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Abstract

Recently, joint analysis of multiple traits has become popular because it can increase statis-

tical power to identify genetic variants associated with complex diseases. In addition, there

is increasing evidence indicating that pleiotropy is a widespread phenomenon in complex

diseases. Currently, most of existing methods test the association between multiple traits

and a single genetic variant. However, these methods by analyzing one variant at a time

may not be ideal for rare variant association studies because of the allelic heterogeneity as

well as the extreme rarity of rare variants. In this article, we developed a statistical method

by testing an optimally weighted combination of variants with multiple traits (TOWmuT) to

test the association between multiple traits and a weighted combination of variants (rare

and/or common) in a genomic region. TOWmuT is robust to the directions of effects of

causal variants and is applicable to different types of traits. Using extensive simulation stud-

ies, we compared the performance of TOWmuT with the following five existing methods:

gene association with multiple traits (GAMuT), multiple sequence kernel association test

(MSKAT), adaptive weighting reverse regression (AWRR), single-TOW, and MANOVA. Our

results showed that, in all of the simulation scenarios, TOWmuT has correct type I error

rates and is consistently more powerful than the other five tests. We also illustrated the use-

fulness of TOWmuT by analyzing a whole-genome genotyping data from a lung function

study.

Introductions

Many large cohort studies collected many correlated traits that can reflect underlying mecha-

nism of complex diseases. For example, the UK10K cohort study collected 64 correlated phe-

notypic traits [1]. Usually, complex diseases are characterized by multiple endophenotypes.

For example, hypertension can be characterized by systolic and diastolic blood pressure [2];

metabolic syndrome is evaluated by four component traits: high-density lipoprotein (HDL)

cholesterol, plasma glucose and Type 2 diabetes, abdominal obesity, and diastolic blood
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pressure [3]; and schizophrenia can be diagnosed by eight neurocognitive domains [4]. Multi-

ple correlated traits can be influenced by a gene simultaneously. Therefore, by joint analysis of

multiple traits, we can not only gain more statistical power to detect pleiotropic variants [5–

12], but also can better understand the genetic architecture of the disease of interest [13].

Several statistical methods have been developed to test the association between multiple

traits and a single common variant. These methods can be roughly divided into three groups:

dimension reduction methods [10, 13–15], regression methods [16–18], and combining test

statistics from univariate analysis [9, 19–23]. However, due to the allelic heterogeneity and the

extreme rarity of rare variants, the methods by analyzing one variant at a time for common

variant association studies may not be ideal for rare variant association studies [24]. Recent

genetic association studies show that complex diseases are affected by both common and rare

variants [25–31]. Next-generation sequencing technology allows sequencing of the whole

genome of large number of individuals, and makes rare variant association studies viable [32,

33]. Currently, statistical methods for rare variant association studies with a single trait have

been developed. These methods summarize genotype information from multiple rare variants

and can be divided into three groups: burden tests [24, 34–37], quadratic tests [38–41], and

combined tests [42–45].

As we pointed out above, it is essential to develop statistical methods to test the association

between multiple traits and multiple variants (common and/or rare variants). Very recently, a

few statistical methods for this purpose are appeared [11, 46–50]. Casale et al. [47] proposed a

set-based association test based on the linear mixed-model. This method enables jointly ana-

lyzing multiple correlated traits in rare variant association studies while accounting for popula-

tion structure and relatedness. Wang et al. [11] proposed a multivariate functional linear

model approach to test association between multiple traits and rare variants in a genomic

region. In this approach, the genetic effects of variants are treated as smooth functions of geno-

mic positions of these variants. Gene association with multiple traits (GAMuT) proposed by

Broadaway et al. [46] provide a nonparametric test of independence between a set of traits and

a set of genetic variants. This method compares the similarities of multiple traits with the simi-

larities of genotypes at variants in a genomic region. Multivariate Rare-Variant Association

Test (MURAT) proposed by Sun et al. [48] tests association between multiple correlated quan-

titative traits and a set of rare variants based on a linear mixed model. This method assumes

that the effects of the variants follow a multivariate normal distribution with a zero mean and a

specific covariance structure. Wu and Pankow [50] extended the commonly used sequence

kernel association test (SKAT) [40] for a single trait to multiple traits and proposed multiple

sequence kernel association test (MSKAT). Wang et al. [11] proposed an adaptive weighting

reverse regression (AWRR) method. This method uses the score test based on the reverse

regression, in which the summation of adaptively weighted genotypes is treated as the response

variable and multiple traits are treated as independent variables.

In this article, we developed a new statistical method by testing an optimally weighted com-

bination of variants with multiple traits (TOWmuT) to test the association between multiple

traits and a weighted combination of variants (rare and/or common) in a genomic region.

TOWmuT is based on the score test under a linear model, in which the weighted combination

of variants is treated as the response variable and multiple traits including covariates are

treated as independent variables. The statistic of TOWmuT is the maximum of the score test

statistic over weights. The weights at which the score test statistic reaches its maximum are

called the optimal weights. TOWmuT is applicable to different types of traits and can include

covariates. Using extensive simulation studies, we compared the performance of TOWmuT

with single-TOW [39], GAMuT [46], MSKAT [50], AWRR [11] and MANOVA [7]. Our

results showed that, in all the simulation scenarios, TOWmuT is either the most powerful test
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or comparable to the most powerful test among the six tests. We also illustrated the usefulness

of TOWmuT by analyzing a real whole-genome genotyping data from a lung function study.

Methods

We consider a sample with n unrelated individuals. Each individual has K potentially corre-

lated quantitative or qualitative traits (1 for cases and 0 for controls for a qualitative trait) and

has been genotyped at M variants in a genomic region. Let y�ik denote the kth trait value of the

ith individual and x�im denote the genotype score of the ith individual at the mth variant, where

x�im is the number of minor alleles that the ith individual carries at the mth variant. We first

centralize y�ik and x�im as yik ¼ y�ik � �yk and xim ¼ x�im � �xm, where �yk ¼ 1

n

Xn

i¼1
y�ik and

�xm ¼ 1

n

Xn

i¼1
x�im. Let Yi =(yi1,. . .,yiK)T, Xi =(xi1,. . .,xiM)T, Y =(Y1,. . .,Yn)T, and X =(X1,. . .,Xn)T.

For the ith individual, we consider a linear combination of the variants xi ¼
XM

m¼1
wmxim,

where w =(w1,. . .,wM)T are weights and their values will be decided later.

Without covariates

We first describe our method without covariates. Consider the linear model

xi ¼ b1yi1 þ � � � þ bKyiK þ εi: ð1Þ

The score test statistic to test the null hypothesis H0:β1 = � � � = βK = 0 is given by

Tscore ¼ UTV � 1U=s2; ð2Þ

where U ¼
Xn

i¼1
xiYi ¼ YTXw, V ¼

Xn

i¼1
YiYT

i ¼ YTY , and s2 ¼ 1

n

Xn

i¼1
x2

i ¼
1

n w
TXTXw.

To simplify the computation of Eq (2), we replace XTX/n with the diagonal of XTX/n and let

A = diag(XTX/n). This simplification was also used in the past by Pan [51] and Sha et al. [39].

Then σ2 becomes s2
0
¼ wTAw and Tscore becomes T0

scoreðwÞ ¼
wTXTYðYTYÞ� 1YTXw

wTAw . We define the

test statistic of TOWmuT as

TTOWmuT ¼ maxwT
0

scoreðwÞ: ð3Þ

Let W = A1/2w, then TTOWmuT ¼ maxwT0
scoreðwÞ ¼ lmaxðA� 1=2XTYðYTYÞ� 1YTXA� 1=2Þ, where

λmax(•) indicates the largest eigenvalue of a matrix. Let W0 denote the eigenvector of A−1/2XTY
(YTY)−1YTXA−1/2 corresponding to the largest eigenvalue, then w0 = A−1/2W0 is the optimal

weights. Actually, we do not need to calculate w0 in order to calculate TTOWmuT. If we let C =

XA−1XT, then

TTOWmuT ¼ lmaxðA
� 1=2XTYðYTYÞ� 1YTXA� 1=2Þ ¼ lmaxððY

TYÞ� 1YTCYÞ: ð4Þ

We use a permutation test to evaluate the p-value of TTOWmuT. In details, we randomly shuf-

fle the traits in each permutation. Note that C and (YTY)−1 do not change in each permutation.

Suppose that we perform B times of permutations. Let TðbÞTOWmuT denote the value of TTOWmuT
based on the bth permuted data, where b = 0 represents the original data. Then, the p-value of

TTOWmuT is given by

#fb : TðbÞTOWmuT � Tð0ÞTOWmuT for b ¼ 1; . . . ;Bg
B

: ð5Þ
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With covariates

Assume that there are p covariates and zi1,. . .zip denote the p covariates of the ith individual.

Consider the linear model

xi ¼ a0 þ a1zi1 þ � � � þ apzip þ b1yi1 þ � � � þ bKyiK þ εi: ð6Þ

In the appendix, we showed that under model (6), the score test statistic with covariates to test

the null hypothesis H0:β1 = � � � = βK = 0 is given by

Tc
score ¼

~UT ~V � 1 ~U=~s2; ð7Þ

where ~U ¼ ~YT ~Xw, ~V ¼ ~YT ~Y , ~s2 ¼ 1

n w
T ~XT ~Xw, ~X ¼ ð~ximÞ, ~Y ¼ ð~yikÞ, ~yik and ~xim denote the

residuals of yik and xim under

yik ¼ a0k þ a1kzi1 þ . . .þ apkzip þ εik and xim ¼ a0m þ a1mzi1 þ . . .þ apmzip þ tim: ð8Þ

We can see the score test statistic with covariates

Tc
score ¼ Tscorejyik¼~y ik;xim¼~xim

: ð9Þ

That is, replacing yik and xim by their residuals ~yik and ~xim in the score test statistic without

covariates Tscore, it becomes the score test statistic with covariates Tc
score.

Therefore, we define TOWmuT statistic with covariates as

Tc
TOWmuT ¼ TTOWmuT jyik¼~yik ;xim¼~xim

: ð10Þ

In summary, to apply TOWmuT with covariates, we adjust both trait value yik and geno-

typic score xim for the covariates by applying linear regressions in (8) and apply TOWmuT

without covariates to the residuals ~yik and ~xim.

Comparison of methods

We compare the performance of our proposed method with the following methods: Multivari-

ate Analysis of Variance (MANOVA) [9], MSKAT [50], GAMuT [46], AWRR [11] and single-

TOW [39]. In the following, we briefly introduce each of those methods using the notations in

the method section.

MANOVA: Consider a multivariate multiple linear regression model: Y = Xβ+ε, where Y
denotes the n×Kmatrix of phenotypes; X denotes the n×Mmatrix of genotypes; β is a M×K
matrix of coefficients; ε is the n×Kmatrix of random errors with each row of ε to be i.i.d. MVN
(0,S), where S is the covariance matrix of ε. To test H0:β = 0, the likelihood ratio test is equiva-

lent to the Wilk’s Lambda test statistic of MANOVA, that is, � 2logL ¼ 2ðlðb̂; ŜÞ � lð0; Ŝ0ÞÞ ¼

nlogjŜ0 j

jŜj
¼ � nlog jEj

jEþHj

� �
. Here Λ denote the ratio of the likelihood function under H0 to

the likelihood function under H1, l(β,S) is the log-likelihood function, H ¼ b̂TðXTXÞb̂ and

E ¼ YTY � b̂TðXTXÞb̂, where b̂ ¼ ðXTXÞ� 1XTY is the maximum likelihood estimator (MLE)

of β, and |•| denotes the determinant of a matrix. The test statistic has an asymptotic w2
K

distribution.

MSKAT: MSKAT extends the commonly used SKAT [40] for single trait analysis to test for

the joint association of rare variant set with multiple continuous traits.

GAMuT: GAMuT compares the similarity in multivariate phenotypes to the similarity in

rare-variant genotypes in a genomic region by a machine-learning framework called kernel

distance covariance.
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AWRR: by collapsing genotypes using adaptive weights, AWRR uses the score test to test

association based on the reverse regression, in which collapsed genotypes are treated as the

response variable and multiple traits are treated as independent variables.

Single-TOW: Let Tk
TOW denote the test statistic of TOW to test the association between the

kth trait and the genotypes at the variants in a genomic region. The test statistic of single-

TOW is given by Tsingle–TOW = min1�k�K pk, where pk is the p-value of Tk
TOW for k = 1,. . .,K.

The p-value of Tsingle–TOW is estimated using a permutation procedure.

Simulations

In our simulation studies, we use the empirical Mini-Exome genotype data provided by the

genetic analysis workshop 17 (GAW17) to generate genotypes. This dataset contains genotypes

of 697 unrelated individuals on 3205 genes. Same as the simulation studies in Sha et al. [39]

and Fang et al. [52], we choose four genes in the empirical Mini-Exome genotype data. These

four genes are ELAVL4 (gene1), MSH4 (gene2), PDE4B (gene3), and ADAMTS4 (gene4).

Each gene contains 10, 20, 30, and 40 variants, respectively. Then, we merge the four genes to

form a super gene (Sgene) with 100 variants. We generate genotypes based on the genotypes of

697 individuals in the Sgene since the distribution of the minor allele frequencies (MAFs) in

the Sgene are similar to the distribution of MAFs in all of the 3205 genes (Figure A in S1 File).

To generate a qualitative trait, we use a liability threshold model based on a quantitative trait

[44]. An individual is classified as affected if the individual’s trait is at least one standard

deviation larger than the mean of the trait. This leads to a prevalence of 16% for the simulated

disease in the general population. In the following, we only describe how to generate a quanti-

tative trait.

We assume that all causal variants are rare (MAF< 0.01). We randomly choose nc rare vari-

ants as causal variants, where nc is determined by the percentage of causal variants among rare

variants. We use nr and np to denote the number of risk rare variants and protective rare vari-

ants, respectively, where nr + np = nc. Let xrqi and xpji denote the genotypic scores of the qth risk

rare variant and the jth protective rare variant for the ith individual, respectively. We assume

that genotypes impact on L traits. Let h and hl denote the heritability of all the nc rare causal

variants for the L traits and the lth trait among the L traits, respectively. We generate L random

numbers t1,. . .,tL from a uniform distribution between 0 and 1. Then, the heritability of lth trait

among the L traits is hl ¼ htl
.XL

l¼1

tl. Given the heritability of the lth trait hl, we generate nc ran-

dom numbers r1; . . . ; rnc from a uniform distribution between 0 and 1. The heritability of the

mth causal variant for the lth trait is given by hðmÞl ¼ hlrm
.Xnc

j¼1

rj.

In our simulation studies, we consider two covariates Z1 and Z2, where Z1 is a continuous

covariate generated from a standard normal distribution, and Z2 is a binary covariate taking

values 0 and 1 with a probability of 0.5. We generate K traits by considering the factor model

[10, 13, 21]

y ¼ ð0:5Z1 þ 0:5Z2Þeþ ðl1; . . . ; lKÞ
T
þ cγf þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� ε; ð11Þ

where y = (y1,. . .,yK)T; e = (1,. . .,1)T, λ = (λ1,. . .,λK) is the vector involved genotypes; f = (f1,. . .,

fR)T ~ MVN(0,S), S = (1−ρ)I + ρA, A is a matrix with elements of 1, I is the identity matrix,

and ρ is the correlation between fi and fj; R is the number of factors; γ is a K by R matrix; c is a

constant number; ε = (ε1,. . .,εK)T is a vector of residuals; and ε1,. . .,εK are independent, εk ~ N
(0,1) for k = 1,. . .,K.
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As in Wang et al. [10], we consider the following six models with different number of fac-

tors and different number of traits affected by genotypes. In these models, the within-factor

correlation is c2 and the between-factor correlation is ρ1 = ρc2.

Model 1: There is only one factor and genotypes impact on 6 traits with the same effect size.

This is equivalent to set R = 1 and γ = (1,. . .,1)T. In details,

yk ¼

(
0:5Z1 þ 0:5Z2 þ

Xnr

q¼1

b
r
kqx

r
q �
Xnp

j¼1

b
p
kjx

p
j þ cf1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� εk; 1 � k � 6

0:5Z1 þ 0:5Z2 þ cf1 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� εk; k > 6

: ð12Þ

Model 2: There are five factors and genotypes impact on 6 traits. We set R = 5 and γ = diag(D1,

D2,D3,D4,D5), where Di ¼ 1; . . . ; 1
|fflfflfflffl{zfflfflfflffl}

K=5

 !T
for i = 1,. . .,5. In details,

yk ¼

(
0:5Z1 þ 0:5Z2 þ

Xnr

q¼1

b
r
kqx

r
q �
Xnp

j¼1

b
p
kjx

p
j þ cf½ðk� 1Þ=2�þ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� εk; 1 � k � 6

0:5Z1 þ 0:5Z2 þ cf½ðk� 1Þ=2�þ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� εk; k > 6

: ð13Þ

Model 3: There are two factors and genotypes impact on 6 traits. That is, R = 2 and γ = diag
(D1,D2), where Di ¼ 1; . . . ; 1

|fflfflfflffl{zfflfflfflffl}
K=2

 !T
for i = 1,2. In details,

yk ¼

(
0:5Z1 þ 0:5Z2 þ

Xnr

q¼1

b
r
kqx

r
q �
Xnp

j¼1

b
p
kjx

p
j þ cf½ðk� 1Þ=5�þ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� εk; 1 � k � 6

0:5Z1 þ 0:5Z2 þ cf½ðk� 1Þ=5�þ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� εk; k > 6

: ð14Þ

Model 4: There are five factors and genotypes impact on one trait. That is, R = 5 and γ = diag
(D1,D2,D3,D4,D5), where Di ¼ 1; . . . ; 1

|fflfflfflffl{zfflfflfflffl}
K=5

 !T
for i = 1,. . .,5. In details,

yk ¼

(
0:5Z1 þ 0:5Z2 þ

Xnr

q¼1

b
r
kqx

r
q �
Xnp

j¼1

b
p
kjx

p
j þ cf½ðk� 1Þ=2�þ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� εk; k ¼ 1

0:5Z1 þ 0:5Z2 þ cf½ðk� 1Þ=2�þ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� εk; k > 1

: ð15Þ

Model 5: There are only two factors and genotypes impact on one trait. That is, R = 2 and γ =

diag(D1,D2), where Di ¼ 1; . . . ; 1
|fflfflfflffl{zfflfflfflffl}

K=2

 !T
for i = 1,2. In details,

yk ¼

(
0:5Z1 þ 0:5Z2 þ

Xnr

q¼1

b
r
kqx

r
q �
Xnp

j¼1

b
p
kjx

p
j þ cf½ðk� 1Þ=5�þ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� εk; k ¼ 1

0:5Z1 þ 0:5Z2 þ cf½ðk� 1Þ=5�þ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� εk; k > 1

: ð16Þ
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Model 6: There is K factors and genotypes impact on 6 traits. That is, R = K, γ = I, and c = 1. In

details,

yk ¼

(
0:5Z1 þ 0:5Z2 þ

Xnr

q¼1

b
r
kqx

r
q �
Xnp

j¼1

b
p
kjx

p
j þ cfk þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� εk; 1 � k � 6

0:5Z1 þ 0:5Z2 þ cfk þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� εk; k > 6

: ð17Þ

Results

To evaluate the type I error rates of the proposed test TOWmuT, we set λk = 0 for k = 1,. . .,K
in all of the 6 models. We consider different models, different sample sizes, different signifi-

cance levels, and different types of traits. In our simulations we consider 10 traits (K = 10). In

each simulation scenario, we estimate the p-values of TOWmuT using 1000 permutations

and evaluate the type I error rates of TOWmuT using 10,000 replicated samples. For 10,000

replicated samples, the 95% confidence interval (CI) for the estimated type I error rates of

nominal level 0.05 is (0.046, 0.054) and the 95% CI at the nominal level of 0.01 is (0.008,

0.012). Tables 1 and 2 summarize the estimated type I error rates of TOWmuT. From these

two tables, we can see that 70 out of 72 (greater than 95%) estimated type I error rates are

within the 95% CIs and the two estimated type I error rates not within the 95% CIs (0.05555

and 0.01295) are very close to the bound of the corresponding 95% CI, which indicates that

TOWmuT is valid.

For power comparisons, we consider different models, different types of traits, different

percentages of protective variants, different values of heritability, different values of between-

factor correlation, and different values of within-factor correlation. In each of the simulation

scenarios, we estimate the p-values of TOWmuT, AWRR and single-TOW using 1,000 permu-

tations and we estimate the p-values of MANOVA, GAMuT, and MSKAT using their asymp-

totic distributions. We evaluate the powers of all of the six tests using 1,000 replicated samples

at a significance level of 0.05.

Fig 1 gives the power comparisons of the six tests (Single-TOW, MSKAT, AWRR, MAN-

OVA, GAMuT, and TOWmuT) for the power as a function of the total heritability based on

Table 1. The estimated type I error rates of TOWmuT for 10 quantitative traits under each model with

covariates.

Sample Size

Model 500 1000 2000

α = 0.05 1 0.05365 0.0515 0.0515

2 0.0521 0.0528 0.0504

3 0.0513 0.0540 0.0503

4 0.0514 0.0511 0.05

5 0.05381 0.04825 0.05

6 0.0482 0.0508 0.05325

α = 0.01 1 0.01165 0.0098 0.0117

2 0.012 0.01015 0.0102

3 0.01175 0.01075 0.0113

4 0.01145 0.01075 0.0118

5 0.01141 0.01095 0.0117

6 0.0097 0.0105 0.01185

https://doi.org/10.1371/journal.pone.0201186.t001
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the six models for 10 quantitative traits. This figure shows that (1) TOWmuT is consistently

the most powerful one among the six tests; (2) MANOVA is the second most powerful when

genotypes impact on multiple traits (models 1–3 and 6) while AWRR is the second most pow-

erful when genotypes impact on a single trait (models 4–5); (3) MSKAT is consistently less

powerful than other multivariate tests probably because SKAT gives larger weights than that of

TOW to only those variants with MAF in the range (0.01,0.035) and there are only 8% variants

with MAF in the range (0.01,0.035) in Sgene which our simulations are based on; and (4)

MSKAT and GAMuT have similar powers in all six models.

Fig 2 gives the power comparisons of the five tests (Single-TOW, AWRR, MSKAT,

GAMuT, and TOWmuT) for the power as a function of the total heritability for the mixture of

5 quantitative traits and 5 qualitative traits. We only compare the powers of five tests because

MANOVA has inflated type I error rate in this case. This figure shows that (1) TOWmuT is

consistently the most powerful one among the five tests; (2) AWRR is second most powerful

when genotypes impact on multiple traits (models 1–3 and 6) while MSKAT and GAMuT are

second most powerful when genotypes impact on a single trait (models 4–5); (3) MSKAT and

GAMuT have similar powers in all six models; and (4) single-TOW is consistently less power-

ful than other four multivariate tests because we keep correlations between traits similar to

that in Fig 1 such that correlations between original quantitative traits are larger than that in

Fig 1.

We also compare the powers of the six tests for the power as a function of the within-factor

correlation for models 1–5 and between-factor correlation for model 6 for 10 quantitative

traits (Figure B in S1 File). As shown in this figure, the power of single-TOW is robust to the

between-factor correlation or the within-factor correlation since the minimum p-value-based

approach is largely unaffected by the trait correlation [50]. However, with the increasing of the

between-factor correlation or within-factor correlation, the power of other five tests essentially

increases. Other patterns of the power comparisons are similar to those of in Fig 1.

Power comparisons of the six tests for the power as a function of the percentage of protec-

tive variants for 10 quantitative traits are given by Figure C in S1 File. This figure shows that

the power of all six tests are robust to the percentage of protective variants, therefore, all of

these methods are robust to the directions of the genetic effects. Other patterns of the power

comparisons are similar to those of in Fig 1.

Table 2. The estimated type I error rates of TOWmuT for the mixture of five quantitative traits and five qualita-

tive traits under each model with covariates.

Sample Size

Model 500 1000 2000

α = 0.05 1 0.05365 0.05385 0.05005

2 0.0511 0.0483 0.05115

3 0.0508 0.05375 0.052

4 0.0529 0.04915 0.0536

5 0.054 0.05355 0.04825

6 0.05555 0.0493 0.0529

α = 0.01 1 0.0105 0.01295 0.00995

2 0.0105 0.009 0.0097

3 0.01145 0.0104 0.0101

4 0.01065 0.00945 0.01165

5 0.0118 0.0105 0.00875

6 0.01195 0.00935 0.01105

https://doi.org/10.1371/journal.pone.0201186.t002
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Application to the COPDGene

Chronic obstructive pulmonary disease (COPD) is a common disease in elderly patients that

causes significant morbidity and mortality [53]. The Genetic Epidemiology of COPD Study

(COPDGene) [54] was designed to identify genetic factors associated with COPD. In this

COPDGene study, a total of more than 10,000 subjects have been enrolled including 2/3 non-

Hispanic Whites (NHW) and 1/3 African-Americans (AA). In this analysis, we only include

5,430 NHW with no missing phenotypes. Each of the 5,430 NHW has been genotyped at

630,860 SNPs. Based on the literature studies of COPD [9, 55, 56], we chose BMI, Age, Pack-

Years (PackYear) and Sex as covariates and selected seven quantitative COPD-related
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Fig 1. Power comparisons of the six tests (Single-TOW, MSKAT, AWRR, MANOVA, GAMuT and TOWmuT) for the power as a function of total heritability for

10 quantitative traits with covariates. The sample size is 1000. The between-factor correlation is 0.3 and the within-factor correlation is 0.7. The percentage of the

causal variants is 0.2. All causal variants are risk variants.

https://doi.org/10.1371/journal.pone.0201186.g001
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phenotypes. These seven phenotypes are FEV1 (% predicted FEV1), Emphysema (Emph),

Emphysema Distribution (EmphDist), Gas Trapping (GasTrap), Airway Wall Area (Pi10),

Exacerbation frequency (ExacerFreq), and Six-minute walk distance (6MWD) [9]. The corre-

lation structure of the seven COPD-related phenotypes is given in Figure D in S1 File.

To evaluate the performance of our proposed method on a real data set, we applied six

methods (TOWmuT, MANOVA, MSKAT, GAMuT, AWRR, and single-TOW) to the COPD-

Gene of NHW population to test the association between each of 50-SNP blocks and the seven

quantitative COPD-related phenotypes. To identify significant 50-SNP blocks associated with

the phenotypes, we used Bonferroni correction to decide the significance level. The total num-

ber of 50-SNP blocks is 12617, therefore, the Bonferroni corrected significance level is 0.05/
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Fig 2. Power comparisons of the five tests (Single-TOW, AWRR, GAMuT, MSKAT and TOWmuT) for the power as a function of heritability for the mixture of

half quantitative traits and half qualitative traits with covariates. The sample size is 1000. Covariance matrix of 10 traits is similar to that of 10 quantitative traits with

between-factor correlation being 0.3 and the within-factor correlation being 0.7. The percentage of the causal variants is 0.2. All causal variants are risk variants.

https://doi.org/10.1371/journal.pone.0201186.g002
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12617� 4×10−6. Table 3 summarized the significant blocks identified by at least one method.

There were total six significant blocks in Table 3. All of the six blocks have been previously

reported to be in association with COPD or lung functions [57–60]. PDSS1 and ABI1 are

located between LOC107984176 and LOC105376467, which are Intergenic regions and con-

tain the SNPs associated with pulmonary function [60, 61]. From Table 3, we can see that

TOWmuT identified four blocks; AWRR identified two blocks; MANOVA, MSKAT and

GAMuT identified one block; single-TOW did not identify any blocks. From these results, we

can see that TOWmuT identified the most of significant 50-SNP blocks among the six meth-

ods, which is consistent with the results of our simulation studies.

Discussion

In this article, we developed TOWmuT to perform joint analysis of multiple traits in gene-

based association studies. The motivations to develop this method are based on the following:

(1) for complex diseases, multiple correlated traits are usually measured in genetic association

studies; (2) there is increasing evidence demonstrating that pleiotropy is a widespread phe-

nomenon in complex diseases [5]; and (3) there is a shortage of gene-based approaches for

multiple traits. We used extensive simulation studies to compare the performance of TOW-

muT with MANOVA, MSKAT, AWRR, GAMuT and Single-TOW. Our simulation results

showed that TOWmuT has correct type I error rates and is consistently more powerful than

other five methods we compared. Furthermore, the results from real data analysis showed that

the proposed method has great potential in gene-based association study for complex diseases

with multiple phenotypes such as COPD.

Recently, it has become a major focus of investigation to identify a small number of rare

causal variants that contribute to complex diseases [62]. Several methods to pinpoint the causal

variants have been developed for testing the association with a single trait. These methods

include backward elimination (BE) method [63], hierarchical model method [63], and adap-

tive combination of p-values method [64]. To extend the TOWmuT method to identify a small

number of causal variants which are associated with multiple traits, we can use the BE method.

In each step, we remove one variant that has the smallest contribution to the association

between multiple traits and the set of variants and then we evaluate the p-value for testing asso-

ciation between multiple traits and the remaining variants by TOWmuT. Causal variants are

the set of variants corresponding to the smallest p-value.

The computation time required for running TOWmuT depends on the number of traits,

the sample size, the number of permutations, and the number of variants in a genomic region.

The running time of TOWmuT with 1000 permutations on a data set with 5000 individuals,

seven traits, and 10 variants in a genomic region on a laptop with 4 Intel Cores @ 3.30GHz and

4 GB memory is about 0.14s. To perform real data analysis at a genome-wide level, we can first

select genomic regions that show evidence of association based on a small number of permuta-

tions (e.g. 1,000), and then use a large number of permutations to test the selected regions.

Table 3. Significant blocks identified by at least one method (p-values less than 4×10−6) and the corresponding p-values in the analysis of COPDGene.

CHR POS1 POS2 Genes TOWmuT MANOVA MSKAT GAMuT AWRR Single-TOW

2 178000985 178419117 NFE2L2 0.20883 2.62E-06 0.02508 0.02505 0.25796 0.15468

4 145278837 145697040 HHIP 1.00E-07 7.71E-06 0.03992 0.03984 0 0.00085

10 26908475 27150093 PDSS1, ABI1 4.00E-06 0.04050 0.01242 0.01247 1.6E-05 0.02845

15 78593362 78825917 IREB2, AGPHD1 1.00E-07 0.00191 0.70349 0.70357 5.6E-06 0.23484

15 78826180 79006442 PSMA4, CHRNA5, CHRNA3, CHRNB4 2.90E-06 0.00037 0.06255 0.06252 0 0.37643

15 79006582 79267817 ADAMTS7 9.01E-05 4.78E-05 2.25E-06 6.42E-07 0.04849 0.01953

https://doi.org/10.1371/journal.pone.0201186.t003
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Appendix

We use the same notations in the method section. Let Y = (Y1,. . .,Yn)T, Zi = (1zi1,. . .,zip)T, Z =

(Z1,. . .,Zn)T, and x = (x1,. . .,xn)T. Under the linear model

xi ¼ aTZi þ b
TYi þ εi; ð18Þ

the log-likelihood (up to a constant) is given by

logl ¼ �
n
2

logðs2Þ �
1

2s2
ðx � Za � YbÞ

T
ðx � Za � YbÞ; ð19Þ

where α = (α0,. . .,αp)
T, β = (β1,. . .,βK)T, and ε1,. . .,εn are independent and εi ~ N(0,σ2). Then,

@logl
@b
¼

1

s2
ðx � Za � YbÞ

TY;
@logl
@a
¼

1

s2
ðx � Za � YbÞ

TZ; ð20Þ

@2logl
@bb

T ¼ �
1

s2
YTY;

@2logl
@aaT

¼ �
1

s2
ZTZ; and

@2logl
@ab

T ¼ �
1

s2
ZTY: ð21Þ

Let â and ŝ2 denote the maximum likelihood estimates of α and σ2 under null hypothesis H0:β =

0. Then, â ¼ ðZTZÞ� 1ZTx and ŝ2 ¼ 1

n x
TðI � PÞx ¼ 1

n w
TXTðI � PÞXw, where P = Z(ZTZ)−1ZT.

Let θ = (αT,βT)T. The score and information matrix are S ¼ @logl
@y
ja¼â ;b¼0 ¼

1

ŝ2 ð0;UTÞ
T

and

I ¼ � E @2 logl
@yyT
j
a¼â ;b¼0

¼ 1

ŝ2

ZTZ ZTY

YTZ YTY

 !

, where U = YT(I−P)x = YT(I−P)Xw. The score test sta-

tistic is given by

Tc
score ¼

1

ŝ2
UTV � 1U; ð22Þ

whereV = YT(I−P)Y. Note that (I−P)2 = I−P. We have U ¼ YTðI � PÞXw ¼ ~YT ~Xw,

XTðI � PÞX ¼ ~XT ~X , ŝ2 ¼ 1

n w
TXTðI � PÞXw ¼ 1

n w
T ~XT ~Xw, andV ¼ YTðI � PÞY ¼ ~YT ~Y ,

where ~X ¼ ð~ximÞ and ~xim is the residual of xim under the linear regression model (8); ~Y ¼ ð~yikÞ
and ~yik is the residual of yik under the linear regression model (8). Therefore,

Tc
score ¼ Tscorejyik¼~y ik;xim¼~xim

: ð23Þ
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