 1234, 933, 729, 690 cm−1; HRMS (ESITOF)
m/z calcd. for C36H34N2O9S, [M + H]+ 671.2058, found 671.2053.

N′-((2,3-Dihydro-1H-inden-5-yl)sulfonyl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-
5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-2-phenylacetimidamide (4o),
white solid, 69 mg; yield: 97%; m.p.: 164–166 ◦C, [α]D

25 = −67.8 (c 1.00, CH2Cl2); 1H NMR
(400 MHz, CDCl3) δ = 7.72 (s, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.30 (dd, J = 9.1, 7.0 Hz, 4H), 7.21
(d, J = 7.1 Hz, 2H), 6.52 (s, 1H), 6.38 (s, 1H), 6.17 (s, 2H), 5.93 (d, J = 7.5 Hz, 2H), 5.56 (d,
J = 6.9 Hz, 1H), 5.25–5.18 (m, 1H), 4.43–4.33 (m, 2H), 4.24 (d, J = 16.7 Hz, 1H), 4.09 (t, J =
8.3 Hz, 1H), 3.76 (s, 4H), 3.70 (s, 7H), 3.61 (t, J = 10.1 Hz, 1H), 2.95 (td, J = 7.6, 2.9 Hz, 4H),
2.79 (dddd, J = 15.2, 11.6, 7.2, 4.7 Hz, 1H), 2.52 (dd, J = 14.4, 5.1 Hz, 1H), 2.12 (p, J = 7.5 Hz,
2H); 13C NMR (100 MHz, CDCl3) δ = 174.0, 166.4, 152.7 (2C), 149.5, 148.7, 147.8, 145.3, 140.6,
137.4, 134.6, 133.2, 132.5, 129.6 (2C), 129.5 (2C), 128.3, 127.4, 124.8, 124.7, 122.4, 110.2, 108.8,
108.3 (2C), 101.8, 69.0, 60.8, 56.4 (2C), 50.5, 43.6, 41.9, 39.3, 36.9, 32.9, 32.8, 25.4; IR νmax
(KBr): 3398, 2939, 2843, 1778, 1535, 1330, 1234, 1130, 933, 698 cm−1; HRMS (ESITOF) m/z
calcd. for C39H38N2O9S, [M + H]+ 711.2371, found 711.2370.

N′-((4-Chlorophenyl)sulfonyl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-
hexahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-2-phenylacetimidamide (4p), white solid,
62 mg; yield: 87%; m.p.: 230–232 ◦C, [α]D

25 = −77.0 (c 1.00, CH2Cl2); 1H NMR (400 MHz,
CDCl3) δ = 7.82–7.75 (m, 2H), 7.48–7.40 (m, 2H), 7.31 (d, J = 7.1 Hz, 3H), 7.24–7.15 (m, 2H),
6.52 (s, 1H), 6.37 (s, 1H), 6.17 (s, 2H), 5.93 (d, J = 4.2 Hz, 2H), 5.87 (d, J = 7.1 Hz, 1H), 5.18
(dd, J = 7.1, 4.7 Hz, 1H), 4.41 (d, J = 5.0 Hz, 1H), 4.39–4.15 (m, 2H), 4.08 (dd, J = 9.1, 7.5 Hz,
1H), 3.74 (s, 3H), 3.69 (s, 6H), 3.63 (dd, J = 10.9, 9.2 Hz, 1H), 2.81 (dddd, J = 15.2, 11.5, 7.3,
4.6 Hz, 1H), 2.58 (dd, J = 14.4, 5.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ = 173.9, 166.8,
152.7 (2C), 148.7, 147.8, 141.2, 138.7, 137.4, 134.5, 133.0, 132.5, 129.6 (2C), 129.5 (2C), 129.2
(2C), 128.4, 127.9 (2C), 127.1, 110.2, 108.7, 108.3 (2C), 101.8, 68.8, 60.8, 56.3 (2C), 50.6, 43.6,
41.8, 39.4, 36.8; IR νmax (KBr): 3390, 2920, 1778, 1535, 1392, 1330, 1234, 929, 756, 636 cm−1;
HRMS (ESITOF) m/z calcd. for C36H33ClN2O9S, [M + H]+ 705.1668, found 705.1663.

N′-((4-Bromophenyl)sulfonyl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-
hexahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-2-phenylacetimidamide (4q), white solid,
65 mg; yield: 86%; m.p.: 232–234 ◦C, [α]D

25 = −70.4 (c 1.00, CH2Cl2); 1H NMR (400 MHz,
CDCl3) δ = 7.71 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.2 Hz, 2H), 7.39–7.25 (m, 3H), 7.20 (d, J = 6.9
Hz, 2H), 6.52 (s, 1H), 6.37 (s, 1H), 6.17 (s, 2H), 5.93 (d, J = 3.7 Hz, 2H), 5.84 (d, J = 7.1 Hz,
1H), 5.26–5.10 (m, 1H), 4.41 (d, J = 5.1 Hz, 1H), 4.34 (d, J = 16.5 Hz, 1H), 4.21 (d, J = 16.5 Hz,
1H), 4.08 (t, J = 8.3 Hz, 1H), 3.74 (s, 3H), 3.69 (s, 6H), 3.62 (t, J = 10.1 Hz, 1H), 2.88–2.73 (m,
1H), 2.57 (dd, J = 14.4, 5.1 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ = 173.9, 166.8, 152.7 (2C),
148.7, 147.8, 141.7, 137.4, 134.5, 133.0, 132.5, 132.2 (2C), 129.6 (2C), 129.5 (2C), 128.4, 128.0
(2C), 127.2, 127.1, 110.2, 108.7, 108.3 (2C), 101.8, 68.8, 60.8, 56.3 (2C), 50.6, 43.6, 41.8, 39.5,
36.8; IR νmax (KBr): 3437, 2935, 1778, 1535, 1485, 1330, 1234, 933, 748, 609 cm−1; HRMS
(ESITOF) m/z calcd. for C36H33BrN2O9S, [M + H]+ 749.1163, found 749.1166.

N-((5S,5aS,8aR,9R)-8-Oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,7]naphtho
[2,3-d][1,3]dioxol-5-yl)-2-phenyl-N′-((4-(trifluoromethyl)phenyl)sulfonyl)acetimidamide (4r),
white solid, 69 mg; yield: 93%; m.p.: 245–247 ◦C, [α]D

25 = −79.2 (c 1.00, CH2Cl2); 1H NMR



Molecules 2022, 27, 220 8 of 17

(400 MHz, CDCl3) δ = 8.13 (s, 1H), 8.10 (d, J = 8.2 Hz, 2H), 7.87 (d, J = 8.1 Hz, 2H), 7.41 (d,
J = 7.4 Hz, 2H), 7.28 (dt, J = 13.5, 7.1 Hz, 3H), 6.74 (s, 1H), 6.50 (s, 1H), 6.34 (s, 2H), 5.98 (d,
J = 5.1 Hz, 2H), 5.48 (dd, J = 7.7, 3.4 Hz, 1H), 4.57–4.46 (m, 2H), 4.24 (d, J = 14.8 Hz, 1H), 4.13
(dd, J = 10.1, 5.3 Hz, 1H), 3.86–3.70 (m, 1H), 3.66 (s, 9H), 3.09 (d, J = 4.6 Hz, 2H); 13C NMR
(100 MHz, CDCl3) δ = 174.5, 167.8, 153.6 (2C), 149.2, 148.7, 148.2, 138.3, 136.3, 135.9, 133.8,
133.4 (d, J = 32.3 Hz, 1C), 130.0 (2C), 129.5 (2C), 129.2, 128.0, 127.9 (2C), 126.8 (q, J = 3.8 Hz,
2C), 124.7 (q, J = 272.0 Hz, 1C), 110.6, 110.1, 109.5 (2C), 102.5, 69.2, 60.4, 56.4 (2C), 51.4, 44.6,
42.1, 39.7, 37.9; IR νmax (KBr): 3267, 2927, 1778, 1539, 1485, 1327, 1234, 1091, 929, 717 cm−1;
HRMS (ESITOF) m/z calcd. for C37H33F3N2O9S, [M + H]+ 739.1932, found 739.1936.

N′-(Methylsulfonyl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro
[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-2-phenylacetimidamide (4s), white solid, 53 mg;
yield: 83%; m.p.: 173–175 ◦C, [α]D

25 = −55.0 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3)
δ = 7.39–7.22 (m, 5H), 6.58 (s, 1H), 6.42 (s, 1H), 6.22 (s, 2H), 5.95 (d, J = 5.9 Hz, 2H), 5.62 (d,
J = 6.8 Hz, 1H), 5.22 (dd, J = 7.0, 4.5 Hz, 1H), 4.46 (d, J = 4.7 Hz, 1H), 4.39 (t, J = 8.2 Hz, 1H),
4.36–4.19 (m, 2H), 3.81 (d, J = 10.2 Hz, 1H), 3.76 (s, 3H), 3.71 (s, 6H), 3.01 (s, 3H), 2.92 (dtd,
J = 17.8, 10.7, 8.8, 5.0 Hz, 1H), 2.59 (dd, J = 14.4, 4.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ
= 173.9, 166.8, 152.7 (2C), 148.7, 147.8, 137.4, 134.6, 133.1, 132.5, 129.6 (2C), 129.5 (2C), 128.4,
127.4, 110.2, 108.7, 108.3 (2C), 101.8, 68.9, 60.8, 56.3 (2C), 50.4, 43.6, 43.3, 41.9, 39.4, 37.0; IR
νmax (KBr): 3452, 2931, 1778, 1585, 1485, 1330, 1234, 1126, 794, 570 cm−1; HRMS (ESITOF)
m/z calcd. for C31H32N2O9S, [M + H]+ 609.1901, found 609.1893.

N′-(Ethylsulfonyl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro
[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-2-phenylacetimidamide (4t), white solid, 53 mg;
yield: 85%; m.p.: 145–147 ◦C, [α]D

25 = −60.9 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3)
δ = 7.39–7.27 (m, 5H), 6.57 (s, 1H), 6.43 (s, 1H), 6.22 (s, 2H), 5.95 (d, J = 7.1 Hz, 2H), 5.54
(q, J = 9.7, 8.4 Hz, 1H), 5.21 (dd, J = 7.2, 4.7 Hz, 1H), 4.46 (d, J = 5.0 Hz, 1H), 4.37 (t, J = 8.4
Hz, 1H), 4.33–4.24 (m, 2H), 3.83–3.77 (m, 1H), 3.76 (s, 3H), 3.72 (s, 6H), 3.10 (qd, J = 7.4, 2.6
Hz, 2H), 2.89 (dq, J = 10.6, 3.2 Hz, 1H), 2.60–2.50 (m, 1H), 1.43 (td, J = 7.4, 1.9 Hz, 3H); 13C
NMR (100 MHz, CDCl3) δ = 173.9, 167.1, 152.7 (2C), 148.7, 147.8, 137.4, 134.6, 133.2, 132.5,
129.6 (2C), 129.5 (2C), 128.4, 127.4, 110.2, 108.7, 108.3 (2C), 101.8, 68.9, 60.8, 56.4 (2C), 50.3,
49.5, 43.6, 41.9, 39.7, 37.0, 8.5; IR νmax (KBr): 3402, 2939, 2839, 1778, 1585, 1485, 1388, 1234,
933, 802 cm−1; HRMS (ESITOF) m/z calcd. for C32H34N2O9S, [M + H]+ 623.2058, found
623.2053.

N′-(Isobutylsulfonyl)-N-((5S,5aS,8aR,9R)-8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro
[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-2-phenylacetimidamide (4u), white solid, 50 mg; yield:
77%; m.p.: 138–140 ◦C, [α]D

25 =−34.3 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ = 7.33
(m, 3H), 7.26–7.19 (m, 2H), 6.55 (d, J = 12.3 Hz, 1H), 6.42 (d, J = 12.4 Hz, 1H), 6.20 (d,
J = 18.0 Hz, 2H), 5.95 (d, J = 5.2 Hz, 2H), 5.50–5.32 (m, 1H), 5.20 (dd, J = 7.1, 4.8 Hz, 1H),
4.46 (d, J = 5.1 Hz, 1H), 4.43–4.34 (m, 1H), 4.32 (d, J = 3.4 Hz, 1H), 3.81 (m, 1H), 3.76 (d,
J = 7.0 Hz, 3H), 3.71 (d, J = 8.5 Hz, 6H), 3.06–2.95 (m, 2H), 2.89 (ddd, J = 15.6, 13.1, 9.5 Hz,
1H), 2.58–2.47 (m, 1H), 2.37 (dq, J = 13.4, 7.5, 6.6 Hz, 1H), 2.08 (ddt, J = 41.5, 13.0, 6.9 Hz,
1H), 1.32–1.08 (m, 6H); 13C NMR (100 MHz, CDCl3) δ = 173.9, 166.7, 152.8 (2C), 148.8, 147.9,
137.5, 134.6, 133.2, 132.5, 129.7 (2C), 128.4, 127.5, 124.7, 122.5, 110.3, 108.7, 108.4, 108.3, 101.8,
68.9, 62.9, 60.8, 56.4 (2C), 50.3, 43.6, 42.0, 39.7, 37.1, 24.8, 22.9, 22.8; IR νmax (KBr): 3448,
2931, 1778, 1585, 1535, 1388, 1234, 1126, 933, 725 cm−1; HRMS (ESITOF) m/z calcd. for
C34H38N2O9S, [M + H]+ 651.2371, found 651.2374.

N′-((((1S,4R)-7,7-Dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methyl)sulfonyl)-N-((5S,5aS,8aR,9R)-
8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-
5-yl)-2-phenylacetimidamide (4v), white solid, 50 mg; yield: 67%; m.p.: 143–145 ◦C, [α]D

25 =
−40.7 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ = 7.38–7.32 (m, 2H), 7.29 (d, J = 6.9 Hz,
3H), 6.58 (s, 1H), 6.42 (d, J = 3.3 Hz, 1H), 6.22 (s, 2H), 5.95 (d, J = 3.6 Hz, 2H), 5.46 (m, 1H),
5.26 (dd, J = 7.3, 4.9 Hz, 1H), 4.51–4.43 (m, 2H), 4.37–4.29 (m, 2H), 3.81 (m, 1H), 3.77 (s, 3H),
3.73 (s, 6H), 3.70 (m, 1H), 3.06–2.88 (m, 2H), 2.76–2.61 (m, 1H), 2.58–2.45 (m, 1H), 2.43–2.32
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(m, 1H), 2.18–2.01 (m, 2H), 1.91 (dd, J = 18.5, 3.1 Hz, 1H), 1.76 (m, 1H), 1.50–1.39 (m, 1H),
1.14 (d, J = 2.6 Hz, 3H), 0.90 (d, J = 2.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ = 215.7, 174.0,
166.9, 152.7 (2C), 148.7, 147.8, 137.4, 134.5, 133.1, 132.5, 129.8 (2C), 129.7, 129.6, 128.4, 127.6,
110.2, 108.8, 108.3 (2C), 101.8, 69.1, 60.8, 58.5, 56.3 (2C), 51.6, 50.3, 48.3, 43.7, 42.9, 42.7, 42.0,
39.6, 37.0, 27.1, 24.7, 20.0, 19.9; IR νmax (KBr): 3441, 2962, 1778, 1743, 1585, 1419, 1234, 1126,
933, 725 cm−1; HRMS (ESITOF) m/z calcd. for C40H44N2O10S, [M + H]+ 745.2789, found
745.2791.

N-((5R,5aS,8aR,9R)-9-(4-Hydroxy-3,5-dimethoxyphenyl)-8-oxo-5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,
7]naphtho[2,3-d][1,3]dioxol-5-yl)-2-phenyl-N′-tosylacetimidamide (5a), white solid, 58 mg; yield:
87%; m.p.: 231–233 ◦C, [α]D

25 =−84.2 (c 1.00, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ = 7.76
(d, J = 7.9 Hz, 2H), 7.33–7.24 (m, 5H), 7.24–7.16 (m, 2H), 6.51 (s, 1H), 6.35 (s, 1H), 6.17 (s,
2H), 5.90 (d, J = 10.7 Hz, 2H), 5.79 (d, J = 7.1 Hz, 1H), 5.48 (s, 1H), 5.21 (dd, J = 7.0, 4.7 Hz,
1H), 4.40–4.31 (m, 2H), 4.18 (d, J = 16.5 Hz, 1H), 4.05 (t, J = 8.3 Hz, 1H), 3.69 (s, 6H), 3.59
(t, J = 10.0 Hz, 1H), 2.78 (dddd, J = 15.2, 11.5, 7.5, 4.9 Hz, 1H), 2.55 (dd, J = 14.4, 5.0 Hz,
1H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 174.1, 166.5, 148.6, 147.6, 146.5 (2C),
143.0, 139.9, 134.2, 133.3, 132.7, 130.1, 129.5 (4C), 129.4 (2C), 128.2, 127.3, 126.4 (2C), 110.1,
108.7, 107.9 (2C), 101.7, 68.9, 56.5 (2C), 50.5, 43.4, 41.9, 39.2, 36.7, 21.6; IR νmax (KBr): 3502,
3394, 2931, 1778, 1519, 1330, 1230, 1145, 933, 694 cm−1; HRMS (ESITOF) m/z calcd for
C36H34N2O9S, [M + H]+ 671.2058, found 671.2057.

N′-((4-Chlorophenyl)sulfonyl)-N-((5R,5aS,8aR,9R)-9-(4-hydroxy-3,5-dimethoxyphenyl)-8-oxo-5,5a,
6,8,8a,9-hexahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-2-phenylacetimidamide (5b), white
solid, 54 mg; yield: 78%; m.p.: 221–223 ◦C, [α]D

25 = −87.2 (c 1.00, CH2Cl2); 1H NMR
(400 MHz, (CD3)2CO) δ = 8.03–7.90 (m, 1H), 7.89 (dd, J = 8.5, 1.0 Hz, 2H), 7.58–7.51 (m, 2H),
7.41 (d, J = 7.4 Hz, 2H), 7.34–7.26 (m, 2H), 7.29–7.20 (m, 1H), 7.10 (d, J = 1.0 Hz, 1H), 6.70
(s, 1H), 6.48 (s, 1H), 6.32 (s, 2H), 5.99–5.92 (m, 2H), 5.43 (dd, J = 7.6, 3.2 Hz, 1H), 4.49 (d,
J = 14.9 Hz, 2H), 4.22 (d, J = 14.8 Hz, 1H), 4.15–4.07 (m, 1H), 3.73 (td, J = 8.6, 4.0 Hz, 1H),
3.65 (d, J = 1.0 Hz, 6H), 3.05 (d, J = 5.3 Hz, 2H); 13C NMR (100 MHz, (CD3)2CO) δ = 174.6,
167.4, 149.1, 148.1, 147.9 (2C), 143.9, 138.0, 136.1, 136.0, 134.10, 131.12, 130.0 (2C), 129.7 (2C),
129.5 (2C), 129.2, 128.9 (2C), 127.9, 110.6, 110.0, 109.6 (2C), 102.5, 69.3, 56.6 (2C), 51.3, 44.3,
42.2, 39.5, 37.8; IR νmax (KBr): 3510, 3321, 2900, 1766, 1535, 1296, 1226, 933, 798, 759 cm−1;
HRMS (ESITOF) m/z calcd. for C35H31ClN2O9S, [M + H]+ 691.1512, found 691.1509.

N-((5R,5aS,8aR,9R)-9-(4-Hydroxy-3,5-dimethoxyphenyl)-8-oxo-5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,
7]naphtho[2,3-d][1,3]dioxol-5-yl)-2-phenyl-N′-((4-(trifluoromethyl)phenyl)sulfonyl)acetimidamide
(5c), white solid, 60 mg; yield: 82%; m.p.: 169–171 ◦C, [α]D

25 = −77.9 (c 1.00, CH2Cl2); 1H
NMR (400 MHz, (CD3)2CO) δ = 8.10 (d, J = 8.2 Hz, 2H), 8.07 (s, 1H), 7.86 (d, J = 8.2 Hz,
2H), 7.40 (d, J = 7.1 Hz, 2H), 7.33–7.19 (m, 3H), 7.12 (s, 1H), 6.72 (s, 1H), 6.48 (s, 1H), 6.33 (s,
2H), 5.99–5.93 (m, 2H), 5.47 (dd, J = 7.6, 3.2 Hz, 1H), 4.57–4.44 (m, 2H), 4.24 (d, J = 14.8 Hz,
1H), 4.18–4.06 (m, 1H), 3.76 (td, J = 8.7, 3.9 Hz, 1H), 3.65 (s, 6H), 3.07 (q, J = 4.7, 3.5 Hz,
2H); 13C NMR (100 MHz, (CD3)2CO) δ = 174.6, 167.8, 149.1, 148.6, 148.1, 147.9 (2C), 136.0,
135.9, 134.1, 133.4 (q, J = 32.5 Hz, 1C), 131.1, 130.0 (2C), 129.5 (2C), 129.1, 128.0, 127.9 (2C),
126.76 (q, J = 3.8 Hz, 2C), 124.7 (d, J = 271.9 Hz, 1C), 110.6, 110.0, 109.6 (2C), 102.5, 69.2, 56.6
(2C), 51.4, 44.3, 42.2, 39.6, 37.8; IR νmax (KBr): 3541, 3305, 2939, 1766, 1539, 1400, 1327, 1141,
937, 721 cm−1; HRMS (ESITOF) m/z calcd. for C36H31F3N2O9S, [M + H]+ 725.1775, found
725.1784.

4-(-2-(((5R,5aS,8aR,9R)-9-(4-Hydroxy-3,5-dimethoxy phenyl)-8-oxo-5,5a,6,8,8a,9-hexahydrofuro
[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)amino)-2-(tosylimino)ethyl)benzoic acid (5d), white solid,
40 mg; yield: 55%; m.p.: 245–247 ◦C, [α]D

25 = −56.0 (c 1.00, CH2Cl2); 1H NMR (400 MHz,
(CD3)2CO) δ = 7.99 (d, J = 7.5 Hz, 1H), 7.93 (d, J = 7.9 Hz, 2H), 7.79 (d, J = 7.9 Hz, 2H), 7.52
(d, J = 7.9 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.76 (s, 1H), 6.48 (s, 1H), 6.33 (s, 2H), 5.97 (d, J =
4.7 Hz, 2H), 5.44 (dd, J = 7.6, 3.3 Hz, 1H), 4.63 (d, J = 15.0 Hz, 1H), 4.48 (d, J = 3.9 Hz, 1H),
4.26 (d, J = 15.0 Hz, 1H), 4.12–4.03 (m, 1H), 3.79–3.67 (m, 2H), 3.66 (s, 6H), 3.13–2.98 (m, 2H),
2.39 (s, 3H); 13C NMR (100 MHz, (CD3)2CO) δ = 174.7, 167.5, 166.2, 149.1, 148.1, 147.9 (2C),
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143.1, 142.2, 141.5, 136.1, 134.1, 131.2, 130.7 (2C), 130.3, 130.1 (2C), 130.0 (2C), 129.4, 127.2
(2C), 110.6, 110.0, 109.6 (2C), 102.5, 69.3, 56.6 (2C), 51.2, 44.4, 42.2, 39.4, 37.9, 21.4; IR νmax
(KBr): 3541, 3437, 2900, 1766, 1697, 1539, 1427, 1226, 929, 690 cm−1; HRMS (ESITOF) m/z
calcd. for C37H34N2O11S, [M + H]+ 715.1956, found 715.1955.

2-(4-(Dimethylamino)phenyl)-N-((5R,5aS,8aR,9R)-9-(4-hydroxy-3,5-dimethoxyphenyl)-8-oxo-5,5a,
6,8,8a,9-hexahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-N′-tosylacetimidamide (5e), white
solid, 48 mg; yield: 67%; m.p.: 244–146 ◦C, [α]D

25 = −74.2 (c 1.00, CH2Cl2); 1H NMR
(400 MHz, CDCl3) δ = 7.84 (d, J = 7.8 Hz, 2H), 7.36–7.23 (m, 2H), 7.00 (d, J = 8.1 Hz, 2H),
6.69–6.52 (m, 3H), 6.40 (s, 1H), 6.19 (s, 2H), 5.94 (d, J = 6.2 Hz, 2H), 5.57–5.37 (m, 2H), 5.24
(d, J = 6.0 Hz, 1H), 4.48–4.37 (m, 1H), 4.20 (s, 2H), 4.11 (t, J = 8.7 Hz, 1H), 3.73 (s, 6H), 3.61 (t,
J = 10.3 Hz, 1H), 2.93 (s, 6H), 2.78 (d, J = 13.3 Hz, 1H), 2.45 (m, 1H), 2.42 (s, 3H); 13C NMR
(100 MHz, CDCl3) δ = 174.0, 167.9, 150.3, 148.7, 147.7, 146.6 (2C), 143.0, 140.1, 134.3, 132.7,
130.6 (2C), 130.0, 129.6 (2C), 127.5, 126.6 (2C), 119.2, 113.2 (2C), 110.2, 108.8, 107.9 (2C), 101.7,
69.1, 56.6 (2C), 50.3, 43.5, 42.0, 40.4 (2C), 38.6, 36.8, 21.6; IR νmax (KBr): 3541, 3321, 2897,
1766, 1523, 1481, 1280, 1226, 937, 682 cm−1; HRMS (ESITOF) m/z calcd. for C38H39N3O9S,
[M + H]+ 714.2480, found 714.2471.

N-((5R,5aS,8aR,9R)-9-(4-hydroxy-3,5-dimethoxyphenyl)-8-oxo-5,5a,6,8,8a,9-hexahydrofuro[3′,4′:6,7]
naphtho[2,3-d][1,3]dioxol-5-yl)-2-(3-hydroxyphenyl)-N′-tosylacetimidamide (5f), white solid,
47 mg; yield: 68%; m.p.: 175–177 ◦C, [α]D

25 = −76.6 (c 1.00, CH2Cl2); 1H NMR (400 MHz,
(CD3)2CO) δ = 8.45 (s, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 7.5 Hz, 1H), 7.33 (d, J = 8.0 Hz,
2H), 7.15–7.05 (m, 2H), 6.91 (d, J = 2.4 Hz, 1H), 6.87–6.82 (m, 1H), 6.72 (dd, J = 8.1, 2.5 Hz,
1H), 6.67 (s, 1H), 6.45 (s, 1H), 6.32 (s, 2H), 5.94 (d, J = 1.0 Hz, 2H), 5.40 (dd, J = 7.6, 3.3 Hz,
1H), 4.46–4.38 (m, 2H), 4.12 (d, J = 14.9 Hz, 1H), 4.09–4.02 (m, 1H), 3.71 (dtd, J = 9.5, 5.5,
4.4, 1.7 Hz, 1H), 3.64 (d, J = 1.0 Hz, 6H), 3.03 (m, 2H), 2.38 (s, 3H); 13C NMR (100 MHz,
(CD3)2CO) δ = 174.7, 167.2, 158.5, 149.0, 148.0, 147.9 (2C), 143.0, 142.3, 137.5, 135.9, 134.0,
131.2, 130.4, 130.1 (2C), 129.3, 127.1 (2C), 121.0, 117.1, 114.9, 110.5, 109.9, 109.5 (2C), 102.4,
69.4, 56.6 (2C), 51.0, 44.3, 42.2, 39.2, 37.8, 21.4; IR νmax (KBr): 3616, 3433, 2943, 1774, 1519,
1388, 1280, 1230, 933, 690 cm−1; HRMS (ESITOF) m/z calcd. for C36H34N2O10S, [M + H]+

687.2007, found 687.2003.

2.3. Biological Assay

The A-549 cells and MRC-5 cells were obtained from the American Type Culture
Collection and cultured in an environment of 5% CO2 at 37 ◦C in RPMI-1640 medium
supplemented with 10% fetal bovine serum (FBS). Lung (A-549) human cancer cells were
seeded in 96-well plates at a density of 3000 cells/well in normoxia for 12 h. Then, measures
of 100 µL drug-containing medium, with a series of concentrations, were dispensed into the
wells to attain the final concentration as 100, 80, 20, 10, 5, and 2 µM. After 48 h incubated
under normoxia or hypoxia, 20 µL MTT solution (Beyotime Biotechnology, Nantong, China,
5 mg/mL MTT dissolved in PBS) was added. Then, following incubation for another 4 h,
the medium was discarded, followed by the addition of 200 µL DMSO. The absorbance was
measured at 570 nm with a microplate reader. Experiments were conducted in triplicate.
The IC50 values are the average of at least three independent experiments.

2.4. Molecular Docking

The crystal structure of topoisomerase-II (PDB ID:4G0U) was downloaded from the
PDB database. In the calculation process, the preliminary processing of the target (protein
structure modification, deletion of invalid residues and original ligand) was completed
by DS2019. CDOCKER software was used for docking, and the receptor was set as rigid,
while the compound was set as flexible. Glu461, Gly462, Asp463, Arg487, and Gly488 were
selected as docking sites for docking. Visualization and interaction force analysis were
performed using pymol2.3 and ligplot2.2.
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2.5. Molecular Dynamics

GROMACS 2019.4 ran on a high-performance Linux cluster to determine the behavior
of the PSAH with topoisomerase-II within 100 ns. We used the Bio2byte Web server
(https://www.bio2byte.be/ accessed on 12 July 2021) to generate topology files for the
PSAH. From the docking study, the complex with the most drug-forming activity and
the best docking status was selected as the input file of MD simulation. The force field
uses amber99sb-ildn.ff. The complex of the TIP3P water model was surrounded by the
dodecahedral-shaped water tank. In order to neutralize the net charge of the system, Na
and Cl counter ions were replaced by water molecules. The steepest descent algorithm with
a tolerance of 1000 kJ/mol/nm was used to minimize the energy of the system. The cutoff
value of van der Waals was 12 Å, and periodic boundary conditions were specified in all
directions. After convergence, the NVT ensemble MD simulation was within 100 ps, and
then the system passed through NPT within 100 ps under periodic boundary conditions.
Berendsen constant pressure and a thermostat were used to maintain the temperature and
pressure at 300 K and 1 bar for coupling times of τ T = 0.1 ps and τ p = 2 ps. The particle
grid Ewald (PME) method was used to calculate the long-range electrostatic interaction.
The LINCS algorithm was used to limit the key length. For PSAH, the MD simulation run
of 100 ns was repeated twice at a constant temperature and pressure, and the average value
of the results was reported.

3. Results and Discussion
3.1. Chemistry

The key reaction in the synthesis of this class of compounds was the copper-catalyzed
sulfonyl azide–alkyne cycloaddition/ring cleavage (CuAAC/ring-opening reaction) [44],
which has been applied to synthesize numerous oxygen-containing and nitrogen-containing
heterocyclic compounds [45]. As show in Scheme 2, podophyllotoxins 1a and 1b were easily
prepared by the substrate podophyllotoxin nucleophilic substitution and reduction with
NaN3. Initially, podophyllotoxin (1a or 1b) was dissolved in MeCN; then, corresponding
terminal alkynes (2a–2m, see Supplemetary Materials Scheme S2) and sulfonyl azides
(3a–3j, see Supplemetary Materials Scheme S3) were added with stirring. The reaction
mixture was stirred for about 12 h to afford podophyllotoxin-N-sulfonyl amidine hybrids
(4a–4v and 5a–5f) in good–excellent yields (Table 1). This reaction appears quite flexible
and offers an easy capacity to generate a large scale PSAH with mild condition, operability,
and highly atom economical. The chemical structures of all synthesized compounds were
determined by 1H NMR, 13C NMR, IR, and HRMS.
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Table 1. The in vitro anti-proliferative activities (IC50, µM) a of compounds 4a–4v and 5a–5f.

NO. R1 R2 R3 Yield b (%)
A-549

IC50(µM)

4a Me Ph 4-MeC6H4- 92 95.2
4b Me 4-MeC6H4- 4-MeC6H4- 93 >100
4c Me 4-Me2NC6H4- 4-MeC6H4- 96 73.2
4d Me 4-OMeC6H4- 4-MeC6H4- 95 >100
4e Me 3-OHC6H4- 4-MeC6H4- 79 21.5
4f Me 4-ClC6H4- 4-MeC6H4- 88 >100
4g Me 3-ClC6H4- 4-MeC6H4- 94 >100
4h Me 4-BrC6H4- 4-MeC6H4- 77 >100
4i Me 4-CF3C6H4- 4-MeC6H4- 97 26.4
4j Me 4-CO2HC6H4- 4-MeC6H4- 61 >100
4k Me n-Hexyl 4-MeC6H4- 81 >100
4l Me 2-Thienyl 4-MeC6H4- 61 69.6

4m Me 1-Indole 4-MeC6H4- 64 >100
4n Me Ph Ph 96 88.4
4o Me Ph 5-Hydrindenyl 97 >100
4p Me Ph 4-ClC6H4- 87 67.5
4q Me Ph 4-BrC6H4- 86 >100
4r Me Ph 4-CF3C6H4- 93 5.21
4s Me Ph Me 83 92.0
4t Me Ph Et 85 70.4
4u Me Ph Isobutyl 77 87.3
4v Me Ph 10-Camphor 67 2.44
5a H Ph Ph 87 >100
5b H Ph 4-ClC6H4- 78 52
5c H Ph 4-CF3C6H4- 82 1.65
5d H 4-CO2HC6H4- 4-MeC6H4- 55 >100
5e H 4-Me2NC6H4- 4-MeC6H4- 67 64.1
5f H 3-OHC6H4- 4-MeC6H4- 68 12.7

a MTT method. b Isolated yields.

3.2. Interpretation of Spectral Data

For compound 4a (Figure 3), the 1H NMR chemical shifts of the characteristic func-
tional groups are as follows: δ (C8-CH2) = 5.95 (d, J = 3.0 Hz, 2H); δ (C7′ ,C9′ -OCH3) = 3.71
(s, 6H); δ (C8′ -OCH3) = 3.77 (s, 3H); δ (C24-CH3 of Ts group) = 2.43 (s, 3H). The 13C NMR
chemical shifts of the characteristic functional groups are as follows: δ (C13: C=O) = 173.9;
δ (C14: C=N) = 166.5; δ (C3′+C5′ : Aryl (C)-O) = 152.8 (2C); δ (C8: O-CH2-O) = 101.9; δ (C12:
-CH2-O) = 69.0; δ (C8′ : -O-CH3) = 60.9; δ (C7′+C9′ : -O-CH3) = 56.4 (2C); δ (C24: CH3 of Ts
group) = 21.7 (C24). The detailed explanation of spectral data for 4a is as follows: 1H NMR
(400 MHz, CDCl3) δ = 7.82 (dd, J = 15.7, 7.9 Hz, 2H, C21, C21′ -H), 7.33 (dd, J = 11.9, 7.4 Hz,
5H, C22, C22′ , C18, C18′ , C19-H), 7.21 (d, J = 7.2 Hz, 2H, C17, C17′ -H), 6.52 (s, 1H, C6-H), 6.41
(s, 1H, C10-H), 6.17 (s, 2H, C2′ , C6′ -H), 5.95 (d, J = 3.0 Hz, 2H, C8-H), 5.27 (d, J = 6.9 Hz,
1H, C4-H), 5.19 (t, J = 5.7 Hz, 1H, C1-H), 4.42 (d, J = 5.1 Hz, 1H, C12-H), 4.41–4.27 (m, 2H,
C15-H), 4.10 (t, J = 8.3 Hz, 1H, C12-H), 3.77 (s, 3H, C8′ -H), 3.71 (s, 6H, C7′ ,C9′ -H), 3.61 (t,
J = 10.0 Hz, 1H, N-H), 2.86–2.68 (m, 1H, C2-H), 2.45 (m, 1H, C3-H), 2.43 (s, 3H, C24-H); 13C
NMR (100 MHz, CDCl3) δ = 173.9 (C13), 166.5 (C14), 152.8 (2C, C3′+C5′ ), 148.8 (C7), 147.9
(C9), 143.2 (C23), 140.0 (C20), 137.5 (C4′ ), 134.5 (C16), 133.0 (C1′ ), 132.6 (C11), 129.9 (C5), 129.8
(2C, C22+C22′ ), 129.7 (2C, C18+C18′ ), 128.6 (C21), 127.3 (C21′ ), 126.6 (2C, C17+C17′ ), 126.5
(C19), 110.3 (C10), 108.7 (C6), 108.4 (2C, C2′+C6′ ), 101.9 (C8), 69.0 (C12), 60.9 (C8′ ), 56.4 (2C,
C7′+C9′ ), 50.6 (C4), 43.7 (C2), 42.0 (C1), 39.5 (C3), 36.9 (C15), 21.7 (C24). The compound 4e,
especially, contains two isomers. The reason for the formation is that the hydrogen atom
of the hydroxyl group forms a hydrogen bond with the oxygen atom of the lactone ring
carbonyl group, which are close to each other in space, resulting in rotational isomerism.
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3.3. Biological Study

All the newly synthesized PSAH derivatives were evaluated for their in vitro in-
hibitory activity toward A-549 cells using a MTT assay. The results expressed as half-
maximal inhibitory concentration (IC50) values are presented in Table 1. The IC50 values
are the average of at least three independent experiments. Agreeably, as shown in Table 1,
most PSAH, whether they have an electron-donating or electron-withdrawing nature, have
shown moderate–good anticancer activity in this investigation. When containing the -Me
(4b), -OMe (4d), -Cl (4f, 4g), -Br (4h, 4q), -CO2H (4j, 5d), 1-Indole (4m), or 5-hydrindenyl
(4o) functional groups, the PSAH product exhibited slight significant anticancer activity
with high IC50 values exceeded 100 µM, while the -Me2N (4c, 5e), -OH (4e), 2-thienyl (4l),
or aliphatic group and the substituted R2 (4s–4u) group gave positive apoptotic activity
with IC50 values ranging from 12.7 to 92.0 µM. The compounds with the -CF3 (4r, 5c) or
10-camphor (4v) group have shown the most promising apoptotic activity among the other
substituents (for 4r, 5.21 µM, 4v, 2.44 µM, and 5c, 1.65 µM), which exhibited more potent
activity than standard drug etoposide (12 ± 0.12 µM against A-549 [46]). Relative to other
functional groups, the strong electron-sucking effect of the -CF3 group may have increased
the attraction between the protein and the PSAH [47]. On the whole, modifying R1 or R3 is
more effective than R2. Besides, we tested the healthy cell line (MRC-5 cells) of the most
active compounds—5c, 4v, and 4r—and found that all the IC50 values exceeded 80 µM,
which shows their low toxicity to MRC-5 cells.

3.4. Molecular Docking

In order to check the affinity of topoisomerase-II and PSAH 5c, docking results are
shown in Figure 1, where the docking score of both is −8.9 kcal/mol. From Figure 4A, we
are able to see the binding mode and conformation of 5c at the target. The green residue
(ASN-509) has hydrogen bond interaction with 5c. The detailed interaction force can be
seen from Figure 4B. Asn-509 has hydrogen bond interaction with ligand with bond lengths
of 3.23 and 2.87. Pro-439, ARG-487, PHE484, ASP463, and LYS-440 formed hydrophobic
interactions. The positive control compound Etoposide (−8.3 kcal/mol), which forms
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hydrogen bond interactions with residue His-759, and forms hydrophobic interactions with
Gln-461, Ser-464, and Ala-465. After comparison, it can be found that the binding effect of
the selected compound 5c is better than that of the positive compound.
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3.5. Molecular Dynamics

In order to test the stability of topoisomerase-II binding with PSAH 5c, a 100 ns
molecular dynamics simulation was carried out, and its output was analyzed as follows.
This simulation result is supplemented in the following material (Figure 4). In the 100 ns
simulation, the complex converged to an equilibrium state at 27 ns and was able to remain
stable until the end of the simulation. The RMSD value was 0.6 nm. The root mean square
fluctuation (RMSF) of each residual basis in Figure 5 was analyzed in detail to determine
residual fluctuation and flexibility during the whole simulation. The overall root mean
square density of the compound was very low, between 0.1 nm and 0.6 nm. Finally, from
RMSD and RMSF, the system is stable. N-sulfonyl amidine groups did not affect the
molecular docking and stability, but enhanced the antiproliferative activity.
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4. Conclusions

All the new podophyllotoxin-N-sulfonyl amidine hybrids (PSAH) were synthesized
and evaluated for their antiproliferative activity against human lung (A-549) cancer cell
lines. The experimental results indicated that most of the synthesized compounds showed
moderate–potent antiproliferative activity, and compound 5c exhibited excellent antiprolif-
erative activity against human lung (A-549) cancer cell lines of 1.65 µM. Molecular docking
and molecular dynamics analyses revealed that the promising antibacterial efficacy of
PSAH can be attributed to the substitution of chlorine on the benzene and the modifi-
cation of the coumarin core. The combination effect of topoisomerase-II and 5c is tight.
PSAH is closely associated with topoisomerase-II in a stable system. The results of the
present work showed that podophyllotoxin-N-sulfonyl amidine hybrids have potential to
be antineoplastic drugs and are worthy of further study.
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