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THE BIGGER PICTURE Cancer drug resistance is the major challenge of modern oncology. Identifying
resistance and its biomarkers will empower the next generation of precision medicines. High-throughput
pharmacology screens in cancer cell lines have successfully identified drug-sensitivity biomarkers, but
drug-resistance biomarkers are underexplored. Intrinsic drug-resistance events are often rare and experi-
mentally indistinguishable from cytotoxicity or artifacts without prior knowledge. To address this, we inves-
tigate cell-line populations sensitized to a drug treatment (i.e., carrying established sensitivity biomarkers)
and characterize those cell lines that do not respond as expected. We highlight unique genetic features
harbored by these cell lines and confirm their linkage to drug resistance using CRISPR gene essentiality
data. Our analysis and results pave the way for enhanced precision medicine, guide further CRISPR
screens, and identify potential drug combinations to tackle resistance.

Mainstream: Data science output is well understood
and (nearly) universally adopted
SUMMARY
High-throughput drug screens in cancer cell lines test compounds at low concentrations, thereby enabling
the identification of drug-sensitivity biomarkers, while resistance biomarkers remain underexplored. Dissect-
ing meaningful drug responses at high concentrations is challenging due to cytotoxicity, i.e., off-target ef-
fects, thus limiting resistance biomarker discovery to frequently mutated cancer genes. To address this,
we interrogate subpopulations carrying sensitivity biomarkers and consecutively investigate unexpectedly
resistant (UNRES) cell lines for unique genetic alterations that may drive resistance. By analyzing the
GDSC and CTRP datasets, we find 53 and 35 UNRES cases, respectively. For 24 and 28 of them, we highlight
putative resistance biomarkers. We find clinically relevant cases such as EGFRT790M mutation in NCI-H1975
or PTEN loss in NCI-H1650 cells, in lung adenocarcinoma treated with EGFR inhibitors. Interrogating the un-
derpinnings of drug resistance with publicly available CRISPR phenotypic assays assists in prioritizing resis-
tance drivers, offering hypotheses for drug combinations.
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INTRODUCTION

Precision medicine has raised high hopes to advance the treat-

ment of cancer.1 Treatment with a therapy targeted against an

oncogene, i.e., a gene that drives carcinogenesis, places a

strong evolutionary pressure on oncogene addicted tumors.2

Consequently, subclonal populations in initially responsive

tumors can acquire alterations that confer resistance to a

given targeted therapy.3 Therefore, it is of paramount impor-

tance to gain deeper insights into these resistance mecha-

nisms, identify relevant biomarkers, and adjust treatment

courses accordingly.4

Biomarker discovery is empowered by the high-throughput

scalability of cancer cell lines. Following the pioneering work of

NCI-60,5 which screened 59 cell lines against thousands of com-

pounds, current screening efforts largely expand the cell-line

panels to >1,000 cell lines from 30 cancer types for capturing

the genetic landscape of cancer. The largest pan-cancer high-

throughput screens available are the Genomics of Drug Sensi-

tivity in Cancer (GDSC)6,7 and the Cancer Therapeutics

Response Portal (CTRP)8–11 projects (Figure S1A).12 These

high-throughput screens have been successful in determining

drug-sensitivity biomarkers observed in the clinic. For example,

MET amplifications are associated with sensitivity to savolitinib

(an MET inhibitor) in high-throughput screens (Figure S1B),

which is currently also under clinical investigation.13

Pharmacogenomic screens and models based on systematic

statistical inference, pattern matching strategies, and other

data-mining methods are capable of identifying drug-resistance

biomarkers of frequently mutated cancer genes.6,7 For instance,

TP53 mutants occur in approximately 50% of all samples,

and TP53 mutants in colorectal cancer are associated with nut-

lin-3a (MDM2 inhibitor) resistance (Figure S1C, S2F, and S2G).14

However, many actionable driver gene mutations are infrequent

and so missed by the state-of-the-art statistical models. New ap-

proaches are required to capture these important events.

An example of secondary resistance to gefitinib (an epidermal

growth factor receptor [EGFR] inhibitor) that is frequently

observed in lung adenocarcinoma patients, but only infrequently

found in cancer cell lines, is the EGFRT790M mutation.15 Lung

adenocarcinoma cell lines with activating EGFR mutation such

as EGFRL858R or exon 19 deletion (Figure S2I), strongly respond

to gefitinib.16 Unexpectedly, one cell line in GDSC remains

entirely resistant (NCI-H1975), which carries the additional

EGFRT790M mutation (Figure 1D). Notably, EGFRT790M alters

the drug-binding pocket of EGFR, thus preventing the binding

of gefitinib and inhibition of EGFR17–19 (Figure S2J). The identifi-

cation of this resistance marker led to the approval of gefitinib as

first-in-line treatment of patients with non-T790M EGFR mutant

metastatic lung cancer, as well as a rapid development of the

specific T790M-targeting drug osimertinib.20–22 This highlights

the importance of systematically identifying secondary resis-

tance in preclinical screens to shorten the gap between drug-

resistance discovery and patient stratification.

In high-throughput screens, cell lines are commonly treated

for a duration of 3–5 days,6,7 reducing the likelihood of observing

any resistance mechanism due to acquired alterations. Although

these short assays fail to recapitulate acquired resistance, they

allow the survey of intrinsic resistance biomarkers, which may
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share a common molecular basis as the acquired resistance

events observed in patients.

The identification of infrequent resistance biomarkers in large

pharmacology screens is challenging. Screens such as GDSC

were optimized for sensitivity biomarker discovery, resulting in

drugs being screened at low concentrations to strictly avoid

cytotoxicity, i.e., off-target effects. Therefore, sensitive cell lines

are those which respond at low concentrations while resistant

cell lines are intermingled with the large bulk of non-responding

cell lines (Figures S1B–S1D). We define resistant cell lines as

those with an alteration that directly interferes with the drug

mode of action, preventing a response even in the presence of

a sensitizing event and target activity. In contrast, non-respond-

ing cell lines lack a sensitizing event and simply do not respond

at given concentrations. Resistant and non-responding cell lines

are experimentally indistinguishable.

Drug dose-response curves are typically summarized by the

concentration that reduces cell viability by half (IC50). It is often

the case that the range of tested dose concentrations does not

include the IC50 of non-responder or resistant cell lines. These

values are therefore obtained by curve fitting and extrapolation

(Figure S2D).23 Screening drugs at higher drug concentrations

(e.g., the CTRP approach), may experimentally determine the

extrapolated IC50 values; however, these still remain challenging

to interpret due to cytotoxicity (Figure S2E). Therefore, current

methods favor detection of resistance biomarkers with high-fre-

quency altered cancer genes, as these cases putatively have

enough statistical power (Figures S1C and S2A–S2C).

To identify infrequent resistance biomarkers in high-

throughput drug screens, we present an analysis framework

based on the detection of UNexpectedly RESistant (UNRES)

cell lines, i.e., cell lines that despite presenting a drug-sensitivity

biomarker do not respond to a specific treatment. We integrated

pharmacogenomics and CRISPR data from GDSC, CTRP, and

the Cancer Dependency Map (DepMap),24–26 with the available

molecular characterization of said UNRES cell lines, to highlight

a series of putative resistance biomarkers.

RESULTS

We employed the biomarker detection framework based on

ANOVA models27 and the definition of cancer functional events

(CFEs) from the GDSC project.7 We considered only CFEs

involving established cancer driver genes, a minimum of four

mutated cell lines, and controlled for observations outside of

the concentration range (Experimental Procedures). In total, we

accounted for 814 unique drugs and 816 cell lines across

GDSC and CTRP (Figure S2H), encompassing a total of 20,238

tested CFE/drug associations for GDSC and 22,173 for CTRP.

This resulted in 57 statistically significant (p value < 0.001) can-

cer-type-specific sensitivity associations with a large and nega-

tive signed effect size (Cohen’s d less than �1) for GDSC (Fig-

ure S3A and Table S1) and 37 for CTRP (Figure S3B and Table

S2), which are consecutively explored for UNRES cell lines.

Detection of UNRES Cell Lines
In a first attempt to detect UNRES cell lines, we employed an

outlier detection approach using the Neyman-Pearsonmethod28

(Supplemental Experimental Procedures; Tables S3 and S4).



Figure 1. Identification of UNRES Cell Lines

(A) Overview of our framework for the identification of resistance biomarkers.

(B and C) Result of standard deviation (SD) change analysis for GDSC and CTRP data, respectively. Bootstrap estimates were used to assess significance and

corrected for multiple testing to obtain adjusted p values. The magnitude of UNRES cell lines is reported as a normalized measure of decrease in the SD when

comparing it with an expected value obtained from the bootstrap distribution. Dashed lines join UNRES cases where different numbers of cell lines were identified

as resistant from the same sensitivity association. Details about the specific UNRES cell lines can be found in Tables S5 and S6. Associations with the largest SD

decrease (>0.5) are labeled.

(D–G) Various examples of identified resistant cell lines (colored black and labeled) and their drug responses in GDSC. q values correspond to adjusted p values

as shown in (B). (D) 8505C contains a mutation in NF2. (E) TOV-21G contains a PTEN mutation among others, whereas OAW-42 shows no marker that could

potentially explain resistance. (F) SW1783 contains a PTEN mutation.

(G) UACC-812 contains a mutation in CHEK2, amplifications in 12q15 (MDM2, NUP107), 20p12.1 (CRNKL1, FOXA2), 1p12 (NOTCH2), and lacks any mutation in

TP53 and any amplification in 17q22 (CLTC, PPM1D), as opposed to the rest of sensitive cell lines.
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However, this approach failed to detect clinically established

resistance biomarkers, particularly the gold standard that moti-

vates developing this analysis framework, i.e., gefitinib resis-

tance in EGFRT790M mutant in lung adenocarcinoma.
To overcome the limitations of the Neyman-Pearson method,

we approached the detection of UNRES cell lines by

measuring the standard deviation (SD) of the distribution of

drug-response metrics in cell lines with a particular sensitivity
Patterns 1, 100065, August 14, 2020 3
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biomarker, and observing how much this SD decreases when

we ignore the most resistant cell line(s). Applying this UNRES

detection pipeline, the GDSC datasets yielded 53 UNRES

cases with 1–5 top resistant lines for 23 unique sensitivity as-

sociations, and 35 in the CTRP dataset for 22 unique sensitivity

associations (adjusted p value < 15%). These correspond to

40.4% and 59.5% of all the sensitivity associations that were

analyzed for UNRES presence, respectively. Figures 1B and

1C shows the statistical significance of detected UNRES cell

lines (obtained through a bootstrap estimate), along with a

normalized metric for the strength of the SD change (see

Experimental Procedures) for each case. The names of all

the UNRES cell lines identified are summarized in Tables S5

and S6. Figures 1D–1G highlight four examples observed in

GDSC with a strong SD decrease.

Estimation of Mode of Failure
To assess the overall expected number of false positives, we ran

100 repetitions of the full analysis on GDSC data and CTRP

where IC50 values had been randomly permuted between all

cell lines within a tissue (Experimental Procedures and Fig-

ure S4). For a range of 3–26 sensitivity associations found in

these datasets (Figures S4A and S4B), the average number of

significant UNRES cases was 0.96 for GDSC and 0.83 for

CTRP, with a range between 0 and 5 in both cases (Figures

S4C and S4D). This corresponds to an average of 6.3% and

7.2% of all sensitivity associations detected in the permuted da-

tasets, respectively, as opposed to the observed 40.4% and

59.5%. According to these percentages, we would respectively

expect 15.6% and 12.1% of UNRES cases detected in the real

dataset to be false positives, which is consistent with our 15%

estimate for the UNRES detection level.

The hierarchical nature of our statistical tests (where the first

level of testing corresponds to the sensitivity association discov-

ery and the second level to the UNRES detection) adds a layer of

interplay between the effects of false positives in both levels,

which are not independent. We applied a hierarchical false dis-

covery rate (HFDR) controlling procedure (see Experimental Pro-

cedures) that estimates an upper bound of the false discovery

rate (FDR) for the entire analysis at the significance levels already

stated. This resulted in values of 22.57% and 22.40% for the

GDSC and CTRP datasets, respectively.

Putative Resistance Biomarker Identification
The number of UNRES cell lines is small (Figures S4G and S4H);

therefore, we lack statistical power to call resistance biomarkers.

However, we can still explore the genomic characterization of

cell lines in the GDSC panel based on prior knowledge about

cancer biology and mode of action of the drugs. We assembled

a list of CFEs unique to (or enriched in) UNRES cell lines, which

may become resistance biomarkers (Tables S5 and S6). In sum-

mary, we found putative resistance biomarkers for 24 out of the

53 UNRES cases in GDSC and 28 out of 35 in CTRP, ranging be-

tween 1 and 9 unique genetic alterations, which may drive

resistance.

We recovered the gold-standard EGFRT790M mutation for ge-

fitinib resistance in EGFRmutant lung adenocarcinoma cell lines

(Figures 2A and S3D). In addition, we confirmed PTENmutations

as putative resistance markers in the PIK3CAmutant ovarian se-
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rous cystadenocarcinoma cell line TOV-21G, which should have

been sensitive to the AKT inhibitor GSK690693 according to its

sensitivity biomarker (Figure 1E).29

Among the many possible novel resistance biomarkers, we

decided to highlight those with high SD decrease magnitudes,

as they contain the UNRES cell lines that behave the most differ-

ently to the sensitive cell lines. We identified NF2 mutations

associated with resistance to the BRAF inhibitor dabrafenib in

BRAF mutant thyroid carcinoma cell lines (Figure 1D). This

particular cell line (8505C) had been previously identified as

resistant to dabrafenib but without a clear associated resistance

biomarker.31 Other examples include PTENmutation in SW1783

cells associated with resistance to the NAMPT (nicotinamide

phosphoribosyltransferase) inhibitor daporinad in EGFR ampli-

fied low-grade glioma cell lines (Figure 1F). Similarly, we

observed that the 17q12 (ERBB2) amplified UACC-812 breast

cell line is resistant to the ERBB2 inhibitor lapatinib, with some

candidate resistance markers being a nonsense mutation in

CHEK2 and amplifications in 2q15 (MDM2, NUP107), 20p12.1

(CRNKL1, FOXA2), and 1p12 (NOTCH2) (Figure 1G).

We also found a case of clear non-responder (as opposed to

resistant) cell lines. In colorectal adenocarcinoma (COREAD),

two cell lines (KM12 and LS-513) do not respond to the BRAF in-

hibitor PLX-4720, despite being BRAF mutants (Table S5). The

sensitivity biomarker in this case is the specific BRAFV600E muta-

tion, and both of these cell lines contain different BRAF muta-

tions, explaining the lack of response.

Focusing on EGFR inhibitor resistance in lung adenocarci-

noma cell lines, Figures 2A–2E and S3C–S3F show the

EGFRT790M mutant cell line NCI-H1975 as resistant to several

EGFR inhibitors. Similarly, NCI-H1650 cell line shows a pattern

of resistance similar to that of EGFR inhibitors, even though it

lacks the T790M mutation. Most importantly, NCI-H1650 is

uniquely resistant to the newest-generation EGFR inhibitor osi-

mertinib, which also targets EGFRT790M mutants.22 This is also

the case for the EGFRT790M-targeting drugs WZ8040 and caner-

tinib, both screened in the CTRP dataset (Figures S3G and S3H).

NCI-H1650 lacks any immediately evident resistance marker,

even though our analysis points at 13q34 deletion as a candidate

in the case of osimertinib (Table S5) andWZ8040 (Table S6). This

deletion is also presented in the EGFR inhibitor-sensitive cell line

H3255, which incidentally was not screened with osimertinib,

WZ8040, or canertinib. However, NCI-H1650 had previously

been described as resistant to EGFR inhibitors due to a homozy-

gous deletion in the 30 region ofPTEN. This information ismissing

from the copy-number alteration data fromGDSC, which reports

recurrently aberrant copy-number segments identified using

ADMIRE.32 When inspecting at the gene-level copy number

identified based on the PICNIC algorithm,33 PTEN disruption

(and therefore functional loss) is shown to happen. This informa-

tion is lost when integrating the gene-level copy-number data

into recurrently aberrant copy-number segments using ADMIRE

(see methods in Iorio et al.7), and hence was missing from the

annotation we used.

Integration with Upcoming CRISPR Datasets
CRISPR drug-resistance screens can validate our putative resis-

tance biomarkers. Ideally, we would study whole-genome

CRISPR inactivation screens performed on all UNRES cell lines



Figure 2. Integration of Identified Hits with Public CRISPR Datasets

(A–D) Examples of various EGFR inhibitor responses in GDSC, with two resistant cell lines highlighted: NCI-H1975 (in red), which contains the known EGFRT790M

mutation and NCI-H1650 (in blue), which contains an alternative resistance marker, PTEN. q values correspond to adjusted p values as shown in Figure 1B. See

also Figures S3C–S3F.

(E) Response to an EGFRT790M-targeting drug, highlighting the difference between the previously described two resistant cell lines. q value corresponds to the

adjusted p value as shown in Figure 1B. See also Figures S3G and S3H.

(F) Results from a CRISPR enrichment screen upon gefitinib treatment performed by Liao et al.30 in EGFRi-sensitive PC-9 cell lines. Highlighted in red are genes

uniquely mutated in NCI-H1650 when compared with the rest of EGFRi-sensitive cell lines.

(G and H) Comparison of gene essentiality scores between EGFRi-resistant NCI-H1650 and two other cell lines (EGFRT790M containing NCI-H1975 and classical

EGFRmutated PC-14). Data were obtained from the Cancer DependencyMap project, and consist of the results of a CRISPR depletion screen in absence of any

drug. Negative scores indicate that a certain gene is essential for survival.

(I) Joint representation of the differences in essentiality between the two comparisons shown in (G) and (H). We highlight genes for which the behavior in NCI-

H1650 is distinct in comparison with both of the other cell lines.

See also Figure S6.
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in the presence and absence of the pertinent drug. Such data-

sets are not yet widespread, but we expect that a robust resis-

tance biomarker could be independently observed in other cell

lines from the same cancer type. In the case of loss-of-function

mutations, CRISPR depletion screens are an excellent system to
validate this. A dataset from Liao et al.30 reports gene-enrich-

ment scores in �500 cancer-related genes for gefitinib-treated

EGFR mutant PC-9 cells in comparison with dimethyl sulfoxide

(DMSO). Genes with a high enrichment score indicate that their

knockout provides selective advantage to the PC-9 cells in the
Patterns 1, 100065, August 14, 2020 5
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presence of gefitinib, thus their loss of function might be associ-

ated with drug resistance. Here we highlight mutations uniquely

found in NCI-H1650 (Figure 2F), which is an EGFR inhibitor-resis-

tant cell line. PTEN loss is one of the strongest hits, as previously

described,34 but another strong hit is KIAA0907. This gene, also

known asKHDC4, is involved in pre-mRNA splicing and interacts

with the Prp19 complex.35 NCI-H1650 contains an N331H

missense mutation in an evolutionarily conserved region. There

are no further experiments studying the role of this gene in gefi-

tinib resistance, despite being a strong hit in the Liao et al.

dataset.30

DepMap is another source of CRISPR essentiality experiment

data. Differently from the Liao et al. dataset,30 the observed

phenotype in the DepMap screens is the reduction of viability

upon CRISPR/Cas9 targeting of every gene (the gene fitness ef-

fect), at a genome-wide (GW) level and across hundreds of can-

cer cell lines, albeit in the absence of drug treatments. By con-

trasting the GW profiles of gene fitness effects across cell lines

sensitive to a given drug and corresponding UNRES cell lines,

we can obtain a set of differentially essential genes (Experimental

Procedures), whichmight shed light on themechanisms involved

in drug resistance as well as potentially targetable vulnerabilities.

Data for the EGFRmutants NCI-H1650 (UNRES cell line), NCI-

H1975 (EGFRT790M and EGFRL858R mutant), and PC-14 (EGFR

exon 20 deleted) were available in the DepMap dataset from

the Sanger Institute (CERES). Figures 2G and 2H show direct

comparisons in essentiality between the UNRES cell line (NCI-

H1650) and the other two EGFR mutant cell lines. Figures 2I

and S6B integrate the differential essentiality (Dessg) values

across both comparisons, highlighting common differences.

In the absence of treatment, the UNRES cell line (NCI-H1650)

does not depend on EGFR signaling for survival, as EGFR,

GRB2, and CDC37 have high Dessg values >4, indicating that

these genes are significantly less essential in this resistant cell

line compared with NCI-H1975 and PC-14. This explains the

lack of response of NCI-H1650 to EGFR inhibitors, as the cell

line is not ‘‘addicted’’ to EGFR signaling. On the other hand,

genes with a low (very negative) Dessg value less than�4 are un-

usually essential in NCI-H1650, which include GPX4 and the

interferon signaling components ADAR, USP18, and ISG15.

These genes present vulnerabilities specific to PTEN-deficient

NCI-H1650 cells. We hypothesize that these vulnerabilities could

be exploited in situations where resistance to EGFR inhibitors

arises due to the dominance of an alternative signaling pathway

such as the PI3K/AKT/mTOR pathway.

As we are only interested in genetic vulnerabilities unique to

cancer cells, we also performed differential essentiality analysis

comparing NCI-H1650 with EGFRwild-type cell lines to filter out

vulnerabilities that would also kill healthy tissue. Figure S6A

shows a breakdown of Figure 2I separating wt-like genes (genes

with essentiality similar to that of the wild-type population) and

non-wt-like genes. Most of the identified vulnerabilities are also

not present in wild-type cell lines, suggesting that they are

unique in resistant cells.

Looking at other UNRES examples, we compared DepMap

essentiality scores between GSK690693 resistant and sensitive

PIK3CA mutant ovarian serous cystadenocarcinoma cell lines

(Figure 1E). We performed a separate differential essentiality

analysis for each one of the two resistant cell lines, TOV-21G
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(Figure S7) and OAW-42 (Figure S8), and we have CRISPR

data for four sensitive cell lines in this case (OC-314, IGROV-1,

OVISE, and OVMIU). The analysis highlights a number of specific

genetic vulnerabilities in the resistant cell lines such as MDM4,

MYH10, and PPP2R1A in TOV-21G. PPP2R1A is a gene encod-

ing for the regulatory subunit of protein phosphatase 2 (PP2A),

which is one of the main Ser/Thr phosphatases involved in cell

growth and division.36 PPP2R1A mutations are common across

ovarian and endometrial carcinomas,37 although this gene has

been found to act as a tumor suppressor or a tumor promoter de-

pending on the cellular context.38 TOV-21G shows several so-

matic mutations in genes involved in core signaling pathways

such asPTEN,KRAS,NF1,PIK3R1, and others (Table S5); there-

fore, it remains challenging to pinpoint the driver mutation in

TOV-21G.

In OAW-42, the other resistant cell line, we can find NEDD9,

MBTPS1, SCD, and SCAP as unusually essential, among others.

MBTPS1,SCD, andSCAPare all involved in regulating cholesterol

metabolism,39 indicating that OAW-42might be particularly sensi-

tive to lipotoxicity. Lipogenesis is known to be regulated by the

PI3K/AKT/mTOR pathway, and in particular mTORC1 is involved

in transcriptional and post-transcriptional regulation of lipogenic

enzymes.40 We hypothesize that the driver of the resistance to

AKT inhibition in thiscell line isclosely related tomTORC1signaling

in lipid metabolism, which is also supported by the high Dessg
values for TSC1 and TSC2 (3.98 and 4.76, respectively). Results

from the Dessg calculations are fully reported in Table S7.

DISCUSSION

Our analysis pipeline was able to successfully identify infrequent

drug-resistance cell lines and putative biomarkers from large

pharmacology screens and validate them with CRISPR screens.

Established gold standards with strong evidence in clinics, such

as EGFR inhibitor resistance mediated by EGFRT790M, were

robustly identified by our analysis across both GDSC and

CTRP datasets. Most importantly, our framework was capable

of systematically identifying infrequent resistance biomarkers

from large pharmacology screens, which previously exclusively

relied on prior biological knowledge. Our unbiased approach

can detect known biomarkers, along with new putative bio-

markers, leading the way for hypothesis generation, which com-

plements pooled CRISPR drug-resistance screens. The analysis

can be applied to any large pharmacology screen, helping gain

insights into resistance mechanisms from new datasets that

will be generated in the coming years.

There are two distinct aspects of the analysis that affect its po-

wer and introduce some limitations. The first one corresponds to

statistical considerations of the UNRES detection. With our

HFDR control method, we estimated around 22% of the de-

tected cases to be false positives. A possible pointer for false-

positive cases is a small value for normalized SD decrease.

These cases typically corresponded to associations where the

difference betweenUNRES cell lines and sensitive ones is similar

to the typical difference between any cell line IC50s in that tissue,

suggesting that any mechanistic difference in drug response is

unlikely. Another limitation we observed is that UNRES cell lines

with a very low adjusted pvalue ‘‘pull’’ other sensitive cell lines—

e.g., the real UNRES case where both NCI-H1975 and
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NCI-H1650 are resistant to gefitinib was highly significant,

but another UNRES case with these two cell lines along with

PC-14 (a classical EGFRmutant cell line that is known to be sen-

sitive to gefitinib) was also falsely detected as significant

(Table S5).

The second aspect of the analysis that we need to consider

is the fact that UNRES groups of cell lines are small, and the

identification of putative resistance biomarkers relies heavily

on the annotation of each cell line. Inaccurate annotation will

inevitably result in inaccurate biomarker discovery. An example

of this is the failure in detecting PTEN truncation as one of the

resistance markers to EGFR inhibitors in NCI-H1650 cell lines.

Even with a mostly accurate annotation, the statistical power

to compare biomarkers in one resistant cell line versus a hand-

ful of sensitive cell lines is very limited. Each cell line has been

annotated with hundreds of mutations and copy-number alter-

ations. Thus, when we took a more direct approach by looking

for exclusive presence/absence of biomarkers, it yielded many

putative results. Many of these are likely to be passengers,

requiring further filtering to try to obtain a stronger signal. For

this, we used the GDSC cancer gene list, which leverages a

large amount of cancer biology knowledge.7 This causes an

inevitable trade-off between a cleaner signal and a lower sensi-

tivity to detect novel resistance biomarkers previously unre-

lated to cancer.

In our analysis we focused on genetic biomarkers for drug

resistance, however, it is possible that some UNRES cell lines

might not have any additional resistance biomarker. For

example, some cell lines show no response because they lack

the sensitivity marker in the first place (such as the non-V600E

BRAF mutant COREAD cell lines, see Results). In other cases,

however, resistance might be caused by gene-expression plas-

ticity, epigenetic modifications, or other factors that are outside

the scope of this analysis.

The integration of these results with other datasets (i.e.,

CRISPR essentiality screens) allows for a more unbiased

approach, looking at all unique putative markers (not only can-

cer-related ones) and hinting at effects that may not be exclu-

sively genetic. This is the case for KIAA0907, which was not de-

tected as a resistance marker on first instance as it was filtered

out with the cancer gene list, but later came up as one of the

top hits of the Liao et al.30 CRISPR screen for gefitinib resistance.

In the Liao et al. study the gene KIAA0907 remained less

explored, since it is not considered as one of the usual suspects

in oncology; however, our study builds additional evidence to

investigate this gene in more detail.

There is a great opportunity to enhance the results of our anal-

ysis pipeline as newer phenotypic datasets become available, in

particular CRISPR essentiality screens, both in the presence of a

drug of interest (such as Liao et al.30) or without any drug (such as

results from the Cancer Dependency Map). The integration of

pharmacology screens and CRISPR essentiality screens is

raising new opportunities to understand drug resistance in the

context of the genetic landscape of each cell line.41

Furthermore, cell lines identified as resistant and lacking a

clear resistance biomarker would be an ideal starting point for

a GW CRISPR resistance screen in the presence of the corre-

spondent drug, emphasizing the power of our analysis for hy-

pothesis generation. Notably, our approach is complementary
to pooled depletion/activation CRISPR screens, which would

not detect secondary resistance mutations such as EGFRT790M.

Drug resistance is a clinically important phenomenon that re-

duces treatment success in cancer patients. Our framework is

based on the analysis of large pharmacology screens performed

on cancer cell lines, a system that allows high-throughput ap-

proaches at the expense of complexity and clinical relevance.

However, many relevant insights can be obtained from these

models, as proved by the clinically relevant resistance bio-

markers we observe in cell lines. Furthermore, it has recently

been shown that drug combinations are more likely to be syner-

gistic (up to 20% more) if one of the drugs has a resistance

biomarker.42 Future work could try to integrate the results of

our framework with further methods for the prediction of drug

synergy and ultimately pave the way for the next generation of

precision medicine.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Michael P. Menden is the lead contact of this study and can be reached by e-

mail: michael.menden@helmholtz-muenchen.de.

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

All pharmacology data are available at http://www.cancerrxgene.org

and https://portals.broadinstitute.org/ctrp.v2.1/. The raw deep molecular

characterization is available at https://www.ebi.ac.uk/ega/studies/EGAS

00001000978 and https://www.ncbi.nlm.nih.gov/geo/. CRISPR essentiality

data were downloaded from https://depmap.org/portal/as the gene_ef-

fect.csv file from the Sanger CRISPR (CERES) release.

The source code to reproduce all analysis is available at https://github.com/

ia327/ayestaran2020_indirect_res, including an interactive Shiny app to

explore the generated results.

Pharmacology Dataset

Cell-line drug-response data were obtained from the GDSC project6,7 and

CTRP v2.9–11 Pharmacology response metric in the GDSC dataset is the

drug concentration required to reduce cell viability by half (IC50). For the

CTRP dataset, IC50 values were estimated with the same curve-fitting method

used in the GDSC dataset,23 as implemented in the R package gdscIC50.43

Results of the new curve fitting are reported in Table S8. In total, we analyzed

814 unique drugs in 816 cell lines across 19 cancer types for drug resistance

(Figure S2H). From the CTRP dataset, we only included those cell lines also

present in GDSC in order to keep molecular characterization data consistent,

as described below.

Cancer Functional Events

Deep molecular characterization of the screened cell lines was obtained from

the GDSC project.7 CFEs included somatic mutations from whole-exome

sequencing, copy-number variations from Affymetrix SNP6.0 arrays, and

DNAmethylation from IlluminaHumanMethylation450 BeadChip. CFEs are en-

coded as a binary event for each cell line, being eithermutant or wild type. Data

processing for variant calling, recurrent altered copy-number segments and

informative CpG sites are derived from Iorio et al.7

Drug Sensitivity Association Testing

Biomarkers of drug sensitivity were identified with ANOVA models for each

possible combination of cancer type, drug, and CFE as described in Iorio

et al.7 First, we removed CFEs without established driver genes, i.e., copy-

number alterations without known cancer gene, for increasing biological inter-

pretability of results. We enforced a minimum of four mutant cell lines for

testing sensitive biomarkers to ensure statistical power for later detecting

UNRES cell lines. Finally, we excluded cases where more than 50% of mutant
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cell lines displayed extrapolated IC50 values, as numerical differences between

extrapolated data points might be biologically misleading.

We fit an ANOVA model of IC50 values to CFE status with the covariates mi-

crosatellite instability status, cell-culture medium, and cell-line growth proper-

ties. The effect size was estimated with a signed Cohen’s d statistic,44 which

for two groups of size n1; n2 with means X1; X2 and standard deviations

SD1; SD2 is defined as

d =
X1 � X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1�1ÞSD1
2 + ðn2�1ÞSD2

2

ðn1 + n2�2Þ

q :

A CFE was considered to be a biomarker of drug sensitivity under the con-

servative threshold p value <0.001 (a p-value filter was chosen, since the

GDSC biomarker discovery toolkit7 corrects associations by tissue instead

of pooled population for FDR, while we used the sensitive population in a pos-

terior hierarchical test) and a signed effect size of less than �1.

Unexpectedly Resistant Cell-Line Detection

Our primary interests are cell lines derived from the same cancer type carrying

a common CFE, which renders this cell population sensitive to a drug, but with

distinct UNRES cell lines. We define as UNRES a cell line or group of cell lines

that significantly contributes to the sample SD of IC50s of a sensitive popula-

tion. To identify them, we developed an analysis pipeline based on observing

changes in the overall SD of a sensitive population when excluding the data

point or points with highest IC50 values, which are the most resistant cell lines.

Let us consider a subpopulation of n sensitive cell lines. If we define s0 as the

SD of the whole set of IC50 values, let si be the SD of the distribution when the

highest i = 1, 2,., n/2 IC50 values have been removed (with an upper bound of

i = 5). The change in SD when removing the highest i IC50 values will there-

fore be

Dsi = si � s0:

Significance of each Dsi was assessed with a bootstrap method sampling n

IC50 values for that drug and tissue, ignoring CFE status, and calculating the

corresponding DsiðbootÞ. B= 10; 000 bootstrap iterations were used, and

the p value was defined as

p =
1

B+ 1

 
1 +

XB
b= 1

½DsiðbootbÞ % Dsi �
!
;

where ½DsiðbootbÞ % Dsi �= 1 if that given bootstrap value is smaller (more

negative) than or equal to the observed Dsi, and 0 otherwise. Multiple testing

was corrected using Benjamini-Hochberg FDR correction at level a = 0.15.45

To quantify the strength of UNRES cases, we additionally calculated a

normalized decrease in SD as follows:

Normalized SD decrease = � Dsi � E½Dsi �
s0 � E½Dsi� ;

where E½Dsi � is the expected change in SD when removing the highest i IC50

values, defined as the median of the bootstrap distribution of Dsi . This normal-

ized value allows the estimation of themagnitude of the difference between the

UNRES cell line(s) and the rest of the sensitive subpopulation, while account-

ing for the overall spread of IC50 values in the corresponding tissue.

Permutation Test

To obtain an estimate of detected UNRES due to random chance, we per-

formed a permutation test on both datasets. Thus, we randomly permuted

the IC50 values for each drug within each tissue 100 times and ran our analysis

workflows. We summarized the results by counting the number of sensitivity

drug-CFE associations, the number of said associations with detected UNRES

cases, and the maximum number of UNRES cell lines per association. Signif-

icance thresholds were the same as the ones used in the original datasets.

HFDR Control

To account for the dependence in the hierarchical structure of the statistical

tests that identify drug-sensitivity biomarkers with UNRES cell lines, we

applied the HFDR controlling procedure developed by Yekutieli.46 For this,
8 Patterns 1, 100065, August 14, 2020
we arranged the families of hypotheses in two hierarchical levels

L0 = fHi : sensitivity biomarkerg and L1 = fHi : UNRES cell linesg. All L1 hy-
potheses are associated with a parent hypothesis in L0, as described in Fig-

ure S5. The employed HFDR approach can be summarized as:

1. Test which parent hypotheses in L0 are significant under a = 0.001

2. For each significant parent hypothesis, test the hypothesis using the

Benjamini-Hochberg method45 at level a = 0.15 to correct for FDR

across all considered L1 hypotheses

The parental hypotheses L0 were filtered with a conservative p-value

threshold in order to guarantee the existence of true drug-sensitivity bio-

markers while, under consideration of a large number of tests, sustaining the

necessary relaxation level to further investigate UNRES cell lines. Notably,

the parental hypotheses with the lowest p values are not necessarily followed

by the lowest p values in the child hypotheses, and a simultaneous testing

within families was performed as defined by Yekutieli.46

Furthermore, to calculate a bound for the overall FDR for all families of hy-

pothesis, we used the approximation

FDR =

�
No: of discoveries+No of families

No: of discoveries+ 1

�
3a3 d;

where the number of discoveries is defined by the significant markers in L0
and L1, the number of families are the number of unique combinations of drug

and tissue available, and d is an inflation value close to 1 in most instances,46

and therefore assumed equal to 1.

Resistance Biomarkers

The comparison between identified UNRES cell lines and sensitive popula-

tions lacks statistical power because of small sample sizes. Here, we system-

atically queried the molecular characterization provided by GDSC. For each

UNRES cell line, we explored: (1) sensitivity biomarker genes for point muta-

tions that are unique to the UNRES cell line(s); (2) mutually exclusive CFEs:

we selected those CFEs that were exclusively mutated in all UNRES cell lines

while all sensitive cell lines were wild type, or vice versa; (3) enriched CFEs: in

the cases where there were multiple UNRES cell lines, we tested for enriched

CFEs with Fisher’s exact test between UNRES cell lines and sensitive subpop-

ulation. To narrow down the list of putative markers, we applied a further filter

to the identified putativemarkers by keeping only genes that are included in the

GDSC cancer gene list.7

Integration with CRISPR Datasets

Data for the comparison of gene essentialities upon gefitinib treatment was

obtained from Liao et al.,30 who performed a CRISPR essentiality screen tar-

geting �500 tumor-suppressor genes, in the presence of either gefitinib or

DMSO. Downloaded gene-enrichment scores upon gefitinib treatment con-

sisted of a fold-change value and its statistical significance, calculated using

MaGeCK.47

All other CRISPR essentiality data without any treatment were obtained from

the DepMap portal (https://depmap.org), specifically the Sanger dataset (pro-

cessed with CERES).24–26 The data consist of a matrix of genes 3 cell lines

where each value corresponds to the gene score. High values reflect selective

advantage upon knockout of that gene, and low values mean the gene is

essential for survival. Note that genes with a low essentiality score (very nega-

tive) are considered essential.

Differentially essential genes were selected based on the differences be-

tween the essentiality (ess) of the gene in the UNRES cell line (out) versus a

sensitive population of k cell lines. For a specific gene g, its change in essen-

tiality (Dessg) was defined as:

Dessg =
1

k

Xk
i = 1

�
essoutg � essig

�
� essout�i

sout�i
;

where essout�i is the samplemean for the raw essentiality differences across all

genes and sout�i is the SD of the sample. Thismethod thus obtains a Z score for

each gene and each comparison between two cell lines and computes the

average Z score across all comparisons. The mentioned Z-transformation is

https://depmap.org
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used to account for noisy cell lines before taking the average across all k

comparisons.

Differential essentiality between the UNRES cell line and wild-type resistant

cell lines was calculated with the same method.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100065.
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Schubert, M., Aben, N., Gonçalves, E., Barthorpe, S., Lightfoot, H., et al.

(2016). A landscape of pharmacogenomic interactions in cancer. Cell

166, 740–754.

8. Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A.,

Kim, S., Wilson, C.J., Lehár, J., Kryukov, G.V., Sonkin, D., et al. (2012). The

Cancer Cell Line Encyclopedia enables predictive modelling of anticancer

drug sensitivity. Nature 483, 603–607.

9. Basu, A., Bodycombe, N.E., Cheah, J.H., Price, E.V., Liu, K., Schaefer,

G.I., Ebright, R.Y., Stewart, M.L., Ito, D., Wang, S., et al. (2013). An inter-

active resource to identify cancer genetic and lineage dependencies tar-

geted by small molecules. Cell 154, 1151–1161.

10. Rees, M.G., Seashore-Ludlow, B., Cheah, J.H., Adams, D.J., Price, E.V.,

Gill, S., Javaid, S., Coletti, M.E., Jones, V.L., Bodycombe, N.E., et al.
(2016). Correlating chemical sensitivity and basal gene expression reveals

mechanism of action. Nat. Chem. Biol. 12, 109–116.

11. Seashore-Ludlow, B., Rees, M.G., Cheah, J.H., Cokol, M., Price, E.V.,

Coletti, M.E., Jones, V., Bodycombe, N.E., Soule, C.K., Gould, J., et al.

(2015). Harnessing connectivity in a large-scale small-molecule sensitivity

dataset. Cancer Discov. 5, 1210–1223.

12. Stransky, N., Ghandi, M., Kryukov, G.V., Garraway, L.A., Lehár, J., Liu, M.,

Sonkin, D., Kauffmann, A., Venkatesan, K., Edelman, E.J., et al. (2015).

Pharmacogenomic agreement between two cancer cell line data sets.

Nature 528, 84–87.

13. Gan, H.K., Millward, M., Hua, Y., Qi, C., Sai, Y., Su, W., Wang, J., Zhang,

L., Frigault, M.M., Morgan, S., et al. (2019). First-in-human phase I study of

the selective MET inhibitor, savolitinib, in patients with advanced solid tu-

mors: safety, pharmacokinetics, and antitumor activity. Clin. Cancer Res.

25, 4924–4932.

14. Hientz, K., Mohr, A., Bhakta-Guha, D., and Efferth, T. (2016). The role of

p53 in cancer drug resistance and targeted chemotherapy. Oncotarget

8, 8921–8946.

15. Yu, H.A., Arcila, M.E., Rekhtman, N., Sima, C.S., Zakowski, M.F., Pao, W.,

Kris, M.G., Miller, V.A., Ladanyi, M., and Riely, G.J. (2013). Analysis of tu-

mor specimens at the time of acquired resistance to EGFR-TKI therapy in

155 patients with EGFR-mutant lung cancers. Clin. Cancer Res. 19,

2240–2247.

16. Paez, J.G., J€anne, P.A., Lee, J.C., Tracy, S., Greulich, H., Gabriel, S.,

Herman, P., Kaye, F.J., Lindeman, N., Boggon, T.J., et al. (2004). EGFR

mutations in lung cancer: correlation with clinical response to gefitinib

therapy. Science 304, 1497–1500.

17. Stamos, J., Sliwkowski, M.X., and Eigenbrot, C. (2002). Structure of the

epidermal growth factor receptor kinase domain alone and in complex

with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272.

18. Kobayashi, S., Boggon, T.J., Dayaram, T., J€anne, P.A., Kocher, O.,

Meyerson, M., Johnson, B.E., Eck, M.J., Tenen, D.G., and Halmos, B.

(2005). EGFRmutation and resistance of non–small-cell lung cancer to ge-

fitinib. N. Engl. J. Med. 352, 786–792.

19. Yun, C.H., Boggon, T.J., Li, Y., Woo,M.S., Greulich, H., Meyerson,M., and

Eck, M.J. (2007). Structures of lung cancer-derived EGFR mutants and in-

hibitor complexes: mechanism of activation and insights into differential

inhibitor sensitivity. Cancer Cell 11, 217–227.

20. Yver, A. (2016). Osimertinib (AZD9291)—a science-driven, collaborative

approach to rapid drug design and development. Ann. Oncol. 27,

1165–1170.

21. J€anne, P.A., Yang, J.C.H., Kim, D.W., Planchard, D., Ohe, Y., Ramalingam,

S.S., Ahn, M.J., Kim, S.W., Su, W.C., Horn, L., et al. (2015). AZD9291 in

EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med.

372, 1689–1699.

22. Cross, D.A.E., Ashton, S.E., Ghiorghiu, S., Eberlein, C., Nebhan, C.A.,

Spitzler, P.J., Orme, J.P., Finlay, M.R.V., Ward, R.A., Mellor, M.J., et al.

(2014). AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated

resistance to EGFR inhibitors in lung cancer. Cancer Discov. 4,

1046–1061.

23. Vis, D.J., Bombardelli, L., Lightfoot, H., Iorio, F., Garnett, M.J., and

Wessels, L.F. (2016). Multilevel models improve precision and speed of

IC50 estimates. Pharmacogenomics 17, 691–700.

24. Meyers, R.M., Bryan, J.G., McFarland, J.M., Weir, B.A., Sizemore, A.E.,

Xu, H., Dharia, N.V., Montgomery, P.G., Cowley, G.S., Pantel, S., et al.

(2017). Computational correction of copy number effect improves speci-

ficity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet.

49, 1779–1784.

25. Behan, F.M., Iorio, F., Picco, G., Gonçalves, E., Beaver, C.M., Migliardi, G.,
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