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Objective. Complexity analysis of functional brain structure data represents a new multidisciplinary approach to examining
complex, living structures. I aimed to construct a connectivity map of visual brain activities using resting-state functional magnetic
resonance imaging (fMRI) data and to characterize the level of complexity of functional brain activity using these connectivity
data. Methods. A total of 25 healthy controls and 20 patients with attention deficit hyperactivity disorder (ADHD) participated.
fMRI preprocessing analysis was performed that included head motion correction, temporal filtering, and spatial smoothing
process. Brain entropy (BEN) was calculated using the Shannon entropy equation. Results. My findings demonstrated that patients
exhibited reduced brain complexity in visual brain areas compared to controls. The mean entropy value of the ADHD group was
0.56 ± 0.14, compared to 0.64 ± 0.11 in the control group. Conclusion. My study adds an important novel result to the growing
literature pertaining to abnormal visual processing in ADHD that my ADHD patients had lower BEN values, indicating more-
regular functional brain structure and abnormal visual information processing.

1. Introduction

Functional magnetic resonance imaging (fMRI) is among the
most powerful tools for noninvasive assessment of behavior,
cognition, and psychiatric disorders [1] and is used to obtain
volumetric images, including time-resolution data pertaining
to human brain function. In particular, the resting-state
[2] fMRI technique is a preferred, alternative tool to assess
brain function abnormalities in psychiatric disorders. Blood-
oxygen-level-dependent signals of resting-state fMRI allow
for the analysis of functional connectivity patterns within
brain networks [3] and the temporal dynamics of activity
fluctuations therein [4].

The most complex living structure known to man is the
human brain. The reason that complexity is assessed using
resting-state fMRI, with respect to psychiatric diseases, is
that complex output patterns in a living system can indicate
its health and robustness [5]. Complex living systems, such
as the human brain, develop to possess maximum adaptive
capacity [6]. The deterioration of, and reductions in, the
essential functions of these complex systems, in accordance

with aging and disease, is associated with a loss of complex-
ity in the dynamics of complex physiological systems [7].
Chaotic and complex behaviors are indicative of a healthy
system, whereas more predictable and regular behaviors can
denote pathological states [8].

Attention deficit hyperactivity disorder (ADHD) is a
common neurodevelopmental disorder that typically begins
in childhood, often persists into adulthood, and is associated
with consistent deficits in error processing and inhibition and
regionally decreased grey matter volume [9, 10]. Although
diagnosis is made on a behavioral basis, cognitive deficits
may also be significant, especially in terms of executive
function [11, 12] and attentional processes [13, 14]. Numer-
ous neuroimaging studies have been conducted on ADHD;
Bush [5, 15] reviewed several functional imaging studies
and observed a consistent pattern of frontal dysfunction in
ADHD patients. However, few studies have examined both
frontal and other brain regions [16].

Entropy, a powerful indicator of irregularity in a system
[17], is not associated with the value of a random variable,
but depends only on the distribution of values. Entropy can
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characterize the level of chaos in, and complexity of, a system,
within the context of information theory [18]. In medical
image processing applications, entropy provides a measure
of the heterogeneity of the distribution of data in the image
matrix. When all data are identical, the entropy value is
zero; this value increases commensurately with differences
in the data and its distribution. Entropy is a useful tool in
neuroscience research for obtaining meaningful results from
the analysis of fMRI data [19–21]. In previous fMRI studies,
entropy was considered first as an innovative, alterative
indicator [22] and then as a means of detecting activation [1];
it is viewed currently as a potential marker of brain diseases
[23, 24]. Measurements of brain entropy (BEN) may be used
to make inferences regarding brain status and alterations due
to disease [21].

The aim of the present study was (i) to determine
the complexity of visual brain activity by calculating brain
entropy and (ii) to assess differences between attention deficit
hyperactivity disorder patients and healthy controls in terms
of brain status.

2. Material and Methods

2.1. Resting-State fMRI Data Acquisition. The fMRI images
used in this study were downloaded freely from the website
of the 1000 Functional Connectomes Project [25].The gender
distribution in the ADHD group (𝑛 = 25) was as follows: 20
males and 5 females, ranging in age between 20 and 50 years.
The following scanning parameters were used: TR = 2; # slices
= 39; and # timepoints = 192. The second group, comprising
healthy volunteers (𝑛 = 20), included 8 males and 12 females
between 18 and 46 years of age; in this group, the following
scanning parameters were applied: TR = 2; # slices = 33; and
# timepoints = 175.

All research conducted by ADHD-200 contributing sites
was conducted with local IRB (institutional review board)
approval and contributed in compliance with local IRB
protocols. All data distributed via the International Neu-
roimaging Data-Sharing Initiative is fully anonymized in
compliance with HIPAA (The Health Insurance Portability
and Accountability Act) Privacy Rules.

2.2. Image Analysis. FEAT fMRI preprocessing analysis of
the downloaded 4D fMRI data sets was performed using the
FSL [26] software package. Standard preprocessing analysis
includes head motion correction, temporal filtering, and
spatial smoothing process. All data were filtered according to
a high-pass filter cut-off value of 100 s, motion-corrected, and
smoothed with a Gaussian kernel using a full width at half
maximum value of 5mm. Independent component analysis
(ICA) is a computational technique for revealing hidden fac-
tors that underlie fMRI raw data. In this study, theMELODIC
(Multivariate Exploratory Linear Optimized Decomposition
into Independent Components) independent component
analysis (ICA) technique was used to separate single fMRI
data sets into different spatial and temporal components in
analyzing the fMRI data. Each subject’s structural image was
registered to standard Montreal Neurological Institute space
(i.e., to the MNI152 template) for the purposes of spatial

normalization. As a result of the analysis, components 17–44
were produced for each patient.

2.3. Entropy Calculation. Various components for each par-
ticipant, including one pertaining to the most meaningful
pattern of visual activation, were selected to assess complexity
(one participant was excluded from the study, because no
meaningful visual activation could was detected). The brain
entropy values of the two sequential images most closely
matched and, with the minimum degree of noise, were
calculated for each subject using a program written using
the MATLAB GUI (Mathworks, Inc.) software package [27].
This programwas used to evaluate the brain entropymapping
from fMRI data. Entropy was calculated using Shannon’s
entropy as follows:

BEN = −
256

∑
𝑖=1

𝑝 (𝑖) log
2
𝑝 (𝑖) , (1)

where 𝑝(𝑖) is the normalized probability function of the pixel
intensity 𝑖 of the image.

Shannon entropy is a measure of how much informa-
tion is required, on average in a given discrete probability
distribution. The probability function of the pixel intensities
was acquired and normalized by dividing by the total pixel
number.

Directly calculating BEN from fMRI data is challenging
and prone to inaccuracy due to the effects of the image pixels
that represent the brain tissue and to their negative corre-
lation with entropy values. To overcome this, I segmented
the images selected for BEN analysis according to their color.
Profiles of five important colors were given in color image
segmentation process: the background color, white, grey,
blue, and red (Figure 1(a)). A display of these segmentation
techniques and their application to extract white, grey, and
blue colors is shown in Figure 1(b). After extraction, the
remaining red color signals which do not represent the
activation of occipital lobe had to be considered as an artifact
and removed from the images in Figure 1(c). Figure 1 provides
a flowchart of the color image processing steps necessary to
calculate BEN.

2.4. Statistical Analysis. Parametric statistical analysis was
performed using the Statistical Package for Social Sciences
(SPSS16.0; Chicago, IL, USA) software. 𝑡-test was conducted
for differences between the mean entropy values in the
ADHD group and control group. Mann–Whitney 𝑈 test
was performed to reveal the group differences between
the patient and control groups in gender and age. The
relationship between the BEN and group and between gender
and group was determined by using Pearson’s chi-squared
test.

3. Results

I have achieved fMRI components and Figure 2 depicts two
example fMRI components. It should be noted that I selected
and used, during calculation of BEN, only components
exhibiting meaningful visual activation, such as those shown
below.
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(a) (b) (c)

Figure 1: Flowchart of the color image segmentation process used to extract visual activation data: (a) fMRI image, (b) color segmentation
process, and (c) a visual activation data.

(a) (b)

Figure 2: Images produced by fMRI analysis denoting visual activation in (a) an ADHD patient and (b) a control participant.

The BEN bars of the ADHD patients and controls are
depicted in Figure 3. The mean entropy value of the ADHD
group was 0.56 ± 0.14, compared to 0.64 ± 0.11 in the control
group; this difference was significant (𝑝 = 0.008).

Table 1 lists the comparisons results between the patient
and control groups. There were significant group differences
in gender (𝑝 = 0.010) and age (𝑝 = 0.045). Data are provided
as means ± SD.

On correlation analysis, there was a negative relationship
betweenBENand group (𝑟 = −0.306;𝑝 = 0.043) and between
gender and group (𝑟 = −0.390; 𝑝 = 0.009).

4. Discussion

Throughout the past decade, the majority of studies on
psychiatric diseases have been fMRI-based investigations [10,
28, 29]. I studied ADHD using this technique due to the
importance of functional connectivity in psychiatric diseases
and because of the ability of fMRI to index this connectivity
and activity within the brain. I employed BEN mapping,
of functional brain connectivity, to better understand the
disease.

Complexity analysis of functional brain structure [30] is
a promising tool with which to examine functional brain
connectivity at an organizational level [31]. The degree of
complexity is associated with the number of brain connec-
tions; decreased connectivity indicates lower complexity, and
increased connectivity reflects greater complexity. Numerous
studies on brain activity in ADHD have been performed
using functional neuroimaging techniques other than fMRI,
such as electroencephalography and magnetoencephalogra-
phy [32, 33]. Gómez et al. [32] demonstrated that MEG
recordings of ADHD patients were more-regular compared
to recordings obtained in a control group; furthermore,
there were significant differences among these groups in five
brain regions, that is, anterior, central, posterior, left lateral,
and right lateral areas. Sokunbi et al. [34] used resting-
state fMRI to demonstrate reduced complexity in the brain
activity of adult ADHD patients compared to healthy, age-
matched controls. van den Heuvel and Hulshoff Pol [3]
suggested resting-state fMRI studies examining functional
connectivity have provided a new and promising platform to
examine hypothesized disconnectivity effects in psychiatric
brain diseases.There has been a reawakening of interest in an
alternative approach that focuses on the resting state [15]. I
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Table 1: Comparison of group characteristics.

ADHD (𝑛 = 25) Control (𝑛 = 20) 𝑍/𝜒2 𝑝
Age 34.52 ± 9.54 29.32 ± 10.02 −2.007 0.045
Gender∗ (male/female) 20/5 8/11 6.699 0.010
Brain entropy (BEN) 0.56 ± 0.14 0.64 ± 0.11 −2.666 0.008
ADHD-RS

Inattentive 16.79 ± 4.90 - - -
Hyperactive/impulsive 13.13 ± 5.17 - - -
Total 29.92 ± 8.75 - - -

ACDS
Inattentive 6.59 ± 2.52 - - -
Hyperactive/impulsive 7.82 ± 1.33 - - -

Mann–Whitney 𝑈 test, ∗Pearson’s chi-squared test; ADHD-RS: ADHD-Rating Scale; ACDS: Adult ADHD Clinical Diagnostic Scale.
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Figure 3: BEN bars of the ADHD patient and control groups.

investigated functional brain connectivity in occipital areas
using resting-state fMRI; in contrast to previous studies, I
observed amore-regular pattern of complexity, in the context
of visual activities, in the patient group compared to the
control group.Aprevious structural study reported decreased
total brain and occipital lobe volume in ADHD patients [35,
36]. I suggested that this reduction in occipital lobe volume
may account for the reduced functional brain connectivity,
and more-regular pattern of complexity, observed in ADHD.

BEN can quantify the complexity of the functional
architecture of the human brain [30], such that the BEN
values I obtained during my complexity analysis provide a
physiologically and functionally meaningful account of the
brain activity of both ADHD patients and controls. My BEN
results, obtained from fMRI image analyses, also show that
individuals with ADHD exhibit lower entropy in particular
brain regions compared to controls, thereby indicating a
more-regular pattern of complexity. This is consistent with
Goldberger and Lipsitz’s model of robustness [5, 7, 37–39]

in which the complexity of a system’s physiological output
decreases commensurately with greater age and disease.
Therefore, I proposed that entropy may represent a useful
indicator for research on various brain states.

Several researchers have reported abnormal frontal-
striatal brain function in patients with ADHD [40]. However,
a growing number of studies also indicate abnormal posterior
brain function, and associated abnormalities, in early-stage
sensory information processing [41]. According to a recent
meta-analysis of fMRI studies examining task-based cogni-
tion in ADHD, functional abnormalities in the visual cortex
may represent a key finding in ADHD [41]. My study adds
an important novel result to the growing literature pertaining
to abnormal visual processing in ADHD; that is, my ADHD
patients had lower BEN values, indicating more-regular
functional brain structure and abnormal visual information
processing. Furthermore, I demonstrated abnormalities in
brain function in the occipital region using resting-state
fMRI. Abnormal visual information processing inADHDhas
been also identified by previous studies, consistent with my
results [42, 43].

Numerous studies indicated that ADHD patients exhibit
gender differences in clinical and sociodemographic char-
acteristics [44–46]. Taken together, the results of these
studies are in general agreement in terms of suggesting
that young female ADHD patients exhibit lower ratings
on hyperactivity, inattention, impulsivity, and externalizing
problems, in addition to greater intellectual impairments and
internalizing of problems, compared to young males with
ADHD[37].Theprevalence ofADHD in the adult population
is 4.4% in the US, of whom 38% are female and 62% are
male (National Resource Center on ADHD). These data are
generally supported by my study, with respect to gender
differences between the study groups, but not in terms of
BEN values. These results support Rubin and colleagues’
study; they suggested that fMRI applications of complexity
have dealt with both between the voxel and between-subject
differences [30].

My BEN results indicate that excessive orderliness is not
advantageous and in fact indicates abnormal function; greater
complexity indicates a healthier system. I believe that using
entropy analyses during fMRI may be of benefit to research
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in various pathologic and nonpathologic areas. Furthermore,
I suggest that BEN can index brain activity and may help
to determine abnormalities in brain activity, for example, in
pilot studies of drug addiction [47].

In conclusion, the present study successfully demon-
strated a reduction in BEN in ADHD patients compared
to healthy controls, by calculating signal entropy (Shannon
entropy) in accordance with the level of complexity of
resting brain activity. This result supports the notion that the
complexity of resting brain activity can be used as an indicator
of ADHD.
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