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Abstract: Hepatitis E virus (HEV), a major cause of acute hepatitis worldwide, infects approximately
20 million individuals annually. HEV can infect a wide range of mammalian and avian species,
and cause frequent zoonotic spillover, increasingly raising public health concerns. To establish a
successful infection, HEV needs to usurp host machineries to accomplish its life cycle from initial
attachment to egress. However, relatively little is known about the HEV life cycle, especially the
functional role(s) of cellular organelles and their associated proteins at different stages of HEV
infection. Here, we summarize current knowledge regarding the relation of HEV with the different
cell organelles during HEV infection. Furthermore, we discuss the underlying mechanisms by which
HEV infection is precisely regulated in infected cells and the modification of host cell organelles and
their associated proteins upon HEV infection.
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1. Introduction

Hepatitis E Virus (HEV), a single-stranded, positive-sense RNA virus, is now recog-
nized as a significant cause of acute viral hepatitis in both developing and industrialized
regions, leading to 20 million infections, more than 3 million cases of hepatitis E, and
70,000 deaths annually [1,2]. It is usually transmitted via the fecal–oral route either by
consumption of contaminated food or water or by direct person-to-person contact [3–5].
The HEV within the Orthohepevirus A genus has been subdivided into at least 8 geno-
types. Genotypes 1 and 2 have been detected exclusively in humans, whereas genotypes
3 and 4 circulate among humans and other animal species including pig, deer, rabbit,
monkey, cow, goat, and wild boar [6–12]. Genotypes 5 and 6 infect wild boar without
reports showing zoonotic transmission to humans [13]. Genotypes 7 and 8 are known to
infect dromedary and Bactrian camels with potential zoonotic risk [14,15]. In recent years,
the reported cases of HEV infection have been steadily increasing globally, especially in
developed countries [16]. Despite this public health threat, no specific treatment modali-
ties are available currently [17,18]. Therefore, deepened understanding of the molecular
underpinnings of HEV replication cycle, as well as of the molecular interactions with host
cellular machineries, is critical to developing novel therapeutic interventions against HEV
infection.

HEV has long been known to be a non-enveloped virus since its discovery in the
1980s [19]. Recently, a membrane-associated, quasi-enveloped form of virus particles
(eHEV) was identified in the bloodstream of infected individuals and culture supernatants,
which mediates virus spread within the host [20], while non-enveloped virions are present
in feces of infected patients for stable transmission from person-to-person [21,22]. Notably,
unlike classical enveloped viruses such as influenza viruses, hepatitis C virus (HCV), and
zika virus, which have surface viral proteins embedded in the lipid membrane, eHEV has no
viral antigens on its surface and is resistant to neutralizing antibodies [23–25]. The presence
of two different virus particles in infected individuals demonstrates that HEV possesses
a complex dual life cycle to execute distinct functions for the establishment of successful
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infection. The 7.2 kb genome of HEV contains a 7-methylguanosine RNA cap at the 5′ end
and polyadenylation at the 3′ terminus, as well as three conserved open reading frames
(ORFs) termed ORF1, ORF2, and ORF3 [26] (Figure 1). ORF1 encodes a nonstructural
polyprotein, pORF1, which contains the methyltransferase (Met), RNA helicase (Hel) and
RNA-dependent RNA polymerase (RdRp), along with several non-enzymatic regions (the
‘Y’, ‘X’, and ‘hypervariable’ (HVR) regions) and a putative papain-like cysteine protease
(PCP) [27]. ORF2 encodes a glycosylated protein function as secreted antigen (pORF2S) and
a capsid structural protein (pORF2C) separately [28]. ORF3 encodes a small multifunctional
palmitoylated phosphoprotein required for HEV egress from infected cells [29–31]. In
addition to these three conserved ORFs, the genotype 1 HEV harbors an ORF4, which
encodes a protein via an internal ribosome entry site (IRES)-like element in response to
endoplasmic reticulum (ER) stress [32].
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Figure 1. HEV genome, replication, and translation. Hepatitis E virus (HEV) has an ~7.2kb, positive-
sense (+) single-stranded genomic RNA, which contains ORF1, ORF2 and ORF3 as described below,
plus ORF4, an additional ORF unique to HEV genotype 1 that translates pORF4 promoting virus in-
fection upon endoplasmic reticulum (ER) stress stimulation. Genomic RNA has a 7-methylguanosine
(m7G) Cap at the 5’ end and is polyadenylated at the 3’ end. After viral entry and uncoating, the
positive-sense full-length viral genome is translated by host ribosomes to produce a polyprotein
pORF1 that contains Met, Hel, RdRp, ‘Y’, ‘X’, ‘HVR’, and putative PCP domains. pORF1 transcribes a
negative-sense (−) intermediate RNA from the positive-sense strand. The negative-sense strand then
serves as a template for the transcription of numerous positive-sense RNA genomes for packaging
into new progeny virions, as well as an ~2.2 kb subgenomic RNA (sgRNA) containing ORF2 and
ORF3, while ORF3 entirely overlaps with ORF2 except for one leading base pair. The sgRNA is
also capped at the 5′ end and polyadenylated at the 3′ end, and translates into the capsid protein
(pORF2C), secreted antigen (pORF2S), and protein ORF3 (pORF3) via a leaky scanning mechanism.

The initial step of the HEV life cycle begins with the specific binding of the virions to
the yet unidentified cellular receptors [33]. Given the morphological differences between
non-enveloped virus particles and eHEV, it is believed that they utilize distinct pathways
to enter target cells [34]. Following internalization, the incoming viral genomes act as
templates to produce non-structural polyproteins pORF1 and negative-stranded RNA
intermediates for forming the replication and transcription complex [26]. Concordant with
the expression of pORF1 from the 7.2 kb full-length genome [27], the pORF2C and viroporin
pORF3 are translated from a bicistronic 2.2 kb subgenomic viral RNA to encapsulate the
newly produced genomic RNA for assembly [35,36]. In addition, pORF2S was recently
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identified to be translated from the same bicistronic subgenomic RNA through a leaky
scanning mechanism, while the functional role(s) of the pORF2S is still under investiga-
tion [28]. Finally, eHEV are egressed from infected cells in an exosomal pathway-dependent
manner [37]. Host cellular organelles are principally thought to determine the complete
viral life cycle [38]. Nevertheless, the detailed functions of the cellular organelles and their
associated proteins remain largely unknown due to the lack of an efficient cell culture
system for HEV infection [39]. In this review, we summarize the findings that shape our
current understanding of host determinants involved in HEV life cycle, including binding,
entry, trafficking, replication, assembly, and release.

2. Cellular Organelles and Proteins Participating in HEV Binding, Entry, and Uncoating
2.1. Plasma Membrane and Membrane-Associated Proteins That Mediate HEV Binding and Entry

Plasma membranes are complex architectures consisting of hundreds of lipids and
proteins to separate the cell interior from the outside environment [40]. Viruses must hijack
the molecules on the plasma membrane to cross membrane barriers; thus, specific inter-
actions between virions and cellular receptors are the first event resulting in the injection
of the viral genome into the cytoplasm for productive infection [41]. The molecules with
proved relevance for non-enveloped HEV binding include heparin sulfate proteoglycans
(HSPGs) [42,43], asialoglycoprotein receptor (ASGPR) [44], and integrin α3 (ITGA3) [45],
as shown in Figure 2. Nonetheless, none of them fulfill true bona fide criteria of the virus
receptor.

HSPGs, an abundant molecule on the cellular surface of most mammalian cells, served
as non-specific attachment factor to facilitate the subsequent interaction between virions
with specific receptors [46,47]. Two potential sugar binding sites were mapped in P1 and
P2 domains at the HEV capsid protein interface [33]. In addition, removal of cell surface
heparan sulfate significantly reduced HEV capsid binding, indicating HSPGs are required
for non-enveloped HEV entry [42]. eHEV differ structurally from non-enveloped virions.
As expected, HSPG was not required for eHEV infection, suggesting that no potential
HSPG binding site existed on the surface of eHEV [34].

Apoliprotein E (ApoE), a core component of plasma lipoproteins that mainly func-
tions in lipoprotein-mediated lipid transport in plasma was found to be upregulated in
HEV-infected swine liver by proteomic analysis [48]. Being essential for the transport of
cholesterol into and out of the liver, ApoE may be essential for eHEV entry. As reported
previously, ApoE participates in the binding of HCV to specific receptors through its inter-
action with HCV envelope glycoprotein E2 [49]. More importantly, a study showed that
single-nucleotide polymorphisms (SNPs) of ApoE potentially associate with protection
against HEV infection in a cohort study [50]. However, another study found that HEV
RNA replication and viral production were not affected by ApoE polymorphisms, at least
in an Huh-7.5 cell culture model [51].Therefore, the detailed mechanism underlying the
observation needs to be further investigated.

ASGPR and ITGA3 that predominately present on the cellular membrane were also
identified as dependent factors required for HEV entry and trafficking via different ap-
proaches [44,45]. siRNA-mediated depletion could significantly reduce HEV binding on
the cellular surface, indicating that both ASGPR and ITGA3 act primarily as attachment
factors to facilitate HEV entry [44,45]. In addition, HSP90 [52] and ATP5B [53] were shown
to directly bind with HEV capsid to mediate intracellular trafficking of incoming virions,
but not the binding of HEV virions on the cellular surface. Therefore, these host factors
seem to participate in HEV entry at different stages. However, the functional validation of
these dependent factors in the context of authentic virus infection is still lacking.
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Figure 2. The replicative life cycle of hepatitis E virus. The life cycle of quasi-enveloped HEV (eHEV) and non-enveloped
HEV initiates with the binding with cellular membrane proteins, such as ApoE or HSPGs, ASGPR, ITGA3 or ATB5B,
respectively to allow virus entry into cells. Both eHEV and HEV are believed to rely on clathrin-mediated endocytosis
for internalization. eHEV is trafficked through early- (Rab5+) and late- (Rab7+) endosomes and eventually to lysosomes
harboring NPC1 for the uncoating and release of the viral genome into the cytoplasm, while HEV is thought to inject the
viral genomes from early endosome to cytoplasm. Subsequently, translation of the pORF1 from incoming viral genomes
allows replication to proceed with transcription of the 7.2 kb genomic and the 2.2 kb subgenomic RNA through a negative-
strand RNA intermediate (-), and translation of the subgenomic RNA to produce the ORF2 and ORF3 encoded proteins
in ER (associated with proteins of OST and TMEM134) and ribosome that is promoted by eIF4A, eIF3A and RACK1.
Mitochondrial proteins, such as PHB, Bax, Bcl-2, CHOP, MAVS are involved in shaping the microenvironment during HEV
replication. HEV infection in cells also triggers the shuttle of host proteins between nucleus and cytoplasm. Secreted ORF2
protein (pORF2S) is translated from the same bicistronic subgenomic RNA through leaky scanning mechanism and modified
in Golgi; then, it is transported outside by exocytosis in dimer. The non-glycosylated ORF2 protein (pORF2C) forms naked
virions by self-assembling to capsid and packaging of the viral genome, while eHEV formation requires the engagement
of pORF3 and the coating of lipid membrane in multivesicular bodies. Release of eHEV involves exosomal-associating
proteins Rab27A, Hrs, DIS3, EXOSC8, EXOSC10, and PNPT1, and fusion with the plasma membrane. Secreted particles
remain associated with the lipid membrane in the culture supernatant of infected cells, while HEV remains in cells.

2.2. Endosomal Vesicles and Related Signaling Pathways Involved in HEV Trafficking

Endosomes are membrane-bound endocytic organelles inside cells that play key
roles in the sorting and delivery of cargos to various intracellular destinations [54]. Both
eHEV and non-enveloped HEV heavily rely on endosomal vesicles to deliver the viral
genome into infected cells [34]. Our previous study demonstrated that clathrin-mediated
endocytosis (CME), which is a common pathway exploited by many viruses [55,56], served
as the main entry route for both virions to enter the host cells [34]. Depletion of the core
components of CME resulted in reduced infectivity of both eHEV and non-enveloped HEV
in hepatocytes.
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In terms of eHEV internalization and trafficking, the small GTPases Rab5 and Rab7
were required [34], suggesting that eHEV moves across the entire endolysosomal network.
After endocytic internalization and endosomal sorting, the internalized eHEV was targeted
to the lysosome that had the proper environmental conditions to trigger its membrane
degradation, resulting in access of the exposed capsid to intracellular receptors for eventual
uncoating [34]. Niemann-Pick C1 (NPC1), a lysosomal cholesterol transporter, was verified
to be essential for efficient infection of eHEV, as depletion of NPC1 reduced eHEV but not
HEV infectivity in hepatocytes [34]. More recently, it was shown that phosphatidylserine
receptor-Hepatitis A Virus Cellular Receptor 1 (HAVCR1) and NPC1 participated in quasi-
enveloped hepatitis a virus (HAV) infection by an undefined mechanism that mediates
the delivery of genetic material into the cytoplasm [57]. Therefore, the HAVCR1-NPC1
pathway appears to represent a common mechanism for cell entry of both quasi-enveloped
HAV and eHEV.

Non-enveloped HEV has been established to rely on CME as the main entry route to
enter hepatocytes [34]. Subsequently, non-enveloped HEV stop at an undefined compart-
ment near plasma membrane for uncoating. Further research is required to identify the
virus-specific factors responsible for the entry and trafficking of both non-enveloped HEV
and eHEV. Given the rapid innovation in live-imaging techniques and labeling of virus
components, the detailed functions of membrane-associated proteins in HEV entry will be
uncovered shortly.

3. Cellular Organelles and Proteins Involved in HEV Translation and Replication
3.1. Endoplasmic Reticulum and ER-Resident Proteins Involved in HEV Translation and Replication

The ER is a membranous system that mediates the biosynthesis of membrane and
secreted proteins, as well as lipids such as fatty acids, sphingolipids, phospholipids, and
cholesterol [58,59]. The synthesis of approximately one-third of all cellular proteins is
governed in this organelle [58]. As obligate parasites that solely rely on host machineries to
thrive and produce progeny virions, almost all viruses usurp the endogenous functions of
numerous ER-resident channels, chaperones, and enzymes throughout the whole viral life
cycle [60–63]. Confocal imaging revealed that the overexpressed non-structural polyprotein
pORF1 predominately co-localized with ER marker BAP31 [64], indicating that ER is likely
to be a central organelle that governs HEV replication. As a positive-sense RNA virus,
after uncoating, pORF1 is immediately translated from the 7.2 kb RNA genome to produce
RdRp for viral RNA synthesis [26]. Thus, the ER localization of pORF1 indicated that ER
may act as a viral factory for the synthesis of the key viral components.

Multiple ER-associated proteins interacting with HEV encoded proteins were discov-
ered to modulate viral replication upon infection [31,32,64–69]. It seems that ER-resident
enzymes, such as the oligosaccharyl transferase (OST) complex, drive the attachment of
glycan moieties to the nascent pORF2S for glycosylation modification [70,71]. Treatment
with Brefedin A, a protein transport inhibitor, dramatically reduced glycosylated ORF2
protein secretion [72]. The folded and glycosylated ORF2 proteins then exit the ER by
packaging into coat protein complex II (COPII)-coated vesicles, and then transit through the
classical secretory pathway en route to efficient secretion. Intriguingly, the ER-associated
degradation pathway was also reported to regulate the retro-translocation of pORF2S from
the ER lumen to the cytosol without validation in the context of bona fide infection [70].
Transmembrane protein 134 (TMEM134), an ER-associated protein, was identified as a
partner of pORF2C via a split-ubiquitin yeast two-hybrid screening [68]. It is proposed
that TMEM134 negatively regulates pORF2C-mediated inhibition of the NF-κB signaling
pathway [68].

pORF1 and pORF3 contain multiple predicted palmitoylation sites. Removal of the
putative palmitoylation sites at residues C336-C337 of pORF1 protein was lethal to HEV
infection in HepG2/C3A [73]. The HEV variant with mutations at the palmitoylation sites
within pORF3 lost its ability to egress from infected cells [29]. Therefore, palmitoylation
modification is essential for HEV infection via maintaining the stability and functions
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of pORF1 and pORF3 [29,73]. As reported previously, the zinc finger Asp-His-His-Cys
(DHHC) domain-containing palmitoyltransferases (ZDHHCs) that display ER and/or
Golgi localization govern palmitoylation modification [74]. It remains to be determined
which ER-resident ZDHHCs is responsible for processing.

ER stress stimulated by thapsigargin or tunicamycin induces a cap-independent,
internal initiation-mediated translation of a novel viral protein known as pORF4 in HEV-
infected cells [32]. The pORF4 protein is specifically encoded by genotype-1 HEV and
directly interacts with eEF1α1 to stimulate RdRp activity, leading to enhanced replica-
tion [32]. These results indicate that the ER and ER-resident proteins play essential roles in
the HEV life cycle via modulation of virally encoded proteins.

3.2. Ribosomes and Associated Factors Necessary for Translation of HEV Proteins

Ribosomes are central apparatuses that catalyze protein synthesis [75]. The synthesis
of viral proteins heavily depends on the functions of the host ribosomes [76]. A set of
host translation factors such as eIF4A, eIF3A, and ribosomal protein receptor for acti-
vated C kinase 1(RACK1) were identified as key players supporting HEV replication [77].
Translation initiation protein eIF4A forms the eIF4F translation initiation complex together
with the large scaffolding protein eIF4G and the cap-binding protein eIF4E to drive the
cap-dependent translation initiation [78]. The natural compound silvestrol, a specific in-
hibitor of eIF4A, exhibited a potent antiviral effect against HEV replication in vitro and
in vivo via preventing enzymatic unwinding of eIF4A [79,80]. RACK1, a protein of the
40S ribosomal subunit, promoted translation of HCV and poliovirus [81,82]. Upon protein
kinase C-mediated stimulation, activated RACK1 initiated the following: PKCβII complex
phosphorylates eIF4G at S1093 in the tight 48S initiation complex, possibly facilitating dis-
sociation/recycling of eIF4F [83]. However, the precise role of RACK1 in HEV replication
remains unclear.

In addition to regulating viral protein translation, the insertion of a ribosome protein
sequence appears to play vital roles in mediating cross-species infection by certain HEV
strains. Insertion of a 171-nucleotide sequence encoding amino acids 21 to 76 of the human
ribosomal protein S17 within the hypervariable region (HVR) of HEV pORF1 contributed to
the adaptation of HEV strain Kernow C-1 P6 in cell lines from different animal species [84].
Furthermore, lysine residues within the human ribosomal protein S17 sequence were
responsible for enhanced virus replication [85]. Notably, an RNA sequence encoding
ribosomal protein S19 was also found in the HVR of the HEV GT3 strain LBPR-0379 [86].
These observations suggest that HEV viral quasi-species capable of enhanced levels of
virus replication can be produced by the insertion of RNA sequences encoding cellular
ribosomal proteins. The mechanisms underlying the enhanced levels of HEV replication
are still unknown.

3.3. Mitochondria and Related Signaling Participating in HEV Infection

Mitochondria is a double membrane intracellular organelle that plays multiple im-
portant roles in maintaining homeostasis [87]. Increasing evidence demonstrates that
mitochondria plays vital roles in antiviral immune responses [88], apoptosis [89], and
inflammation [90] induced by virus infection. HEV infection in Mongolian gerbils caused
mitochondria swelling and vacuolation via ultrastructural pathological analysis [91]. The
mitochondrial damage triggered the apoptosis signaling pathway, leading to the necro-
sis and cell death of renal epithelial cells in the acute phase of HEV infection [91]. In
addition, loss in mitochondrial cristae and swollen mitochondria were observed in HEV-
infected hepatocytes via transmission electron microscopy [92]. These results suggest that
mitochondrial lesions may be biomarkers of HEV infection.

Quantitative proteomics analysis found that prohibitin (PHB), a critical mitophagy
receptor mediating autophagic degradation of mitochondria, was upregulated in HEV-
infected livers in a swine model [48]. Pro-apoptotic protein BCL2-associated X protein (Bax)
and B-cell lymphoma 2 (Bcl-2), mitochondrion-mediated apoptosis regulating proteins,
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were also induced in the HEV infected gerbils, resulting in the activation of mitochondrial
apoptotic pathway and apoptosis [93]. Electron transport chain (ETC), a key component of
the mitochondria, positively regulates HEV replication [94]. Pharmacological inhibition
of complex III of ETC restricted the replication of HEV [94]. Thus, ETC could be a viable
anti-HEV target for therapeutic development. The pro-apoptotic gene C/EBP homologous
protein (CHOP) was reported to be activated by pORF2C [65]. CHOP mediates translocation
of Bax from cytosol to mitochondria [95]. However, direct evidence is still missing regarding
the function of CHOP in HEV replication.

Adaptor protein MAVS, which is crucial for initiating the activation of antiviral innate
immune response to RNA virus infection, negatively regulated HEV infection [96]. Un-
like other hepatotropic viruses, including HAV and HCV, which are capable of cleaving
MAVS to suppress the signaling activation [97,98], HEV does not target MAVS for degra-
dation [99], but instead disrupts JAK-STAT1 signaling to block interferon-induced genes’
(ISGs) expression [100,101]. Therefore, mitochondrial dynamics modified by HEV infection
determines the outcome of infection.

3.4. Interactions between HEV Components and the Nucleus during Virus Infection

HEV appears to complete its whole life cycle outside the nucleus [102]. Surprisingly,
HEV pORF2C was detected in the nucleus by immunohistochemistry; thus, HEV pORF2C

probably associates with nuclear components to regulate viral infection [103]. In addition,
DExH-box helicase 9 (DHX9), which localizes in both the nucleus and the cytoplasm,
interacts with HEV 3’UTR to function as a transcriptional regulator [104].

HEV infection seems to trigger the shuttle of the host proteins between nucleus and
cytoplasm [65,105–108]. HEV pORF2C reportedly interacted with Hsp72 and mediated
its nuclear accumulation [65]. The extracellular signal-regulated kinase (ERK), a member
of the MAP kinase family of enzymes, displayed enhanced activity and nuclear localiza-
tion mediated by pORF3 [105]. pORF3 also impaired nuclear translocation of hepatocyte
nuclear factor 4 (HNF4) by increasing its phosphorylation through the ERK and Akt ki-
nases, causing down-regulation of HNF4-responsive genes in pORF3-expressing cells [108].
Heterogeneous nuclear ribonucleoproteins (hnRNPs), namely hnRNPK, hnRNPA2B1, hn-
RNPH, PCBP1, and PCBP2, redistributed from nucleus to cytoplasm in HEV-infected
cells [106]. hnRNPK and hnRNPA2B1 interacted with the promoter regions of HEV RNA
and HEV polymerase protein to increase HEV RNA replication, while hnRNPH, PCBP1,
and PCBP2 only bound with HEV genomic promoter to inhibit viral replication [106].
Consistently, quantitative proteomics analysis showed that hnRNPK was upregulated
in HEV-infected cells, indicating that HEV requires plenty of hnRNPK for its efficient
replication. However, the outcome of protein shuttling between cytosol and nucleus in
HEV life cycle is still unclear. Novel proximity labeling techniques can be applied to dissect
the temporal and spatial localization of host proteins in response to HEV infection.

4. Cellular Organelles and Proteins Involved in HEV Assembly and Release
4.1. The Role of the Golgi Apparatus in HEV Assembly

The assembly process of HEV viral particles has garnered much attention, but it is
still largely unknown [33,109–114]. The pORF2C undergoes post-translational modification
in Golgi and self-assembles to capsid, and binds with HEV full-length genomic RNA for
encapsulation [115]. The arginine-rich domain in the N-terminal region of the capsid
protein and the 5’ end of the viral genomic RNA were demonstrated to be responsible for
the assembly [116,117]. However, host proteins involved in HEV assembly have yet not
been identified. pORF2S serves as a viral secreted antigen with unidentified biological
function; it is translated from the same bicistronic subgenomic RNA through a leaky
scanning mechanism and post-translated in Golgi, and is then transported outside by
exocytosis in dimer [28].

The Golgi apparatus plays a central role in protein transport by regulating cargo
sorting and trafficking [118]. Trans-Golgi network protein 2 (TGOLN2), an intracellular
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protein derived from the trans-Golgi network, was enriched on the lipid membrane of
eHEV particles [119]; thus, the Golgi apparatus probably participates in the assembly of
eHEV. Importantly, the formation of the eHEV recruits pORF3, which is post-translated
by phosphorylation and palmitoylation in Golgi. The modified pORF3 may mediate the
incorporation of lipid membrane in multivesicular bodies (MVBs) [31,35,36]. Liver-specific
α1-Microglobulin (α1m) was found to re-distribute in the Golgi compartment in HEV ORF3-
expressed cells. The HEV pORF3 interacted with α1m and its precursor α1m/bikunin
precursor (AMBP), mediating the transport [120]. However, the roles of these host proteins
in HEV assembly remain unclear. Future study is required to solve questions regarding
HEV assembly.

4.2. Multivesicular Bodies (MVB) and Exosomal Pathways in HEV Egress

The mechanism underlying HEV egresses from infected cells remains to be determined.
Previous studies demonstrated that MVB sorting and the exosomal pathway are key players
mediating HEV release from infected cells [30,121,122]. Tumor susceptibility gene 101
(Tsg101), a component in the endosomal sorting complex required for transport (ESCRT)
machinery, interacted with HEV pORF3 via the PSAP late domain [123]. In addition,
components in the ESCRT complex, such as apoptosis-linked gene 2-interacting protein
X (ALIX), VPS4A, and VPS4B, were involved in HEV egress from infected cells [121].
Depletion of either ALIX, VPS4A, or VPS4B decreased the budding efficiency of HEV [121].

eHEV resemble exosomes in size range 50–100 nm from infected cells [37]. GW4869,
an inhibitor of exosome biogenesis, blocked HEV egress from HEV-infected cells, indicating
that HEV hijacks and customizes the exosomal pathway to promote its budding. Depletion
of Rab27A or Hrs, the regulators of exosome secretion, led to reduced HEV budding from
infected cells [122]. Rat HEV egress was also suppressed in Rab27A- or Hrs-depleted
cells [121]. Notably, the expression levels of the key components of the exosomal pathway,
such as exosome endoribonuclease and 3’-5’ exoribonuclease (DIS3), exosome component
8 (EXOSC8), exosome component 10 (EXOSC10), and polyribonucleotide nucleotidyltrans-
ferase 1 (PNPT1), were elevated in response to HEV infection [104]. Although there is no
compelling evidence that supports such a notion, cell lysis may advance the release of
non-enveloped HEV as an additional mechanism. Therefore, the majority of HEV particles
egress from infected cells by hijacking the exosomal pathway.

5. Conclusions and Perspectives

In the last decade, several aspects regarding the life cycle have been propelled for-
wards by the development of a cell culture system and small animal models. A better
understanding of the roles of host organelles and their associated proteins in the HEV
life cycle is critical for understanding the pathogenesis and guiding novel strategies for
therapy. Therefore, future studies that aim to delineate the cellular receptors, the interac-
tion network between HEV encoded protein, and host proteins are warranted. Although
ribavirin therapy is favorable clinically, more active compounds are still urgently needed.
Drugs that can directly disrupt the functions of host machinery required for HEV infection
should be considered.
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