
A computational pipeline to generate MHC binding motifs

Peng Wang1, John Sidney1, Alessandro Sette1, and Bjoern Peters1,*

1La Jolla Institute for Allergy & Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA

Abstract

Background—Major histocompatibility complex (MHC) class I molecules play key roles in host 

immunity against pathogens by presenting peptide antigens to CD8+ T-cells. Many variants of 

MHC molecules exist, and each has a unique preference for certain peptide ligands. Both 

experimental approaches and computational algorithms have been utilized to analyze these peptide 

MHC binding characteristics. Traditionally, MHC binding specificities have been described in 

terms of binding motifs. Such motifs classify certain peptide positions as primary and secondary 

anchors according to their impact on binding, and they list the preferred and deleterious residues at 

these positions. This provides a concise and easily communicatable summary of MHC binding 

specificities. However, so far there has been no algorithm to generate such binding motifs in an 

automated and uniform fashion.

Results—In this paper, we present a computational pipeline that takes peptide MHC binding data 

as input and produces a concise MHC binding motif. We tested our pipeline on a set of 18 MHC 

class I molecules and showed that the derived motifs are consistent with historic expert 

assignments.

Conclusions—We have implemented a pipeline that formally codifies rules to generate MHC 

binding motifs. The pipeline has been incorporated into the immune epitope database and analysis 

resource (IEDB) and motifs can be visualized while browsing MHC alleles in the IEDB.

Background

A central process in host immunity against pathogenic antigens is the presentation of peptide 

ligands by MHC class I molecules to CD8+ cytotoxic T-cells [1]. The MHC class I molecule 

consists of two chains, a heavy chain with three domains (α1, α2 and α3) and a small beta-2 

microglobulin unit [2]. Peptides are presented in a groove formed between α1 and α2 

domains. The MHC class I binding groove is in a closed conformation since both ends of the 

groove are blocked by large aromatic residues. This limits the length of the presented 

licensee Nikolai Petrovsky Publishing. This is an Open Access article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited.
*Corresponding author: PW: pwang@liai.org, JS: jsidney@liai.org, AS: alex@liai.org, BP: bpeters@liai.org. 

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PW, JS and BP designed the algorithm. PW implemented the PYTHON scripts. AS and BP conceived the study. PW, JS, AS and BP 
wrote the manuscript. All authors participated in discussions, and reviewed and approved the final manuscript version.

HHS Public Access
Author manuscript
Immunome Res. Author manuscript; available in PMC 2017 July 24.

Published in final edited form as:
Immunome Res. 2011 May ; 7(2): .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/2.0


peptides to 8–10 amino acids. Despite the relatively limited length, a single MHC molecule 

is capable of presenting peptides of tremendous diversity [3] and discovering novel peptide 

ligands remains a challenging task.

A hallmark of the interaction between peptide ligands and MHC class I molecule is the 

existence of anchors. The anchor residues, typically found at position 2 and the and C-

terminus of a peptide, form extensive networks of hydrogen bonds with MHC class I 

molecule and contribute the most to binding energy [4]. A large number of experimental 

studies have been carried out to determine anchor positions and their associated residue 

preference for MHC class I molecules. Those studies revealed significant diversity in the 

number of anchors, anchor position as well as the residue preference among different MHC 

class I molecules.

A large number of bioinformatics studies have been carried out to analyze MHC peptide 

binding and develop algorithms to predict high affinity binders [5–10]. While the derived 

machine learning approaches can exhibit good performance for prediction, they do not 

provide an easily communicable summary of the binding specificity of an MHC allele, 

which is desired by experimentalists. While logo based approaches are popular to display 

transcription factor binding motifs or conserved protein domains [11–13], they are less 

useful to describe MHC binding motifs since they don’t explicitly display anchor 

information and residue preferences. In practice, experimentalists have for decades 

described the MHC class I binding in terms of anchors and key residues critical for favorable 

binding. There is therefore a need to supply such a summary of binding characteristics.

In this study, we report our implementation of an automatic computational pipeline to 

display MHC class I binding motifs in an experimentalist friendly fashion. We start by 

generating scoring matrices from binding data via the stabilized matrix method (SMM) [7, 

14]. The SMM scoring matrices were then analyzed to design a computational algorithm 

that identifies anchor residues and determines residue preference. We have tested the 

resulting method on a set of 18 MHC class I molecules and compared the results to 

previously published reports of binding motifs as well as those contained in the SYFPEITHI 

database [15]. Those comparisons showed that our methods are effective in automatically 

determining anchor positions and residues preferences in agreement with historic manual 

assignments. Finally, we have implemented the pipeline into IEDB [16], which now 

provides automatically updated motifs based on the accumulated binding data stored in the 

database.

RESULTS

The MHC class I binding affinity dataset for deriving motif display algorithms

The IEDB is a comprehensive resource of immune epitopes and currently stores results from 

over 160,000 peptide:MHC binding affinities. For this study, we extracted binding affinities 

for 18 human and mouse MHC class I molecules from the IEDB. These MHC class I 

molecules were selected based on a previous study in which the anchor positions and residue 

preferences were assigned directly from experimental data by a human expert [17], which 

serves as a gold standard. The retrieved peptide binding data for the alleles utilized are 
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summarized in Table 1. On average, each MHC class I molecule dataset comprised 776 total 

data points and 279 binders. The HLA-A*0201 molecule had the highest number of data 

points (3,319) as well as binders (1,392) confirming its status as the best studied MHC class 

I molecules. The H-2-Kk molecule had the smallest number of total data points (164) and 

the H-2-Dd molecule had the smallest number of binders (13).

Establishing Algorithms to automatically identify anchor positions and residue preference

We started by learning scoring matrices from binding data utilizing the SMM approach. We 

choose SMM since it is one the best performing matrix methods available, and because 

matrix methods provide a readily interpretable input to assess the relative importance of 

positions and residues in a peptide for binding. The SMM matrices were then analyzed to 

calculate spread factors (SF) for each column, defined as the difference between the highest 

and lowest matrix value. For a given peptide position, the SF values can be interpreted as 

evaluating the difference for binding on a log10(IC50) scale between having the best or 

worst amino acid residue at that position.

We utilized the SF values as input to an algorithm to determine anchor positions in a peptide. 

We heuristically optimized the algorithm, resulting in the procedure outlined in Figure 1a as 

a flow chart. The steps in this procedure were chosen to maximize the congruence with past 

manual assignments of anchor positions for the set of 18 MHC class I molecules identified 

in the gold standard previous study [17]. A confusion matrix comparing the different 

assignments is shown in table 2. Our automatic method achieved 96.7% specificity and 

82.1% sensitivity suggesting that it is highly effective in reproducing anchor- and non-

anchor positions assignments made by experts.

After the anchor positions were identified, two separate algorithms were applied to 

determine residue preference for anchor positions (Figure 1b) and non-anchor positions 

(Figure 1c). For anchor positions, the maximum entry in each column was set as reference. 

The other values in the same column were then compared to the reference to determine 

residue preference for this position. For non-anchor positions, the median value in each 

column was set as reference and the residue preference was determined following the 

procedure described in the flow chart.

We again optimized these algorithms to maximize the agreement of the algorithmically 

determined preference pattern with that identified in the gold standard expert assignments 

(Table 3a). From the data shown in Table 3a, it is clear that the residue preference 

determined by our automatic approach agrees well with those determined by domain 

experts. For example, for HLA-A*0201 our approach identified L and M as preferred 

residue for anchor position 2 and L and V for anchor position 9. In comparison, the expert 

assignments based on combinatorial library method designed L as preferred residues for 

anchor position 2 and V and I as preferred residues for anchor position 9, and the expert 

assignments based on pool sequencing motifs approach identified L and M as preferred 

residues for anchor position 2 and V and L as preferred residues for anchor position 9.

Having optimized the algorithm, we tested its performance on an independent dataset, 

namely the MHC binding motifs stored in the SYFPEITHI database (Table 3b). Our results 
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showed overall consistency with information stored in SYFPEITHI. There were two 

noticeable differences in anchor positions. For HLA-A*3001, our algorithm designed 

position 3 as anchor while SYFPEITHI designed position 2 as anchor. For HLA-B*0801, 

our automatic algorithm designed three anchors (position 5, 6 and 9) while SYFPEITHI 

designed position 3 as anchor. For the remaining 13 alleles for which anchor assignments 

were made by both approaches, the positions are either identical between the two methods or 

the positions identified by one method are a subset of the other. Overall this demonstrates 

that the anchor positions identified by our algorithm are largely in agreement with the 

assignments made in the SYFPEITHI database.

Extend motif display algorithm to multiple lengths for MHC class I alleles

While the lengths of MHC class I binding peptides are much more restricted compared to 

MHC class II molecules, MHC class I molecules do bind epitopes of different lengths. 

Therefore, it is necessary to develop several motifs of peptides with different lengths for the 

same MHC molecule. For example, a large number of epitopes of length 8 as well as 9 have 

been reported for the mouse MHC class I molecule H2-Kb [15, 18–20], so both lengths have 

to be considered when making motifs. At the same time, it is not meaningful to calculate 

binding motifs for peptide lengths that an MHC allele is unlikely to bind in the first place. 

For example, there are no known 8-mer T cell epitopes for HLA-A*26 according to either 

the IEDB [16] or SYFPEITHI [15]. In order to identify what peptide lengths are meaningful 

to include for each MHC allele in our motif display algorithms, we implemented a simple 

cutoff based approach. For each allele, we first selected the motif length with the highest 

number of known binders and designate this length as the default motif. Additional motif 

lengths were considered to be viable if there are 200 or more binders contained in the IEDB. 

After a motif length is selected, standard motif display algorithm describe in previous 

section were employed to generate motif of desired length.

Integrate automatic motif display into IEDB

We have developed a set of PYTHON scripts to implement the motif length selection 

algorithm, automatic anchor and residue preference identification algorithms and display the 

resulting motifs. Those programs have been integrated into the IEDB and provide users with 

a visual presentation of MHC class I binding motifs. Two types of motif displays have been 

implemented. The first approach is a concise display of the classical binding motif (Figure 

2a). This approach doesn’t provide quantitative information. Instead, it includes the key 

characteristics of binding specificity and provides a simple, visual presentation of the 

underlying motif. For alleles where motifs of different lengths are available, a tab based 

system was utilized and the most preferable motif was marked with “*”. In addition, a 

colored matrix (Figure 2b) approach was also provided. The colored matrix provided 

detailed information of the binding specificity matrix learned from SMM algorithm. The 

contribution of each residue to binding at different positions is represented by a float number 

that provides a quantitative measurement. In order to facilitate visualization, residues are 

colored according to their contribution to binding, and using a coloring scheme accessible to 

the color blind. These motif displays are now integrated into the MHC allele summary pages 

(see for example http://iedb.org/MHCalleleId/122) of the immune epitope database which 
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are easiest to access through the ‘browse by MHC allele’ interface (http://iedb.org/

bb_allele.php).

DISCUSSION

In bioinformatics in general, sequence motifs are a popular approach to describe 

conservation among e.g. protein domains or transcription factor binding sites. Several 

programs have been developed to display such motifs as logos where bigger letters 

corresponding to higher level of conservation. Since such traditional motifs are derived from 

alignments of conserved sequences, extending them to MHC binding motifs has limited use, 

as they will only contain information about residues that are favorable for binding at each 

position. Since deleterious residues provide vital information regarding the binding 

characteristics of a MHC molecule, an alternative approach has been developed which 

displays a traditional logo with two parts denoting positive and negative contributions 

separately [21]. In our approach, quantitative binding data (binders and non-binders with 

binding affinities) were analyzed using the SMM algorithm to generate the initial scoring 

matrix from which the motif is derived. Both favorable and deleterious residues were then 

displayed in a single motif.

Our approach was aimed at providing a representation of MHC binding motifs in terms of 

anchor residues and residue preference as it would have classically been created by an 

experimentalist. Such a cartoon like approach provides a concise summary of the motif 

which is particularly easy to communicate. At the same time, we wanted to take advantage 

of the ability to create these motifs in an automated fashion based on binding data 

accumulated in the IEDB. This also for the first time provided a rigorous definition of what 

it means e.g. for a position to be an ‘anchor’.

In our algorithm to identify anchor positions, we utilized the fold difference between highest 

and lowest affinity of any residue at a given position as a straight forward way to assess the 

impact of a position on binding. This outperformed other similar metrics, such as the 

standard deviation of residue affinities, both in terms of predictive performance and 

simplicity. The cutoffs used in our algorithms were determined via systematic testing of a 

wide range of parameters and comparing the results against a benchmark set of expert 

defined binding motifs. After finalizing the algorithm, we compared its motifs with those 

stored in the SYFPEITHI database, and found an overall high agreement. As perfect 

agreement on a non-quantitative concept such as motifs is impossible to achieve, we are very 

satisfied with the achieved performance. A potential weakness is that we could only utilize a 

limited set of alleles to empirically tune parameters. It is possible that our parameters will 

not be universally applicable to other alleles and motif construction and visualization in 

general. We will therefore monitor how well the calculated motifs agree with publications 

over time, and if necessary adjust the heuristic parameters.

An important strength of our automatic motif display pipeline is to allow the side-by-side 

comparison of different length motifs for the same allele. This capacity allows user to easily 

carry out further analysis of binding motifs and identify insightful trend in binding. For 

example, two motifs (length 8 and 9) for H2-Kb allele were displayed by the automatic 
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pipeline on IEDB website (http://iedb.org/MHCalleleId/122). Position 3 was identified as 

anchor in both motifs and the residue preference largely remained the same. This suggested 

that position 3 is critical for binding regardless of epitope length. On the other hand, the 

main anchor at position 5 for motif of length 8 became a non-anchor position for motif of 

length 9 and the c-terminal residue now became main anchor position for motif of length 9. 

Such changes suggest that as epitope length increases, the middle potion of the epitope has 

to adopt a more bulged conformation to fit the longer peptide into MHC class I binding 

groove which caused position 9 to replace position 5 as main anchor.

A natural extension of our automatic pipeline is to display binding motifs for MHC class II 

molecules. A key difference between MHC class II molecules and MHC class I molecules is 

that the peptide binding groove of MHC class II molecule is open at both end which allows 

the presentation of peptides of variable length. As a consequence, motif identification for 

MHC class II molecules is noticeably more difficult than that of MHC lass I molecules. Our 

initial attempts at creating automated algorithms to deduce MHC class II binding motifs that 

agree with published data from experimentalists were not successful. We plan to further 

work in this area, and test if newly improved MHC class II binding prediction approaches 

[22] will improve the ability to establish such algorithms.

CONCLUSIONS

In this study, we have presented an automatic pipeline to display MHC class I binding 

motifs. We took a heuristic approach to generate binding motifs and have achieved largely 

consistent results with manually curated motifs by domain experts. The fully automatic, 

PYTHON script based pipeline allows the binding motifs to be easily updated or extended to 

new alleles as we accumulate more binding data. Comparing to logo based approach, our 

method combined the strength of easy to understand classical motif with an information rich 

binding matrix. In addition, the capacity to display multiple motifs for peptides of different 

lengths binding to the same allele side-by-side allows users to quickly identify key 

properties of epitope binding. Finally, we have implemented the automatic motif display 

pipeline into IEDB to better serve to the Immunology as well as Bioinformatics research 

community.

METHODS

Stabilized matrix method to derive scoring matrix

The stabilized matrix method (SMM) has been described in detail previously [7]. Briefly, 

each amino acid was encoded as a binary vector of length 20, with zeros at all positions 

except the one coding for the specific amino acid. Using such notion, a peptide of length N 

can be encoded as an N*20 binary vector. For a set of peptides, the vector representing each 

peptide can be stacked up to generate a matrix H where each row corresponds to a peptide. 

The best scoring matrix W can then be derived by minimizing the difference between the 

predicted binding affinities (HW) and the measured binding affinities ymeas while 

suppressing the effects of the noise in experiments with a regularization term WtΛW where 

Λ is a positive scalar or a diagonal matrix with positive entries.
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Computational programs to determine viable motif lengths

The algorithms to viable motif lengths were implemented in a PYTHON script. The script 

will read in binding data statistics from IEDB and count the number of known binders for 

each allele. Motif lengths were recorded as valid if there are more than 200 known binders 

of that length.

Computational programs to display binding motif cartoon and colored scoring matrix on 
IEDB website Sub- heading for this section

The algorithms to determine anchor position and residue preference were implemented in 

PYTHON as a cgi script. The script will read in SMM scoring matrixes stored on the IEDB 

analysis resource server and automatically generate HTML code to display colored SMM 

scoring matrices and JPEG files for the cartoon like motifs display.
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Figure 1a. 
Flow chart showing the algorithm to determine anchor positions
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Figure 1b. 
Flow chart showing the algorithm determining the residue preference for anchor positions
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Figure 1c. 
Flow chart showing the algorithm determining the residue preference for non-anchor 

positions
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Figure 2a. 
Graphic representation of MHC binding motif for H-2-Kb molecule
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Figure 2b. 
A sample amino acid binding matrix with color-coding to indicate anchor position, and 

preferred, deleterious, and tolerated residues as a function of position.
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Table 1

Experimentally measured binding affinities for 18 human and mouse MHC class I alleles used in this study

allele length all binders

H-2-Db 9 1204 263

H-2-Dd 9 201 13

H-2-Kd 9 298 126

H-2-Kk 9 164 78

HLA-A*0201 9 3319 1392

HLA-A*3001 9 641 351

HLA-A*3201 9 573 275

HLA-A*6802 9 2223 562

HLA-B*0702 9 675 211

HLA-B*0801 9 608 297

HLA-B*1501 9 668 388

HLA-B*1503 9 496 348

HLA-B*2705 9 435 155

HLA-B*3501 9 560 155

HLA-B*5101 9 539 83

HLA-B*5301 9 539 161

HLA-B*5401 9 539 91

HLA-B*5801 9 278 66

average 9 776 279

min 9 164 13

max 9 3319 1392

Immunome Res. Author manuscript; available in PMC 2017 July 24.
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Table 2

Confusion matrix shows that automatic algorithm can effectively identify anchor and non-anchor positions 

based on SMM scoring matrix alone

Actual

Anchor Non-anchor

Predicted Anchor 32 4

Non-anchor 7 119

Immunome Res. Author manuscript; available in PMC 2017 July 24.
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