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An unexplored brain-gut microbiota axis in stroke
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ABSTRACT
Microbiota research, in particular that of the gut, has recently gained much attention in medical
research owing to technological advances in metagenomics and metabolomics. Despite this, much
of the research direction has focused on long-term or chronic effects of microbiota manipulation on
health and disease. In this addendum, we reflect on our recent publication that reported findings
addressing a rather unconventional hypothesis. Bacterial pneumonia is highly prevalent and is one
of the leading contributors to stroke morbidity and mortality worldwide. However, microbiological
cultures of samples taken from stroke patient with a suspected case of pneumonia often return with
a negative result. Therefore, we proposed that post-stroke infection may be due to the presence of
anaerobic bacteria, possibly those originated from the host gut microbiota. Supporting this, we
showed that stroke promotes intestinal barrier breakdown and robust microbiota changes, and the
subsequent translocation of selective bacterial strain from the host gut microbiota to peripheral
tissues (i.e. lung) induces post-stroke infections. Our findings were further supported by various
elegant studies published in the past 12 months. Here, we discuss and provide an overview of our
key findings, supporting studies, and the implications for future advances in stroke research.
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Stroke promotes gut dysfunction and alters the gut
microbiome

According to the recent Global Burden of Disease
(GBD) study, stroke continues to be a significant
health concern with an impact predicted to
increase due to an aging population.1 After ische-
mic and hemorrhagic stroke, up to 50% of patients
experience gastrointestinal complications, including
dysphagia, gastrointestinal hemorrhaging, constipa-
tion and bowel incontinence.2-4 The underlying
mechanisms may be attributed to the highly inner-
vated nature of the intestinal tract by both extrinsic
and intrinsic nerve fibers. The resulting gastrointes-
tinal complications after stroke are associated with
poor patient outcomes, including delayed patient
recovery times, increased mortality rates and deteri-
orating neurologic function.2,5-9 Despite this, a less
well understood secondary effect of stroke is gut
microbiota dysbiosis. Impaired intestinal microbiota
balance is known to contribute to neuro-behavioral
problems,10-14 inflammatory disease states,15-19 and

more recently in pre-clinical settings, shown to
worsen stroke outcomes.20,21

Stroke and transient ischemic attack patients often
display significant changes in microbial diversity and
bacterial counts in fecal samples independent of cer-
tain co-morbidities (age, hypertension and type 2 dia-
betes).22,23 However, clinical studies remain limited
when trying to delineate the underlying mechanisms
for microbiota changes in these patients. The main
challenge is the heterogeneous nature of patient clini-
cal pathology, diets and lifestyle, all of which have
major influences on the gut microbiome composition.
From experimental studies, however, several potential
mechanisms for microbiota imbalance after stroke has
been proposed, including the suppression of systemic
immunity,24-28 the release of pro-inflammatory medi-
ators from brain infarct lesions,29,30 activation of the
sympathetic nervous system (SNS),26,31-33 stress
induction,34 and impaired intestinal motility.20 It is
likely a multitude of causative factors are simulta-
neously at play.

CONTACT Connie H. Y. Wong, PhD. connie.wong@monash.edu Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences,
Monash Medical Centre, Monash University, Clayton, VIC 3168 Australia.

© 2017 Shu Wen Wen and Connie H. Y. Wong. Published with license by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/
4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in
any way.

GUT MICROBES
2017, VOL. 8, NO. 6, 601–606
https://doi.org/10.1080/19490976.2017.1344809

https://crossmark.crossref.org/dialog/?doi=10.1080/19490976.2017.1344809&domain=pdf&date_stamp=2017-11-29
mailto:connie.wong@monash.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1080/19490976.2017.1344809


Our recent experimental study adds substantially to
this body of evidence.33 In this study, we used a well-
accepted and clinically relevant mouse model of cerebral
ischemia-reperfusion injury: the intraluminal middle
cerebral artery occlusion model (MCAO). This model
involves the transient occlusion of blood supply to the
middle cerebral artery in the brain using a monofilament
with defined diameter. To understand the effect of stroke
on the host microbiota, we first examined bacterial bio-
mass and diversity in specific intestinal compartments
after transientMCAO induction.We noted that bacterial
biomass was considerable reduced at 24 hours after
stroke onset in the ileum and colon, as well as significant
alterations in mucosal microbiota composition at all tax-
onomic levels. This indicated selective depletion of spe-
cific bacterial strains, and/or possible translocation of
bacteria away from the gut. Indeed, culturable bacteria
was detected in the lung, broncho-alveolar lavage fluid
(BALF), liver and spleen of stroke-induced mice com-
pared with sham-operated cohorts, strongly suggesting
systemic dissemination of gut bacteria. Sham-operated
mice are essential in all MCAO models as it allows us to
delineate if observed effects are directly due to stroke
induction or simply because of surgical stress.

To assess if microbiota imbalance was associated with
changes in intestinal function post-stroke, we examined
gut permeability by quantifying serum levels of orally
gavaged FITC-labeled dextran.33 Vascular and epithelial
permeability in the gut was significantly increased as
early as 3 hours after stroke induction. Changes to gut
permeability was further confirmed by the reduced dis-
tribution of ZO-1 tight junction complexes in the ileum,
which are crucial in the maintenance of epithelial and
endothelial barriers of the gut. It is unclear from our
study whether other tight and adheren junctions known
to regulate bacterial dissemination are altered after
stroke, including occluding, cingulin, VE-cadherin and
b-catenin.35 Additionally, elucidating the effect of stroke
on pericytes and fibroblasts (cells which are also associ-
ated with maintenance of gut vascular barriers) would
be important to gain further insights into the overall
post-stroke gut microenvironment.

Furthermore, our study revealed gut dysbiosis and
intestinal dysfunction was associated with imbalanced
sympathetic nerve signaling within the submucosal
plexus of the gut following stroke.33 Quantitative analy-
sis of neuronal densities in the submucosal plexus of the
ileum showed significant loss of cholinergic ChATC
cells, and an overall imbalance between adrenergic and

cholinergic signaling. Our findings are supported by a
recent study that showed enteric neuronal loss after
stroke in a galectin-3 and TLR4 mediated manner.31

The administration of pharmacological b-adrenergic
receptor inhibitors (propranolol or metoprolol) was
able to restore stroke-induced gut permeability levels
comparable to sham-operated mice, as well as reduce
detectable bacteria in the lung, BALF, liver and spleen.33

Consistent with our findings, a recent study demon-
strated noradrenaline release after stroke altered the
composition of the host microbiota, mucoprotein and
goblet cell numbers in the cecal.32 Besides effects in the
gut, we have previously shown that noradrenergic inner-
vation suppresses the ability of invariant NKT cells in
the liver to effectively respond to bacterial infection after
experimental ischemic stroke.28 Taken together, these
findings demonstrate the importance of b-adrenergic
signaling in dictating stroke outcome, and present a
potential therapeutic avenue to reduce stroke-associated
complications in patients.

Other studies using a similar experimental stroke
model confirm our findings. Singh et al (2016) showed
stroke induces substantial changes to intestinal micro-
bial composition, with an overall reduction in species
diversity.20 Specifically, alternations were observed
within the highly abundant phyla: Firmicutes, Bacteroi-
detes and Actinobacteria.20 This effect was associated
with intestinal barrier dysfunction and reduced intesti-
nal motility. Surgical manipulation of the ileus to mimic
gastrointestinal paralysis patterns of stroke animals
recapitulated similar changes in gut microbiome diver-
sity.20 Of note, the degree of intestinal dysfunction cor-
relates positively with stroke severity,20,36 indicating that
the degree of brain infarct and neurologic impairment is
key in determining systemic effects. Similarly, experi-
mental traumatic brain injury in rats is associated with
severe mucosal atrophy and disruption of gut epithelial
cell tight junctions by 3 hours after injury, which can
persist for 7 d.37 Despite a consensus between multiple
studies that gut dysfunction is essential to microbiota
changes following stroke (or brain injury), much
requires clarification. For example, what is the exact
sequence of events mediated by this brain-gut-micro-
biome axis? Does microbiome dysbiosis precede
changes in gut permeability, or does it occur simulta-
neously? Why are certain bacterial populations more
prone to change after stroke, and are enteropathogenic
strains more likely to persist and translocate to cause
infection?
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Gut dysbiosis after stroke regulates immunological
changes

The brain-gut communication is bidirectional. Dis-
ruption of microbial-host symbiosis is linked to
neurologic disorders, obesity, metabolic disorders and
diabetes.38-40 For example, a recent study elegantly
demonstrated that the gut microbiota is essential for
the development Parkinson disease in transgenic
animals overexpressing human protein a-synuclein
(aSyn).41 In the absence of gut microbiota (germ-free
conditions or antibiotics administration), transgenic
animals display reduced motor deficits, microglial
activation and aSyn aggregation in the brain
compared with control animals with a complex micro-
biota.41 Furthermore, colonisation of aSyn transgenic
mice with microbiota from patients with Parkinson
disease exacerbated motor dysfunction compared with
mice that received microbiota from healthy controls.41

In terms of stroke, emerging evidence suggests that a
general loss of gut microbial diversity has cerebral
effects.20,42

When intestinal microbial diversity was reduced
using broad-spectrum antibiotics before stroke, brain
infarct size decreased by 60%.42 Antibiotics expanded
members of Proteobacteria, and reduced in Firmicutes
and Bacteriodetes.42 This was associated with
increased neuroprotective regulatory T cells in the gut,
and its subsequent IL-10-mediated suppression of
pro-inflammatory IL-17-positive gd T cells.42

Conversely, post-stroke mice were shown to have
larger brain infarct lesions and reduced behavioral
performance if they were recolonized with altered gut
microbiota obtained from stroke donors.20 Recipients
of stroke-induced microbiota also exhibited increased
pro-inflammatory cytokines (IFN-g and IL-17) in the
brain and Peyer’s Patch.20 Importantly, it was shown
using in vivo cell-tracking studies that fluorescently
labeled T cells and monocytes in the Peyer’s Patch
migrate from the intestine to the brain after stroke,
where they may cause tissue injury.20 These studies
demonstrate the complexity of intestinal flora, and the
biomodial effects bacterial populations distal from the
brain have on cerebral inflammation.20,42 While diffi-
cult, extensive studies are required to define what
neuroprotective and harmful gut bacterial species are
important in stroke, and how they may be manipu-
lated and harness therapeutically to improve patient
outcomes.

Post-stroke infection can originate from endogenous
gut bacteria

Despite its known primary effects of brain injury, the
major cause of death after stroke is attributed by second-
ary infections, including pneumonia and urinary tract
infections.43 In fact, post-stroke infections account for
up to 30% of mortality in patients.44 Randomized clini-
cal trials evaluating preventive antibiotics in patients
with acute stroke showed it was not associated with
reduced mortality.45,46 Additionally, several large clini-
cal studies have been unable to show a link between
administration of antibiotics and reducing post-stroke
infection.45,47 This suggests a clear need for alternative
treatment approaches and importantly, a better under-
standing of the underlying mechanisms of post-stroke
infections. Current known risk factors for post-stroke
infection include dysphasia, immobility, bulbar palsy
and subsequent development of aspiration. Although
these factors may play a role, our recent work demon-
strated that a major source of lung infection post-stroke
originates from gut commensal bacteria translocating
systemically following the breakdown of gut barriers
after stroke onset.33

Our recent findings showed that the majority
(> 70%) of bacteria detected in stroke patients who
developed infections were common commensal bacteria
that normally reside in the intestinal tracts (Enterococcus
spp., Escherichia coli and Morganella morganii).33 Cul-
turable bacterial colonies were absent from the blood of
healthy control patients. To confirm our suspicion that
bacteria originates endogenously from within the host
gut, we turned to the MCAO mice model. Post-stroke
infection was shown to be specific to mice raised in spe-
cific-pathogen-free (SPF), and not those in germ-free
(GF) facilities after MCAO surgery. Interestingly, this
effect was consistent despite similar brain infarct size
between SPF and GFmice after stroke. Unlike SPFmice,
those in GF conditions lack a normal gut microbiota,
hence allowing us to directly pinpoint if bacterial infec-
tion after stroke is likely to originate from exogenous or
endogenous sources. To further examine if post-stroke
infection arise due to the translocation of host gut
microbiota, streptomycin-resistant E. Coli was inocu-
lated into SPF mice via oral gavage. E. Coli was strategi-
cally inoculated 3 hours after stroke induction, a time
point which coincidences with increased gut permeabil-
ity. We found only post-stroke mice displayed positive
cultures of streptomycin-resistant E. Coli in the lung,
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blood and liver compared with surgical sham controls,
clearly indicative of gut bacteria dissemination
systemically. Two major pathways of gastrointestinal
permeability may be responsible for bacterial transloca-
tion: transcellular through the epithelial cells and/or par-
acellular past the tight junctions.48 While we have
evidence of bacterial translocation via paracellular
means post-stroke (ZO-1 tight junction breakdown),33

no studies to date has explored the movement of
bacterial or bacterial components via transcellular path-
ways in a stroke setting. The transcellular release of bac-
terial components through the epithelial barrier could
prove important in programming the underlying
immune response imitated in the lamina propria after
stroke.

To characterize the complete microbial community
after stroke and expand beyond culture-based analysis,
we utilised high-throughput 16S rRNA gene amplicon
sequencing to analyze the lung microbiome from
sham-operated and post-stroke SPF mice.33 We
showed that there were no differences in a diversity
metrics between the lungs of sham-operated and post-
stroke mice, but there were significant shifts in the
abundance of existing microbiota at most taxonomic
levels. Using bioinformatic algorithms (Source-
Tracker), we predicted the most likely origin of micro-
bial communities present in the lung from post-stroke
mice are the small intestine and liver. Future studies
using super-resolution live-cell imaging technology
would be useful in providing real-time tracking of bac-
terial movement away from the gut, and specificity
when seeding in other tissues.49 The ability to visualize
and study the host-pathogen interaction at the muco-
sal surface will also provide insights into the underly-
ing mechanisms behind the selectivity of bacterial
translocation.

Concluding remarks

While considerable advances has been made in the last
few years, it is clear from the recent publications sum-
marized that much remains unanswered concerning the
role of the gut microbiome in stroke. In particular, what
is the key driver of bacterial gut translocation, is the dis-
semination strain specific or dependent on overall gut
diversity, and once translocated, is bacterial colonization
organ specific? Answers to these key questions may
enable targeting of critical pathways to inhibit systemic
bacterial dissemination and outgrowth in secondary

organs. However, a major obstacle for the clinical trans-
lation of microbiota research is the large variation
between the gut microbiome of patients (due to lifestyle,
diet and co-morbidities), which cannot be easily repli-
cated using mouse models. Detailed profiling and char-
acterization of the microbiome using high throughput
sequencing, metabolomics and computational method-
ologies will likely be important to assist in developing
personalized treatment approaches. Nevertheless,
microbiome-based interventions hold great potential
for improving stroke outcomes.
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